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Abstract
A newmechanism is proposed to implement synchronization of the two unbalanced rotors

in a vibration system, which consists of a double vibro-body, two induction motors and

spring foundations. The coupling relationship between the vibro-bodies is ascertained with

the Laplace transformation method for the dynamics equation of the system obtained with

the Lagrange’s equation. An analytical approach, the average method of modified small pa-

rameters, is employed to study the synchronization characteristics between the two unbal-

anced rotors, which is converted into that of existence and the stability of zero solutions for

the non-dimensional differential equations of the angular velocity disturbance parameters.

By assuming the disturbance parameters that infinitely approach to zero, the synchroniza-

tion condition for the two rotors is obtained. It indicated that the absolute value of the residu-

al torque between the two motors should be equal to or less than the maximum of their

coupling torques. Meanwhile, the stability criterion of synchronization is derived with the

Routh-Hurwitz method, and the region of the stable phase difference is confirmed. At last,

computer simulations are preformed to verify the correctness of the approximate solution of

the theoretical computation for the stable phase difference between the two unbalanced ro-

tors, and the results of theoretical computation is in accordance with that of computer simu-

lations. To sum up, only the parameters of the vibration system satisfy the synchronization

condition and the stability criterion of the synchronization, the two unbalanced rotors can im-

plement the synchronization operation.

Introduction
The word “synchronization” is often encountered in both scientific and everyday language.
Our surroundings are full of synchronization phenomenon, which is considered as an adjust-
ment of rhythms of oscillating objects due to their internal weak couplings. For examples: vio-
linists play in unison; insects in a population emit acoustic or light pulses with a common rate;
birds in a flock flap their wings simultaneously; the heart of a rapidly galloping horse contracts
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once per locomotory cycle. Huygens firstly described the notion of the synchronization by ex-
periments that two pendulum clocks hung on a common support in 1665 [1]. Pol showed that
the frequency of a generator can be entrained, or synchronized, by a weak external signal of a
slightly different frequency in 1920 [2]. In the middle of the nineteenth century, Rayleigh [3]
described the interesting phenomenon of synchronization in acoustical systems. The first En-
glish monograph related to the synchronization problems is written by Blekhman [4]; he pri-
marily addressed mechanical oscillators, pendulum clocks in particular, systems with rotating
elements, technological equipment, but also some electronic and quantum generator; many
years later, he also investigated controlled synchronization of two vibroactuators based on a
speed-gradient[5, 6]. Pikovsky issued his monograph that consider synchronization as a uni-
versal concept in nonlinear sciences and review classical results on the synchronization of peri-
odic oscillators [7]. Zhang investigated the synchronization problem for a class of discrete-time
complex-valued neural networks with time-varying delays [8]. Nowadays, the researchers
mainly focus synchronization on physical, biological, chemical and social systems, etc. In phys-
ical systems, the most representatives are synchronization of complex networks and mechani-
cal systems. For the synchronization of complex networks, Arenas reported the advances in the
comprehension of synchronization phenomena when oscillating elements are constrained to
interact in a complex network topology [9]. How the feedback from dynamical clusters can
shape the network connection weights and an adaptive network spontaneously forms scale-
free structure were explored by Yuan Wang[10, 11]. For the synchronization of pendulum
clocks, Senator developed synchronization of two coupled, similarly sized, escapement-driven
pendulum clocks [12]. Jovanovic studied two models of connected pendulum clocks synchro-
nizing their oscillations, a phenomenon originally observed by Huygens, with the Poincare´
method, and they found that the in-phase linear mode damps out faster than the anti-phase
mode [13]. Koluda considered two and multiple self-excited double pendula hanging from a
horizontal beam with the energy balanced method, on which they found how the energy is
transferred between the pendula via the oscillating beam allowing the pendula’ synchroniza-
tion[14–16]. For synchronization of multiple coupling rotors, Wen employed the average
method to study synchronization and stability of multiple unbalanced rotors hung on a vibro-
body in vibration systems, and applied such synchronization theory to invent many synchroni-
zation machines [17]. Sperling presented analytical and numerical investigations of a two-
plane automatic balancing device for equilibration of rigid-rotor unbalance [18]. Balthazar ex-
amined self-synchronization of four non-ideal exciters in non-linear vibration system via nu-
merical simulations [19, 20]. Djanan explored the condition for which three motors working
on a same plate can enter into synchronization with the phase difference depending on the
physical characteristics of the motors and the plate, and it is indicated that one can obtain a re-
duction of vibration when the motors are different and rotates in opposite directions [21].
Zhao proposed the average method of modified small parameters to investigate the synchroni-
zation of more than two exciters in far vibration systems, which immensely simplify the pro-
cess for solving the theory approximation solution [22–28]. Later, Fang applied Zhao’s method
to investigate the self-synchronization of two homodromy rotors coupled with a pendulum rod
in a far-resonant vibration system [29].

