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Soil microbiota play a critical role in soil biogeochemical processes and have a profound effect on
soil functions. Recent studies have revealed microbial co-occurrence patterns in soil microbial
communities, yet the geographic pattern of topological features in soil microbial co-occurrence
networks at the continental scale are largely unknown. Here, we investigated the shifts of topological
features in co-occurrence networks inferred from soil microbiota along a continental scale in eastern
China. Integrating archaeal, bacterial and fungal community datasets, we inferred a meta-community co-
occurrence network and analyzed node-level and network-level topological shifts associated with five
climatic regions. Both node-level and network-level topological features revealed geographic patterns
wherein microorganisms in the northern regions had closer relationships but had a lower interaction
influence than those in the southern regions. We further identified topological differences associated
with taxonomic groups and demonstrated that co-occurrence patterns were random for archaea and
non-random for bacteria and fungi. Given that microbial interactions may contribute to soil functions
more than species diversity, this geographic shift of topological features provides new insight into
studying microbial biogeographic patterns, their organization and impacts on soil-associated function.
The ISME Journal (2016) 10, 1891—1901; doi:10.1038/ismej.2015.261; published online 15 January 2016

Introduction

Soil microbiota play critical roles in a wide range
of biogeochemical cycles and comprise the major
pool of living biomass in soil ecosystems (Miltner
et al., 2012; Xu et al., 2013). Increasing evidence
indicates that a variety of soil factors can shape and
be shaped by the microbiome, suggesting a promis-
ing avenue for increasing soil health via directed
manipulation of the microbiome (Chaparro et al.,
2012; Ellouze et al., 2013). Characterizing the
capacity of the soil microbiota, its interaction with
soil factors and its contribution to various soil
biogeochemical processes therefore has the potential
to provide important insights into soil functions.
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This would comprise a systems-level understanding
of community function and structure (Fuhrman,
2009). To address this challenge, researchers have
started mapping the soil microbiota (Hultman et al.,
2015; Panke-Buisse et al.,, 2015), and the use
of high-throughput sequencing analysis has allowed
us to characterize the composition and functional
attributes of soil microbial communities across broad
spatial scales (Fierer and Jackson, 2006; Bates et al.,
2011; Fierer et al., 2013). Additionally, recent studies
have revealed co-occurrence patterns in soil micro-
bial communities across a wide range of terrestrial
ecosystems (Barberdn et al., 2012; Fierer et al., 2012).

Network analyses-based approaches have recently
been used to investigate co-occurrence patterns
between microorganisms in complex environments
ranging from the human gut to oceans and soils
(Ruan et al., 2006; Fuhrman and Steele, 2008; Faust
et al., 2012; Chow et al., 2013). Co-occurrence
patterns are ubiquitous and particularly important
in understanding microbial community structure,
offering new insights into potential interaction
networks, and revealing niche spaces shared by
community members (Steele et al., 2011; Faust and
Raes, 2012; Kara et al., 2013). Recent studies have
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explored large, complex microbial community datasets
and have demonstrated previously unseen co-
occurrence patterns, such as strong non-random
associations, niche specialization (Faust et al., 2012),
unexpected ecological relationships (Zhang et al,
2014), and deterministic processes at different taxo-
nomic levels (Chaffron et al., 2010). Topology-based
analysis of large networks has proven powerful for
studying the characteristics of co-occurrence patterns at
various taxonomic levels, and identifying keystone
microbial groups in different soils (Lupatini et al.,
2014). Here, we significantly advance this research
by providing a comprehensive understanding of the
topological shifts of soil bacterial, archaeal and fungal
co-occurrence networks at a continental scale.

Eastern Asia represents an ideal continental scale
system to explore a complete vegetation gradient
from tropical forest to arctic tundra. Comparing the
topological properties of the nodes associated with
forest soil in different climatic regions and examin-
ing network-level topological features can provide us
with insight into variations in the co-occurrence
patterns along this successional climatic gradient.
This approach helps contextualize microbial bio-
geography by taking into account the complex
network of potential interactions among microbes
in these environments. Specifically, we addressed
the following questions: (i) Do the topological
features of co-occurrence network vary between
different climate regions? (ii) Do microorganisms
from different kingdoms (bacteria, archaea, fungi)
exhibit different co-occurrence patterns? (iii) What
environmental factors correlate with variation in
the topological features of interaction networks?
To answer these questions, we performed ribosomal
RNA amplicon sequencing analyses on natural,
undisturbed forest soil microbiota spanning five
successional climate regions and implemented co-
occurrence network analysis to examine the topolo-
gical feature dynamics across this continental scale.
Our main objective was to characterize and better
understand co-occurrence network patterns in soil
microbial communities.

Materials and methods

Soil sampling

We collected three soil samples from a 100 x 100 m®
plot in natural forestry communities at 110 sites
across eastern China (distances ranging from 0.7
to 3671.8 km) using a uniform sampling protocol
(Supplementary Figure S1). Each soil sample was
combined with five soil cores that were taken at
a depth ranging from 0 to 15 cm. We removed loose
debris from the forest floor and combined each set of
five soil cores as one soil sample, giving three
biological replicates per plot. All soil samples were
transported to our laboratory on ice. Coarse roots
and stones were removed, and a subset of the soil
was air-dried for analysis of edaphic properties.
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Based on regional climates and geographic distribu-
tion, these sites were categorized into five climatic
regions in accordance with the Koppen - Geiger
climate classification system (http://en.wikipedia.org/
wiki/Koppen_climate_classification/). These included
the ‘south region’ comprising tropical wet and dry
climates (Aw) and two warm temperate climates
(Cfa and Cwa), and the ‘north region’ comprising
warm summer continental climates (Dwb) and hot
summer continental climates (Dwa). We obtained
mean annual air temperatures and mean annual
precipitation values from the WorldClim database
(www.worldclim.org). Soil collection protocols and
methods for investigating edaphic and environmen-
tal properties are described in Supplementary
Information.

Ribosomal RNA (rRNA) amplicon sequencing and
processing

DNA was extracted from soil samples using the MP
FastDNA SPIN Kit for soil (MP Biomedicals, Solon,
OH, USA), as per the manufacturer’s instructions.
Equal amounts (200 ng) of DNA extract from the three
replicates were pooled to form a composite DNA
sample. DNA purity and concentrations were analyzed
with a NanoDrop spectrophotometer (NanoDrop Tech-
nologies Inc., Wilmington, DE, USA). Isolated DNA
was stored at —20°C for microbial diversity and
sequence analyses. We performed 16 S rRNA gene
amplification for archaea and bacteria and 18 S TRNA
gene amplification for fungi using the microbial tag-
encoded FLX amplicon pyrosequencing (TEFAP)
procedures described earlier (Sun et al., 2011).
A region of the 16 S TRNA genes for archaea (V3 -V5
regions) and bacteria (V1 - V3 regions) were amplified
by primer pairs, A340F90 (GYGCASCAGKCGMGA
AW)/A806R96 (GGACATCVSGGGTATCTAAT) and
Gray28F (GAGTTTGATCNTGGCTCAG)/Gray519R (GT
NTTACNGCGGCKGCTG), respectively. A region of the
fungal 18 S rRNA gene was amplified by primer pair,
funSSUF (TGGAGGGCAAGTCTGGTG)/funSSUR (TC
GGCATAGTTTATGGTTAAG). We used negative (for
DNA extraction and PCR) and positive controls
throughout the experiment. The amplicons were
subjected to 454 pyrosequencing on 11 plates by using
the GS-FLX+ implemented by Research and Testing
Laboratory (Lubbock, TX, USA).

All pyrosequencing data processing, including
sequence quality control, operational taxonomic unit
(OTU)-based analysis, taxonomy analysis and diver-
sity indices calculation, was performed using the
Mothur software V 1.35.1 (Quast et al., 2013). Briefly,
sequences were sorted by barcodes into archaea,
bacteria, and fungi. Sequences with barcode ambi-
guities, those less than 200bp in length and with
average quality scores <25 were culled. Quality-
filtered sequences were aligned to the SILVA
database release 111 and chimeras were de novo
detected and removed by using the UCHIME
modules in Mothur. Each unique sequence was
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considered as an individual OTU and was classified
at a 50% confidence threshold within the SILVA
database release 111 (Quast et al., 2013). The OTU
matrices were rarefied to 300, 3000 and 2000
sequences per sample for archaea, bacteria and
fungi, respectively. Following rarefaction, a total
of 83 samples were further analyzed by network
analyses.