The above-mentioned research of the mechanical systems is mainly synchronization of the
pendula or the rotors directly installed on a movable beam or vibro-body. In this paper, we
consider the synchronization and the synchronization stability of two homodromy unbalanced
rotors installed on two vibro-bodies, respectively. The synchronization implementation of the
two rotors relies on the coupling springs between vibro-body 1 and 2. The performed approxi-
mate analytical analysis, building on the original work of Zhao Chunyu, allows deriving the
synchronization condition and stability criterion and explaining the synchronization discipline
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with considering diversity features of the vibration system. Finally, some numerical simulations
are performed to verify the correctness of the theoretical analysis.

This paper is organized as follows. The second section describes the considered model and
dynamics equations of the vibration system. The third section we explain our method to derive
the synchronization condition and the synchronization stability criterion of the system. The
fourth section presents the results of our numerical simulations for the theoretical approximate
solutions. The fifth section gives some computer simulations to verify our theoretical solutions.
Finally, we summarize our results in the last section.

Model description
Fig 1 shows the dynamics model of the considered vibration system, which consists of two
rigid vibro-bodies (vibro-body 1 and vibro-body 2), on which two induction motor are in-
stalled, respectively. Each of the vibro-body is supported on an elastic foundation consisting of
four springs symmetrically installed. Rigid vibro-body 1 is connected with vibro-body 2 by
some stronger stiffness springs (kx1, ky1, kψ1), and vibro-body 1 is connected a fix foundation
with some weaker stiffness springs (kx2, ky2, kψ2). The two homodromy unbalanced rotors,
driven separately by two induction motors, are installed in the vibro-bodies with the equal dis-
tance l from the rotation point of the rotor to the mass center of the vibro-body. During the
starting process, three motors are supplied with the electric source at same time. The mass cen-
ters of the rigid vibro-body 1 and 2 are o1 and o2, respectively. As illustrated in Fig 1(b), six ref-
erence frames of the system can be assigned as follows: the fixed frames o1x1y1 and o2x2y2; the

Fig 1. Themodel of the vibration system. (a) dynamic model of the double vibro-body system with two
induction motors rotating in the same direction, (b) the reference frame system.

doi:10.1371/journal.pone.0126069.g001
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non-rotating moving frames o01x
0
1y

0
1 and o

0
2x

0
2y

0
2, that undergoes the translation motion while

remaining parallel to o1x1y1 and o2x2y2, respectively; the rotating frames o01x
@
1y

@
1 and o

0
2x

@
2y

@
2,

that dedicates the rotation motion around points o01 and o
0
2, respectively. The six reference

frames of the vibro-bodies separately coincide with each other when the system is in the static
equilibrium state.

Since the two vibro-bodies are supported by two elastic foundations, it exhibits six degrees
of freedom. The mass center coordinates of vibro-bodies x1, x2, y1 and y2, as well as the rotation
coordinates ψ1 and ψ2, are set as the independent coordinates. The unbalanced rotors rotate
about their own spin axes, which are denoted by φ1 and φ2, respectively.

In reference frame o˝x˝y˝, the coordinates of each exciter,Φ@
i , can be described by

Φ@
q ¼

lcosbq þ rcosφq

lsinbq þ rsinφq

" #
; q ¼ 1; 2: ð1Þ

In reference frame o´x´y´, the coordinates of each exciter,Φ0
i , can be expressed by