Network construction

To reduce rare OTUs in the data set, we removed
OTUs with relative abundances less than 0.01%
of the total number of archaeal, bacteria, and fungal
sequences, respectively. The co-occurrence network
was inferred based on the Spearman correlation
matrix constructed with the WGCNA package
(Langfelder and Horvath, 2012). The nodes in this
network represent OTUs and the edges that connect
these nodes represent correlations between OTUs.
We adjusted all P-values for multiple testing using
the Benjamini and Hochberg false discovery rate
(FDR) controlling procedure (Benjamini et al., 2006),
as implemented in the multtest R package. The direct
correlation dependencies were distinguished using
the network deconvolution method (Feizi et al.,
2013). Based on correlation coefficients and FDR-
adjusted P-values for correlation, we constructed co-
occurrence networks. The cutoff of FDR-adjusted
P-values was 0.001. The cutoff of correlation coeffi-
cients was determined as 0.78 through random
matrix theory-based methods (Luo et al., 20086).
Network properties were calculated with the igraph
package. We generated network images with Gephi
(http://gephi.github.io/). All samples were divided
into groups by climatic region. The impact of each
sample group on the Spearman correlation value of
each edge in the network was assessed by dividing
the omission score (OS) (Spearman correlation value
without these samples) by the absolute original
Spearman score (Lima Mendez et al., 2015). To
account for group size, the OS was computed
repeatedly for random, same-size sample sets. Non-
parametric P-values were calculated as the number
of times random OSs were smaller than the sample
group OS, divided by the number of random OSs
(500 for each taxon pair). Edges were classified as
region-specific when the ratios of OSs to absolute
original scores were below one and adjusted
P-values were below 0.05.

Topological feature analysis

We calculated topological features (Supplementary
Table S1) for each node in the network with
the igraph package (Csardi and Nepusz, 2006). This
feature set included betweenness centrality (the
number of shortest paths going through a node),
closeness centrality (the number of steps required to
access all other nodes from a given node), transitivity
(the probability that the adjacent nodes of a node
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are connected, also called the clustering coefficient)
and degree (the number of adjacent edges). The
betweenness centrality feature was used to measure
the centrality of each node in the network. Nodes
were further classified as peripheral, intermediate or
central by ranking all nodes according to centrality,
partitioning this ranked list into three equally
populated bins, which were termed ‘centrality tiers’
(Greenblum et al., 2012). Nodes with high degree
(>100) and low betweenness centrality values
(<5000) are recognized as keystone species in
co-occurrence networks.

Statistical analyses

The Spearman’s rank correlation test was used
to examine the correlation between abundance and
each topological feature. To test for differences
in topological features between climatic regions, we
used the Wilcoxon rank-sum test in R. The correla-
tion coefficients across all node-level topological
features supported by the igraph package were
calculated, and a feature set without any pairwise
correlations > 0.95 was selected for further analysis.
We generated sub-networks for each soil sample
from meta-community networks by preserving OTUs
presented in each site using subgraph functions in
igraph packages. Network-level topological features
provided in igraph packages were calculated for
each sub-network. We grouped each sub-network by
sampling location and used Wilcoxon rank-sum test
to determine the different network-level topological
features between climatic regions. We then predicted
the spatial distribution of these topological features
based on Krige interpolation using the function
autoKrige in automap packages (Hiemstra et al.,
2009). The correlation coefficients between network-
level topological features and environmental factors
were calculated. The importance of environmental
factors (geographic factors, climatic factors and soil
properties) for network-level topological features
was estimated with multiple regression on distance
matrices (MRM) in ecodist packages. The Euclidean
distance matrices for environmental factors and
network-level topological features standardized with
decostand of vegan package were used in MRM
models. To test the relationship between network-
level topological features and environmental factors,
we further compared the first component of
principal component analysis for network-level
topological features with soil pH or the first principal
component analysis components of soil carbon, iron
and nitrogen parameters, respectively.

Results

Data sets

We analyzed 1502091 Roche 454 FLX-derived
rRNA gene amplicon reads (SRR2177920) from 110
soil samples collected from natural, undisturbed
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forests across eastern China (Supplementary Figure
S1). The majority of archaeal sequences belonged to
the phyla Crenarchaeota (92.3%) and Euryarchaeota
(7.1%). Bacterial sequences primarily comprised
phyla (and sub-phyla), Alphaproteobacteria
(27.8%), Actinobacteria (11.5%), Acidobacteria
(6.8%) and Betaproteobacteria (5.1%). The most
abundant fungal phyla were the Ascomycota
(73.7%), Mucoromycota (15.5%) and the Basidiomy-
cota (6.3%). Of the 110 soil samples, 83 were
selected after filtering. These sites were located in
five climatic regions represented by 10 samples in
tropical wet and dry climates (Aw), 46 in warm
temperate climates (Cfa and Cwa), 21 in hot summer
continental climates (Dwa) and 6 in warm summer
continental climates (Dwb). These soil samples
comprised 1810 archaeal, 648 bacterial and 1370
fungal OTUs with relative abundance greater
than 0.01%.