Φ0
q ¼ GΦ@

q; G ¼
coscq sincq

�sincq coscq

" #
; q ¼ 1; 2: ð2Þ

In reference frame oxy, the coordinates of each exciter,Φi, can be written by

Φq ¼ Φ0 þ GΦ0
q ; Φ0 ¼ ½xq; yq�T; q ¼ 1; 2: ð3Þ

The kinetic energy of the vibration system can be expressed as

T ¼ 1

2

X2

q¼1

Mqðx2q þ y2qÞ þ
1

2

X2

q¼1

Jqc
2

q þ
1

2

X2

q¼1

J0qφ
2
q þ

1

2

X2

q¼1

mq
_Φ
T

qΦq: ð4Þ

During the operation process of the vibration system, the position vector of the point of
springs connected to vibration body 2 can be written in the following form

Φk2r ¼ Φ02 þ GΦk02r ; r ¼ 1; 2; 3; 4: ð5Þ

WhereΦ02 = [x1,y1]
T,Φk021 = [-lx2,0]

T,Φk022 = [0,ly2]
T,Φk023 = [lx2,0]

T andΦk024 = [0,ly2]
T.

The position vector of the point of springs connected to vibration body 1 can be expressed
as

Φk1r ¼ Φ02 þ GΦk02r �Φ01 � GΦk01r ; r ¼ 1; 2; 3; 4: ð6Þ

WhereΦ01 = [x1,y1]
T,Φk011 = [-lx2,0]

T,Φk012 = [0,ly2]
T,Φk013 = [lx2,0]

T andΦk014 = [0,ly2]
T.

The potential energy of the system can be computed as

V ¼ 1

2

X4

i¼1

ðΦk1r �Φk01rÞTk1rðΦk1r �Φk01rÞ þ
1

2

X4

r¼1

ðΦk2r �Φk02rÞTk2iðΦk2r �Φk02rÞ: ð7Þ

The viscous dissipation function of the vibration system can be obtained

D ¼ 1

2

X4

r¼1

_Φk1r
Tf 1r _Φk1r þ

1

2

X4

r¼1

_Φk2r
Tf 2r _Φk2r: ð8Þ
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The dynamics equation of the system can be computed by the application of the Lagrange’s
equation

d
dt

@ðT � VÞ
@ _q

� @ðT � VÞ
@q

þ @D
@ _q

¼ Qi: ð9Þ

If q = [x1,x2,y1,y2,ψ1,ψ2,φ1,φ2]
T is chosen as the generalized coordinates, the generalized

force are: Qxi =Qyi =Qψi = 0,Qφi = Tei (i = 1,2). Asmi⪡Mi and ψi⪡ 1 in the system, the inertia
coupling stemming from asymmetry of the two rotors can be neglected. Substituting Eqs (4),
(7) and (8) into Eq (9), we can yield the dynamic equation of the vibration system as the follow-
ing form:

M1€x1 � fx1ð _x2 � _x1Þ � kx1ðx2 � x1Þ ¼ m1rð€φ1sinφ1 þ _φ2
1cosφ1Þ

M2€x2 þ fx1ð _x2 � _x1Þ þ fx2 _x2 þ kx1ðx2 � x1Þ þ kx2x2 ¼ m2rð€φ2sinφ2 þ _φ2
2cosφ2Þ

M1€y1 � fy1ð _y2 � _y1Þ � ky1ðy2 � y1Þ ¼ m1rð�€φ1cosφ1 þ _φ2
1sinφ1Þ

M2€y2 þ fy1ð _y2 � _y1Þ þ fy2 _y2 þ ky1ðy2 � y1Þ þ ky2y2 ¼ m2rð�€φ2cosφ2 þ _φ2
2sinφ2Þ

J1 €c1 � fc1ð _c2 � _c1Þ � kc1ðc2 � c1Þ ¼ m1rl½�€φ1cosðφ1 � b1Þ þ _φ2
1sinðφ1 � b1Þ�

J2 €c2 þ fc1ð _c2 � _c1Þ þ fc2 _c2 þ kc1ðc2 � c1Þ þ kc2c2 ¼ m2rl½�€φ2cosðφ2 þ b2Þ þ _φ2
2sinðφ2 þ b2Þ�

ðJo1 þm1r
2Þ€φ1 þ f1 _φ1 ¼ Te1 þm1rð€x1sinφ1 � €y1cosφ1Þ þm1lr½€c1cosðφ1 � b1Þ þ _c2

1sinðφ1 � b1Þ�
ðJo2 þm2r

2Þ€φ2 þ f2 _φ2 ¼ Te2 þm2rð€x2sinφ2 � €y2cosφ2Þ þm2lr½€c2cosðφ2 þ b2Þ þ _c2
2sinðφ2 þ b2Þ�

ð10Þ

Method description

Coupling characteristics between the two vibro-bodies
As shown in Fig 1, the phase angular of the rotors are defined as follows:

φ1 ¼ φþ a;φ2 ¼ φ� a ð11Þ

Assuming that the average value of the angular velocity of the two exciters over time is ωm, and
the instantaneous change coefficients of _φ and _a are ε1 and ε2 (i.e. _φ ¼ ð1þ ε1Þom, _a ¼ ε2om)
when the two unbalanced rotors operate in the synchronous state, respectively. So, the velocity
of the phase angular can be expressed as [22]

_φ1 ¼ ð1þ ε1 þ ε2Þom;

_φ2 ¼ ð1þ ε1 þ ε2Þom:
ð12Þ

Moreover, the accelerations of the phase angular can be written as

€φ1 ¼ ð _ε1 þ _ε2Þom;

€φ2 ¼ ð _ε1 � _ε2Þom:
ð13Þ

Because the motion and the load torque of the vibration system are periodical, the angular
velocities of the two rotors change periodically. If the two rotors excited by two induction mo-
tors operating synchronously, the average values of their instantaneous change coefficients of
the angular velocities and the angular accelerations over one period must be zero, i.e.,
�ε1 ¼ 0,�ε2 ¼ 0, _�ε1 ¼ 0 and _�ε2 ¼ 0. In the case, the change of angular velocities of the two un-
balanced rotors has little influence on the responses of the whole system. According to Eq (10),
the first six equations of the equation are coupling equations with Multi-DOF. To obtain their
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steady response solutions we can use the Laplace transformation method to the equations con-
sidering the initial conditions. The steady responses of the DOFs can be expressed as

x1 ¼ rrmmx11cosðφþ a� rx11Þ þ Zrrmmx12cosðφ� a� rx12Þ;
x2 ¼ Zrrmmx21cosðφ� a� rx21Þ þ rrmmx22cosðφþ a� rx22Þ;
y1 ¼ rrmmy11sinðφþ a� ry11Þ þ Zrrmmy12sinφ� a� ry12Þ;
y2 ¼ Zrrmmy21sinðφ� a� ry21Þ þ rrmmy22sinðφþ a� ry22Þ;

c1 ¼
rmrlrmc11

l
sinðφþ a� b1 � rc11Þ þ

Zrmrlrmc12

l
sinðφ� a� b2 � rc12Þ;

c2 ¼
Zrmrlrmc21

l
sinðφ� a� b2 � rc21Þ þ

rmrlrmc22

l
sinðφþ a� b1 � rc22Þ:

ð14Þ

In Eq (14), μx11, μx12, μx21 and μx22 represent the coupling (transfer) coefficients in the x-direc-
tion; μy11, μy12, μy21 and μy22 represent the coupling coefficients in the y-direction; μψ11, μψ12,
μψ21 and μψ22 represent the coupling coefficients in the ψ-direction. These coupling coefficients
and mathematical symbols in Eq (14) are listed Appendix A in S1 File, by which we can esti-
mate the value of the coupling coefficients between the two vibro-bodies. They are dependent
on the stiffness coefficients and the damping coefficients of the springs. The stronger ability of
the coupling between the bodies, the larger the value of the coupling coefficients is.

Fig 2 describes the relation of the coupling coefficients between two vibration bodies for the
different value of ni1 and ni2. Table 1 shows the values of the transfer coefficients of some spe-
cial points in Fig 2. It can be seen that μi11 � μi21 and μi12 � μi22 when the value of parameters
ni2 is different. The frequency ratio ni1 in region ni1 2 (0,1) is proportional to parameters μi12
and μi22, and inversely proportional μi11 and μi21. The frequency ratio ni1 in region ni1 2 (1,1.5)
is proportional to parameters μi11, μi12, μi21 and μi22. The frequency ratio ni1 in region ni1 2
(1.5,5)is proportional to parameters μi11 and μi21, and inversely proportional to parameters μi12
and μi22. According to the value of the coupling coefficients we can define the coupling type of
the vibration system. Obviously, three kinds of the coupling type can be described in following:

Case 1: the near-resonance system coupled with the far-resonance system (NVS-FVS) consid-
ering ni1 2 (0,1) and ni2 = 4.