Meta-community co-occurrence network

We inferred a meta-community co-occurrence network
based on correlation relationships and P-values for
correlations adjusted with FDR (Benjamini et al.,
2006). The edges arising from indirect interactions in
this network were recognized by a deconvolution
procedure (Feizi et al., 2013). This generated a meta-
community co-occurrence network capturing 66 443
associations among 3828 microbial OTUs (Figure 1).
In total, 92.2% of the edges were identified as global,
and only 7.8% of edges were region-specific (with
region-specific OTUs), including 752 edges in Aw,
519 edges in Cfa, 1049 edges in Cwa, 2809 edges in
Dwa and 634 edges in Dwb. The global network
roughly followed a scale-free degree distribution
(Supplementary Figure S2), meaning that most OTUs
had low-degree values, and only a few hub nodes had
high-degree values. To determine the difference of
degree distribution for nodes from archaea, bacteria
and fungi, we classified edges into nine groups
(Supplementary Figure S3), each representing edges that
linked nodes between different kingdoms. The degree
distribution for edges between archaeal nodes was
represented by a binomial distribution with a maximum
abundance at approximately 20, which may indicate a
random structure of networks and a random co-
occurrence pattern. The degrees for bacteria and fungi
were distributed according to power-law distributions,
which indicated a scale-free network structure and a
non-random co-occurrence pattern. We have not further
analyzed degree distribution patterns at the phylum level
because the numbers of nodes for most of the phyla were
too small to generate reliable degree-abundance plots.

Betweenness centrality of climatic region-associated
OTUs

Using the meta-community co-occurrence network
outlined above, we examined whether OTUs asso-
ciated with a specific climatic region exhibited
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unique node-level topological features. We firstly
focused on betweenness centrality, which measures
the number of shortest paths going through a given
node, as a proxy for the location of this node
in relation to other nodes. High betweenness
centrality values indicate a core location of this
node in the network, whereas low betweenness
centrality values indicate a more peripheral location.

Significantly lower betweenness centrality scores
were observed for OTUs associated with Dwa and
Dwb regions than those associated with Aw, Cfa and
Cwa regions (P=8.1x10°, Wilcoxon rank-sum test,
Figure 2a). This suggests that the soil microbes from
the southern regions were more often located in core,
central positions within the network than those from
the northern regions. By partitioning the OTUs into
three kingdoms, we found significantly higher
centrality scores for archaeal OTUs as compared
to bacterial and fungal OTUs (P<2.2x107'%, and
Wilcoxon rank-sum test, Supplementary Figure S4).
The betweenness centrality scores were significantly
lower for archaeal OTUs associated with Dwa and
Dwb regions than for archaeal OTUs associated with
Aw, Cfa and Cwa regions (P=6.4x107°, Wilcoxon
rank-sum test). However, the betweenness centrality
scores for bacterial or fungal OTUs were not
significantly different across the different climatic
regions (P=0.41 and 0.20, respectively, Wilcoxon
rank-sum test). We partitioned the OTUs into three
centrality-based tiers and found an overrepresenta-
tion of archaeal OTUs in the central and interm
ediate tiers (Figure 2b). In soil samples from Aw, Cfa
and Cwa regions, 78.5% of the archaeal OTUs were
classified into the central and intermediate tiers,
compared with 61.1% of the bacterial and 54.7%
of the fungal OTUs. Similarly, in soil samples from
Dwa and Dwb regions, 75.6% of the archaeal OTUs
were classified into central and intermediate tiers,
compared with 60.3% of bacterial and 52.5% of
fungal OTUs.

Linking climatic region-associated OTUs to additional
node-level topological features

We next examined a number of additional node-level
topological measures for each OTU in the meta-
community co-occurrence network, including degree
and closeness. In contrast to betweenness centrality,
these measures are more local in nature, taking into
account only the immediate neighborhood of OTUs,
and hence capturing a different aspect of network
topological features. Degrees of OTUs associated
with Dwa and Dwb regions were significantly higher
than those associated with Aw, Cfa and Cwa regions
(P<2.2x107"%, Wilcoxon rank-sum test, Figure 3).
Partitioning the set of OTUs in the network into
archaeal, bacterial and fungal OTUs, we found that
the degrees differed in different climatic regions.
Specifically, archaeal OTUs associated with Dwa
and Dwb regions had a significantly higher degree
compared to archaeal OTUs associated with Aw, Cfa
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Figure 1 The co-occurrence network interactions of soil bacteria, archaea and fungi. The connection stands for a strong (Spearman’s
p>0.78) and significant (P-value <0.001) correlation. The nodes represented unique sequences in the data sets. The size of each node is

proportional to the relative abundance.

north south

Centrality

- Central

. Intermediate
. Peripheral

a b
1e+07 an
| 100 o
L] L]
1e+05 — 75 4
c —
S B E 8 g
g8 £ 504
< 1e+03 o g
© ]
o
25 4
1e+01 '
° H 0+
T T T T T
Aw Cfa Cwa Dwa Dwb

Climate_type

T T T T T T
Archaea BacteriaEukayote Archaea Bacteria Eukayote
Kingdoms

Figure 2 Betweenness centralization associated with different climatic regions (a) and percentage of bacterial, archaeal and fungal nodes

with different centralization (b). ***P<0.001.

and Cwa regions (P=2.8 x107°, Wilcoxon rank-sum
test, Supplementary Figure S5). Bacterial OTUs
associated with Dwa and Dwb regions had a margin-
ally lower degree than OTUs associated with Aw, Cfa
and Cwa regions (P=0.05, Wilcoxon rank-sum test,
Supplementary Figure S5). The degrees of fungal
OTUs associated with the different climatic regions
were not significantly different. Closeness followed
a similar trend but no significant differences were
observed across the climatic regions for either

archaeal, bacterial or fungal OTUs (Supplementary
Figure S6).

We further assessed the relationships between
degrees and relative abundances of OTUs in the
three domains (Supplementary Figure S7). The
number of edges between archaeal nodes increased
with relative abundance (R=0.151, P=9.9x 107",
Spearman’s rank correlation test). Conversely, the
degrees associated with bacterial and fungal nodes
decreased with increasing relative abundance
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(R=-0.369 and —0.501, respectively, P<2.2 x107"°,
Spearman’s rank correlation test). The degree
of abundant OTUs is expected to be high when the
co-occurrence pattern is random. Therefore, the
co-occurrence pattern was expected to be random
for archaeal nodes and non-random for bacterial and
fungal nodes.

Such distinct topological features may addition-
ally be used to highlight keystone species in
co-occurrence networks. Specifically, nodes with
high degree (>100) and low betweenness centrality
values (<5000) are recognized as keystone species
in co-occurrence networks (Berry and Widder, 2014).
A large fraction of these keystone species
were unclassified archaea related to the phylum
Thaumarchaeota (59 OTUs, whose relative
abundance ranged from 0.010 to 0.227%). Major
keystone bacterial species included members of the
phylum Actinobacteria (16 OTUs, with relative
abundances ranging from 0.012 to 0.028%),

1000 ~
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10 4

Aw Cfa Cwa Dwa Dwb
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Figure 3 Node degree values associated with different climatic
regions. ***P<0.001.
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comprising the orders Gaiellales (8 OTUs), Rubro-
bacteriales (2 OTUs), Solirubrobacteriales (2 OTUs),
Acidobacteriales (1 OTUs) and Corynebacteriales (1
OTUs), and the phylum Proteobacteria (6 OTUs,
relative abundance ranged from 0.010 to 0.014%),
comprising the order Rhizobiales (5 OTUs) and the
uncultured bacterium GR-WP33-30 (1 OTU). Fungal
keystone species included members of sub-phylum
Pezizomycotina (6 OTUs, relative abundance
ranging from 0.013 to 0.023%) and an unclassified
Fungal OTU (relative abundance 0.011%).