Case 2: the resonance system coupled with the far-resonance vibration system (RVS-FVS) con-
sidering ni1 2 (1,2) and ni2 = 4.

Case 3: the far-resonance system coupled with the far-resonance system (FVS-FVS) consider-
ing ni1 2 (2,5) and ni2 = 4.

In this paper, rigid vibro-body 1 is connected with vibro-body 2 by the stronger stiffness
springs, and vibro-body 1 is connected a fix foundation with the weaker stiffness spring. There-
fore, in the following theoretical analysis, we will chose case 1 to discuss the synchronization and
stability of the system, and the value of the coupling coefficients should be less than or equal to 1.

Coupling characteristics between the two rotors
Differentiating the six formulas in Eq (14) with respect to time t by the chain rule, we can ob-

tain €x1; €x2; €y1; €y2;
€c1 and €c2 with neglecting the terms larger than one order of parameters ε1

and ε2. Substituting them into the last two formulas of Eq (10) and integrating them over φ =
2π, respectively, we can obtain:

J01omð _�ε1 þ _�ε2Þ þ f1omð1þ �ε1 þ �ε2Þ þm1r
2om

�TL1 ¼ �Te1;

J02omð _�ε1 � _�ε2Þ þ f1omð1þ �ε1 � �ε2Þ þm1r
2om

�TL2 ¼ �Te2:
ð15Þ
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Fig 2. The coupling coefficients between the two vibration bodies for ξi1 = ξi2 = 0.075.

doi:10.1371/journal.pone.0126069.g002

Table 1. The values of the transfer coefficients for ξi1 = ξi2 = 0.075.

ni1 = 3 ni2 0.5 1.0 1.5 2.0 3.0 4.0 5.0

μi11 0.46 0.22 2.12 1.44 1.13 1.07 1.04

μi12 0.58 0.96 2.06 0.58 0.18 0.09 0.06

μi21 0.45 0.14 2.53 1.67 1.28 1.25 1.17

μi22 0.59 0.96 2.0 0.56 0.19 0.10 0.08

ni1 = 4 μi11 0.46 0.22 2.25 1.44 1.13 1.07 1.04

μi12 0.58 0.96 2.01 0.54 0.17 0.09 0.06

μi21 0.44 0.14 2.49 1.56 1.22 1.14 1.11

μi22 0.58 0.96 1.97 0.52 0.18 0.09 0.07

doi:10.1371/journal.pone.0126069.t001
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with

�TL1 ¼ w011ð _�ε1
þ _�ε2Þ þ w012ð _�ε1 � _�ε2Þ þ om½ð�ε1 þ �ε2Þw11 þ ð�ε1 � �ε2Þw12 þ wa1 þ wf 1�;

�TL2 ¼ w021ð _�ε1 þ _�ε2Þ þ w022ð _�ε1 � _�ε2Þ þ om½ð�ε1 þ �ε2Þw21 þ ð�ε1 � �ε2Þw22 þ wa2 þ wf 2�:
ð16Þ

where

w011 ¼
1

2
m1ro

2Wc1; w012 ¼
1

2
m1ro

2½W 0
c1cosð2aþ yc1Þ �W 0

s1sinð2aþ ys1Þ�;
w11 ¼ m1ro

2Ws1; w12 ¼ m1ro
2½W 0

c1sinð2aþ yc1Þ þW 0
s1cosð2aþ ys1Þ�;

wa1 ¼
1

2
m1ro

2½W 0
c1sinð2aþ yc1Þ�; wf 1 ¼

1

2
m1ro

2½W 0
s1cosð2aþ ys1Þ þW 0

s1�;

w021 ¼
1

2
m1ro

2½W 0
c2cosð2aþ yc2Þ þW 0

s2sinð2aþ ys2Þ�; w022 ¼
1

2
m1ro

2Wc2;

w21 ¼ m1ro
2½�W 0

c2sinð2aþ yc2Þ þW 0
s2cosð2aþ ys2Þ�; w21 ¼ m1ro

2Ws2;

wa2 ¼
1

2
m1ro

2½�W 0
c2sinð2aþ yc2Þ�; wf 2 ¼

1

2
m1ro

2½W 0
s2cosð2aþ ys2Þ �Ws2�:

ParametersWc1,Wc2,W 0
c1,W

0
c2,Ws1,Ws2,W 0

s1 andW
0
s2 can be found Appendix B in S1 File.