Network-level topological features changed with
climatic regions

We generated sub-networks for each soil sample
by keeping OTUs associated with specific samples
and all edges among them in the meta-community
co-occurrence network. A number of network-level
topological features were calculated for sub-
networks and separated into three clusters based
on hierarchical cluster analysis on the dissimilarities
of those features (Supplementary Figure S8). The
first cluster included cluster number, diameter,
degree assortativity, betweenness centralization and
average path length. The second cluster included
transitivity and node number. The third cluster
included degree centralization, average nearest-
neighbor degree, density, edge number and closeness
centralization. To extend our results beyond the 83
soils directly assayed, we predicted spatial distribu-
tion maps of network-level topological features using
a kriging interpolation method (Heimstra et al.,
2009). The predicted spatial patterns showed that
the edge numbers (Figure 4a), similar to other
topological features in this cluster (Supplementary
Figure S8), such as density (Supplementary Figure S9),
degree centralization (Supplementary Figure S10) and
average nearest neighbor degree (Supplementary
Figure S11), were higher in the northern regions
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Figure 4 The spatial distribution of edge numbers (a) and average path lengths (b).
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(Dwa and Dwb) than those found in the southern
regions (Aw, Cwa and Cfa) (P<5.3x10°, Wilcoxon
rank-sum test). These results indicated that the
network in the northern regions was more connected
than the network in the southern regions. In contrast,
average path lengths of sub-networks for soils were
lower in the northern regions compared to those in
the southern regions (Dwa and Dwb) (P=4.0x107°,
Wilcoxon rank-sum test, Figure 4b). This small world
feature suggests a closer relationship in the northern
regions. Patterns in topological features, such as degree
of assortativity (Supplementary Figure S12), between-
ness centralization (Supplementary Figure S13) and
cluster number (Supplementary Figure S14), were
similar to patterns observed for average path lengths
(P<4.2x1077, Wilcoxon rank-sum test). However,
the patterns in node numbers and transitivity of
sub-networks showed no significant differences across
the climatic regions (P=0.15 and 0.99, respectively).
The Wilcoxon rank-sum test showed that the size
of the microbial community was not significantly
different between the northern and the southern
regions (Supplementary Figures S15 and S16).

Linking network-level topological features to edaphic
properties

We used multiple regression with distance matrices
(MRM) to estimate the contribution of different
factors including geographic distances between
sampling sites, regional climate factors (mean annual
air temperature and mean annual precipitation) and
soil properties to network-level topological features
(Figure 5a). Soil properties contributed the largest
partial regression coefficient (R*=0.48, P<0.0001),
while geographic distance and regional climate
factors contributed smaller, but significant, partial
regression coefficients (R*=0.41 and 0.42, respec-
tively, P<0.001). Soil properties together with
geographic distance and regional climate factors
explained 28% (P<0.001) of the network-level topo-
logical feature variation, and separately explained 19%

of the variation (P<0.001). Since geographic distance
and regional climate factors were highly correlated
with each other (R=-0.75 to 0.97, P<0.0001, using
Spearman’s rank correlation test, Supplementary
Figure S17), their combined effect explained 39% of
the variation (P<0.001).

We then examined the correlations among
network topological features and environmental
factors in soils (Figure 5b, Supplementary Figures
S18-S27). Edge number, average nearest-neighbor
degree, degree centralization and network density
were positively correlated with total dissolved
nitrogen (R>0.53, P<0.001, Spearman’s rank corre-
lation test), dissolved organic carbon (R>0.50,
P<0.001, Spearman’s rank correlation test) and acid
oxalate, soluble Fe (Fe,)/free Fe oxides (Fey)
ratio (R>0.45, P<0.001, Spearman’s rank correla-
tion test), and were negatively correlated with
Feq (R< -0.38, P<0.001, Spearman’s rank correla-
tion test). Average path length and degree assortativ-
ity had negative correlations with soil pH (R< -0.38,
P<0.001, Spearman’s rank correlation test), total
dissolved nitrogen (R< -0.52, P<0.001, Spearman’s
rank correlation test), dissolved organic carbon
(R< -0.49, P<0.001, Spearman’s rank correlation
test) and Fe,/Fe, ratio (R< —0.44, P<0.001, Spear-
man’s rank correlation test), and were positively
correlated with Feq (R>0.31, P<0.001, Spearman’s
rank correlation test). Node numbers were positively
correlated with potassium in soils (R=0.47, P<0.001,
Spearman’s rank correlation test). The contribution of
soil organic matter and iron to the topological features
of co-occurrence networks, estimated with MRM, was
twice that of soil nitrogen and pH (Figure 6a). To
identify the relationships between network-level topo-
logical features and soil properties, we compared the
first principal components of topological features
(99.9% of variance) with soil iron (95.6% of variance),
carbon (98.9% of variance), nitrogen (97.5% of var-
iance) and soil pH (Figure 6b). Variations of topological
features and soil carbon, nitrogen and iron were smaller
in the southern regions (Aw, Cwb and Cfb) as compared
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Figure 6 The contribution of soil organic matter, iron, nitrogen and pH to network-level topological features (a) and the relationships
between the first component of network-level topological features and edaphic property groups (b).

to those observed for the northern regions (Dwa
and Dwb). The variation of topological features was
correlated with soil iron, carbon and nitrogen.

Discussion

We have performed a co-occurrence network-based
analysis using integrated datasets of archaeal, bacter-
ial and fungal OTUs to delineate the geographic
patterns of topological features along a climatic
gradient across eastern China. The results from this
study show that both node-level and network-level
topological features are different between the north-
ern (Dwa and Dwb) and the southern regions (Aw,
Cfa and Cwa). OTUs typifying the northern regions
had lower betweenness centrality values and higher
degree values as compared to OTUs typifying the
southern regions. As the topology of the network
could reflect interactions between microorganisms,
the betweenness centrality represents the impor-
tance of the control potential that an individual OTU
exerts over the interactions of other OTUs in that
network. OTUs with low betweenness centrality
values represent microorganisms that are located
away from the core of the network, compared to
other OTUs (Greenblum et al., 2012). Such species
are likely to have low influence on other interactions
in the community. Degree value is a local quantifica-
tion feature that informs us about the number of
direct co-occurrence interactions for a specific OTU
(Greenblum et al., 2012). Our results suggest that
microorganisms in forest soils from the northern
regions have stronger relationships but have a lower
influence compared to microorganisms from the
southern regions. This tendency is also supported
by the spatial patterns of network-level topological
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features that cause the tendency of degree values to
be higher in the northern regions while network
betweenness centrality values tend to be lower in
these regions. The geographic pattern of microbial
communities has been widely reported. Likewise,
our results provide evidence for the geographic
pattern of co-occurrence relationships in microbial
communities. One explanation for this topological
differentiation is the niche differentiation in soil
environments occurring as a result of high variations
in water-energy conditions between the northern and
southern regions of eastern China (Zheng et al.,
2013). The high precipitation conditions in the
southern regions could make the soil habitats more
homogeneous. The weak niche differentiation possi-
bly results in stronger interactions between soil
microorganisms (Faust and Raes, 2012a). In contrast,
low precipitation in the northern regions may lead to
significant niche differentiation, which avoids com-
petition and enables microorganisms to co-exist
within communities for extended periods of time.
Meanwhile, this niche differentiation likely inhibits
the interactions between different species in
the northern regions. Another potential explanation
for the topological shifts between the northern and
southern regions is the evolutionary history of
microbial communities. Keystone nodes in co-
occurrence networks tend to have high degrees and
low betweenness centrality values (Berry and
Widder, 2014). Keystone species represented by
OTUs in co-occurrence networks were identified in
the northern regions. According to the growth
processes of a scale-free network, keystone nodes
are commonly recognized as initiating components
in networks (Barabdsi, 2009). This suggests that
keystone lineages in microbial co-occurrence net-
works have a longer evolutionary history.



Our results also demonstrated that topological
features vary between archaea, bacteria and fungi.
In addition, the three investigated kingdoms tend to
have different co-occurrence patterns. Archaeal
degrees followed a binomial distribution, whereas
bacterial and fungal degrees followed power-law
distributions. The unexpected distinction between
these kingdoms may be indicative of some
differences in underlying interaction patterns. The
power-law distribution pattern for networks is not
surprising, as the degree of distribution in many
real-world networks such as the internet (Adamic
and Huberman, 2000), social networks (Barabasi
et al., 2002) and biological networks (Bergman and
Siegal, 2003) follows power-law distributions.
Recent studies on microbial co-occurrence networks
showed power-law distributions with 90-97%
identity classifications for 16S TtRNA OTUs
(Chaffron et al., 2010; Barberdn et al., 2012; Faust
et al., 2012). However, the universal primers used in
these studies underrepresent archaeal sequences,
thus severely underestimating the presence and
contribution of archaea in global co-occurrence
networks. To explore archaeal diversity comprehen-
sively, we sequenced a partial fragment of the
archaeal 16 S rRNA gene using archaea-specific
primers. The binomial distribution of archaeal
degrees indicates that the archaeal interaction is
structured as a random network following the
Erdos — Renyi model (Newman, 2003), in which the
presence or absence of edges is a random process.
One proposed explanation for the binomial distribu-
tion of archaeal edge degrees is neutral processes,
meaning that all interactions between archaea
are equally likely. Indeed the network density
of the Archaea-specific network is lower than for
the respective sub-networks for bacteria and fungi.
Accordingly, an increase in species abundance may
result in a degree increase of individual species in a
co-occurrence network, as suggested by the positive
correlation between degree values and abundance
of archaeal OTUs. A recent archaeal biogeography
study showed that the diversity patterns of soil
archaea are mainly influenced by stochastic pro-
cesses (Zheng et al., 2013). This study revealed that
the contribution of neutral processes is more impor-
tant than deterministic factors for soil archaea.
Conversely, the negative correlation between degree
values and relative abundance for bacterial and
fungal OTUs indicates non-random interactions.
If the links were random, OTUs with higher relative
abundances are more likely to interact with other
OTUs, and the degree values for OTUs would
increase with an increase in their relative abun-
dance. However, the negative correlation between
degree value and relative abundance suggests that
the degree is not determined by abundance, and
therefore indicates a non-random pattern.