Compared with the change value of angular velocities of the two rotors, that of α, ε1, ε2, _ε1 and
_ε2 can be considered small parameters (i.e., ε1 ⪡ 1, ε2 ⪡ 1, _ε1 � 1 and _ε2 � 1). During the
above-mentioned integration, the value of parameters α, ε1, ε2, _ε1 and _ε2 are assumed to be the

average values of their integration �a,�ε1, �ε2, _�ε1 and _�ε2, respectively [23]. In addition, compared
with parametersWc1,Wc2,W 0

c1 andW
0
c2, the other parametersWs1,Ws2,W 0

s1 andW
0
s2 are

very small in the vibration system as the value of the damping ratio coefficients is very small.
Hence parametersWs1,Ws2,W 0

s1 andW
0
s2 can be ignored in the in the expressions of w0

12, χ12,
w021 and χ21.

According to Ref. [22], in Eq (15) �T e1 and �Te2 can be expressed as

�Te1 ¼ Te01 � ke1ð�ε1 þ �ε2Þ;
�Te2 ¼ Te02 � ke2ð�ε1 � �ε2Þ:

ð17Þ

Where Te01 and Te02 are the electromagnetic torques of the two induction motors rotating at
the angular velocity of ωm, ke1 and ke2 are the angular stiffness of the two motors.

Firstly adding the two formulas of Eq (15) as the first row, then subtracting the two formulas
of Eq (15) as the second row, next substituting Eqs (16) and (17) into Eq (15), introducing the
following non-dimensional parameters ρ1 = 1+Wc1/2, ρ2 = η+Wc2/2, k1 ¼ ke1=m1r

2o2
m þ

f1om=m1r
2o2

m þWs1 and k2 ¼ ke2=m1r
2o2

m þ f2om=m1r
2o2

m þWs2 into the above-mention
equations, Eq (15) can be rewritten as the matrix form:

A_ε ¼ BεþC: ð18Þ
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where

A ¼
r1 þ r2 þW 0

c1cosð2aþ yc1Þ=2þW 0
c2cosð2aþ yc2Þ=2 r1 � r2 �W 0

c1cosð2aþ yc1Þ=2þW 0
c2cosð2aþ yc2Þ=2

r1 � r2 �W 0
c1cosð2aþ yc1Þ=2þW 0

c2cosð2aþ yc2Þ=2 r1 þ r2 �W 0
c1cosð2aþ yc1Þ=2�W 0

c2cosð2aþ yc2Þ=2

2
4

3
5;

B ¼ jk1 þ k2 þW 0
c1sinð2aþ yc1Þ �W 0

c2sinð2aþ yc2Þ k1 � k2 �W 0
c1sinð2aþ yc1Þ �W 0

c2sinð2aþ yc2Þ

k1 � k2 þW 0
c1sinð2aþ yc1Þ þW 0

c2sinð2aþ yc2Þ k1 þ k2 �W 0
c1sinð2aþ yc1Þ þW 0

c2sinð2aþ yc2Þ j; ε ¼ j ε1
ε2

j;
C ¼ jTe01 þ Te2 � f1om � f2om ¼ 1

2
m1r

2o2
m½W 0

c1sinð2aþ yc1Þ �W 0
c2sinð2aþ yc2Þ þW 0

s1cosð2aþ ys1Þ þW 0
s2cosð2aþ ys2Þ þWs1 þWs2�

Te01 � Te2 � f1om þ f2om ¼ 1

2
m1r

2o2
m½W 0

c1sinð2aþ yc1Þ þW 0
c2sinð2aþ yc2Þ þW 0

s1cosð2aþ ys1Þ �W 0
s2cosð2aþ ys2Þ þWs1 �Ws2� j

:

In Eq (18), symbol A is considered as the inertia moments of the two unbalanced rotors and defined as

the inertia coupling matrix. Symbol B is considered as the stiffness of angular velocities of the two unbal-

anced rotors and defined as the stiffness matrix. Symbol C is the matrix related to the electromagnetic tor-

que and the load torque of the induction motors. Therefore, eq (18), the non-dimensional coupling

equation, describes the dynamic coupling characteristics of the two unbalanced rotors.