The centrality values were higher for archaeal
OTUs than for bacterial and fungal OTUs in both the
northern and southern regions. Given the random
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pattern in the archaeal co-occurrence network,
archaeal OTUs are more likely to co-occur with
other OTUs in same community. Importantly, we
also found that the topological features for archaeal
OTUs were different between the northern and
southern regions, but were not significant for
bacterial and fungal OTUs. These results suggest
that the variation of topological features was primar-
ily associated with archaea rather than bacteria
and fungi.

We performed an MRM-based analysis to identify
environmental factors that explain topological varia-
tions across the climatic regions. Soil physico-
chemical properties were significantly associated
with topological features for sub-networks. The
overlap explanation ratio between geographic dis-
tance and regional climatic factors may be indicative
of a common tendency or, alternatively, a common
response of the soil microbiota to geographic
distance and regional climatic factors. Soil physico-
chemical properties, however, can separately
explain a part of the variation in topological features.
We identified soil organic matter and iron as
the major soil properties affecting the topological
features of co-occurrence networks. One key role of
organic matter and iron in soils is that they act as
electron shuttles for bioreduction processes in soils
(Chacon et al., 2006; Kang and Choi, 2008). Given
that co-occurrence relationships reflect the interac-
tions in a community, soil organic matter and iron
are expected to explain the topological features of
microbial co-occurrence networks as they can influ-
ence bacterial interactions.

Our topology-based system approach has also
suggested candidate keystone microbial species
in co-occurrence networks. Keystone species in
co-occurrence networks exert large effects on other
community components. Most keystone bacterial
nodes in our study belonged to the phyla Actino-
bacteria and Proteobacteria, which were also
the most abundant phyla. Within the Proteobacteria,
keystone species belonged to orders Rhizobiales,
known for their nitrogen-fixing abilities (Brown et al.,
2012), and Gaiellales, which was recently identified
and remains poorly understood (Albuquerque et al.,
2011). The occurrence of keystone species of
the order Rhizobiales may be indicative of the
influence of root activities on microbial
co-occurrence relationships in soil. Pezizomyco-
tina sp., a fungus contributing to plant organic
matter degradation (Ertz and Tehler, 2011), was
represented by six OTUs among fungal keystone
species. Future work focusing on uncultured key-
stone species is crucial to better understand the
role of these organisms in co-occurrence networks.

This study focused on the spatial trend of
topological features in co-occurrence networks.
Despite the usefulness of network analysis, one must
be cautious when inferring interactions from these
co-occurrence networks as they only represent
associations between two variables and do not prove
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a direct interaction association. Although the
co-occurrence relationship in the present study was
optimized using a deconvolution protocol (Feizi
et al., 2013) to remove indirect associations, the
output association network is a statistical correlation
and does not directly prove microbial interactions.
Therefore, future co-occurrence network investiga-
tions should focus on more reasonable inferring
methods that are validated by literature or
microscopy-based experiments, as have been shown
for marine samples (Lima-Mendez, 2015).

This study has contributed to microbial ecology
research in the same way as network analysis
advanced genomics, by appreciating the complex
interactions among microbes and the impact of these
interactions on community dynamics. However,
further investigations identifying specific sets
of microbial species responsible for system-level
patterns, characterizing the implications of various
topological variations, and linking this variation to
changes in species composition and functional
potential are essential to better understand the
interactions in soil microbial communities. Yet, this
network approach provides a complementary view-
point to microbial biogeography by exploring
geographic patterns for co-occurrence and interac-
tion relationships and through identification of
keystone species for further validation.
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