Condition of implementing synchronization

When the two rotors synchronously rotate in the vibration system, we have _�ε ¼ 0,�ε ¼ 0 and c
= 0. According to the above analysis for the coupling characteristics between the two vibro-
bodies (μi11� μi21, μi12� μi22 μi12 � μi11and μi22 > μi21 in NVS-FVS), we can consider that
W 0

c1 � W 0
c2 � W 0

c,W
0
s1 � W 0

s2 � W 0
s, θc1 � θc2 � θc and θs1 � θs2 � θs according to Appen-

dix B in S1 File. Moreover, we assume that the values of the damping coefficient of the springs
is equal each other because of the identical and small damping of the springs in NVS-FVS.
Thus, we have rx11� rx12, ry11 � ry12 and rψ11 � rψ12. Substituting them into Eq (18) and rear-
ranging them, we have

Te01 � f1om þ Te2 � f2om ¼ m1r
2o2

mW
0
scosð2�a þ ysÞ þ

1

2
m1r

2o2
mðWs1 þWs2Þ ; ð19Þ

Te01 � f1om � ðTe2 � f2omÞ ¼ m1r
2o2

mW
0
csinð2�a þ ycÞ þ

1

2
m1r

2o2
mðWs1 �Ws2Þ: ð20Þ

Eq (19) is the equation of torque balance of the vibration system in the synchronous state,
which serves to find the approximation of angular velocity ωm. Moreover, the second formula
of Eq (20) is difference equation of the balanced torque of the two rotors in the synchronous
state, which serves to determine the approximation of stable phase difference 2α.

Rewriting Eq (20), we obtain

2�a ¼ arcsinðTD=TCÞ � yc ; ð21Þ
where

TD ¼ TR1 � TR2;

TR1 ¼ Te01 � f1om �m1r
2o2

mWs1=2;

TR2 ¼ Te02 � f2om �m1r
2o2

mWs2=2;

TC ¼ m1r
2o2

mW
0
c:
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TC is the torque of synchronization capture; TD is the difference between the residual electro-
magnetic torques of the two induction motors; TR1 and TR2 are the residual electromagnetic of
induction motor 1 and 2, respectively.

Since jsin2�a þ ycj � 1, the synchronization condition of the vibration system can be ex-
pressed as

TC � jTDj ð22Þ

It is indicated that the torque of synchronization capture should be equal or greater than the
absolute value of the difference between the residual electromagnetic torques of the two induc-
tion motors for the synchronization implementation of the system.

Synchronization stability of the rotors
If the system parameters satisfy the condition of implementing synchronization, the stable
phase difference and the synchronous angular velocity of the rotors can be solved with the nu-
merical method. In addition, the stability region of the phase difference can be confirmed with
the Lyapunov theory. When C = 0, Eq (18) is the generalized system:

A_ε ¼ Bε ð23Þ

Linearizing Eq (23) around �a ¼ �a0 with the Taylor expansion, and appending D _a ¼ o�
m�ε2

as the third row, the first-order approximate linear equation of the two unbalanced rotors can
be obtained

_ς ¼ Zς ; ð24Þ

with

Z ¼�A0
�1B0 ; ð25Þ

and

A0 ¼ j r1 þ r2 þW 0
ccosð2�a0 þ ycÞ=2 r1 � r2 0

r1 � r2 r1 þ r2 �W 0
ccosð2�a0 þ ycÞ 0

0 0 1
j; B ¼ j ε1

ε2

Da

j;
B0 ¼ j k1 þ k2 k1 � k2 � 2W 0

csinð2�a0 þ ycÞ 2o�
mW

0
ssinð2�a0 þ ysÞ

k1 � k2 þ 2W 0
csinð2�a0 þ ycÞ k1 þ k2 �2o�

mW
0
ccos2ð2�a0 þ ycÞ

0 o�
m 0

j:
where Da ¼ �a � a0. It should be noted that matrices A0 and B0 represent the linearization ma-
trices A and B for �a ¼ a0 and om ¼ o�

m, respectively. Meanwhile, matrices A0 and B0 are the
simplification style of matrices A and B considering μi11 � μi21, μi12 � μi22,W 0

c1 � W 0
c2 � W 0

c,
W 0

s1 � W 0
s2 � W 0

s, θc1 � θc2 � θc and θs1 � θs2 � θs, and ri11 � ri12 � ri21 � ri22.
Exponential time-dependence of the form B = u(λt) is now assumed. Inserting it into Eq

(24), and solving the determinant equation |Z−λI| = 0, we can yield the characteristic equation

a0l
3 þ a1l

2 þ a2lþ a3 ¼ 0: ð26Þ
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where a0 = 1,a1 ¼ o�
mH1=H0, a2 ¼ o�2

m H2=H0 and a3 ¼ o�3
mH2=H0.

H0 ¼ 4r1r2 �W 02
ccos

2ð2�a0 þ ycÞ þW 02
s sin

2ð2�a0 þ ysÞ;
H1 ¼ ½�2W 0

sðr1 þ r2Þcosð2�a0 þ ysÞ þ 2W 0
sW

0
ccosð2�a0 þ ysÞcosð2�a0 þ ycÞ�=o�

m

þð4k1r2 þ 4k2r1Þ þ 2W 0
cW

0
scosð2�a0 þ ysÞcosð2�a0 þ ycÞ

þ4W 0
cW

0
so

�
m0sinð2�a0 þ ysÞsinð2�a0 þ ycÞ � 2W 0

sðr1 þ r2Þcosð2�a0 þ ysÞ;
H2 ¼ 4k1k2 þ 2W 02

c þ 2W 02
c sin

2ð2�a0 þ ycÞ � 2W 02
s sin

2ð2�a0 þ ysÞ þ 2W 0
sðk1 þ k2Þcosð2�a0 þ ysÞ

þ2W 0
cðr1 þ r2Þcosð2�a0 þ ycÞ þ 2W 0

sðr1 � r2Þsinð2�a0 þ ysÞ
�½4W 02

s cos
2ð2�a0 þ ysÞ þ 2W 0

sðk1 þ k2Þcosð2�a0 þ ysÞ�=o�
m;

H3 ¼ 2W 0
cðk1 þ k2Þcosð2�a0 þ ycÞ þ 2W 0

sðk1 � k2Þsinð2�a0 þ ysÞ þ 4W 0
cW

0
s:

In the vibration system, the value of parameterW 0
c is far larger thanWs

0 because the value
of the damping ratio (ξni < 0.05)is very small [14]. In the following calculation, we will ignore
parameterWs

0 to simplify H0,H1, H2 andH3 as

~H 0 ¼ 4r1r2 �W 02
c cos

2ð2�a0 þ ycÞ;
~H 1 ¼ 4k1r2 þ 4k2r1;

~H 2 ¼ 4k1k2 þ 2W 02
c þ 2W 02

c sin
2ð2�a0 þ ycÞ þ 2W 0

cðr1 þ r2Þcosð2�a0 þ ycÞ;
~H 3 ¼ 2W 0

cðk1 þ k2Þcosð2�a0 þ ycÞ:

ð27Þ

If all the roots of Eq (26) have negative real parts, the phase difference of two unbalance ro-
tors is asymptotically stable. According to the Routh-Hurwitz criterion, the asymptotic stability
condition of the synchronization state of the two rotors is deduced

a0 > 0 ; a1 ora2 > 0 ; a3 > 0 ; a1a2 � a0a3 > 0 ð28Þ

Base on Eqs (27) and (28), we can employ the two following hypotheses to discuss the stabil-
ity region of the synchronization state of the two unbalanced rotors.

Hypothesis (1): If ~H 0 > 0, only conditions ~H 1 or ~H 2 > 0, ~H 3 > 0 and ~H 1
~H 2 � a0 ~H 0

~H 3 > 0

satisfied, the asymptotic stability of the synchronization state of the rotors would
be implemented.

By ~H 0 > 0, ~H 1 > 0, κ1 > 0 and κ2 > 0,we have

r1 > 0; r2 > 0 ; 4r1r2 �W 02
c cosð2�a0 þ ycÞ > 0 ð29Þ

In addition, by ~H 3 > 0 we obtain

W 0
ccosð2�a0 þ ycÞ > 0 ð30Þ

Substituting ~H 0; ~H 1; ~H 2 and ~H 3 into ~H 1
~H 2 � a0 ~H 0

~H 3, which can be written as

~H 1
~H 2 � a0 ~H 0

~H 3 ¼ 8ðk1r2 þ k2r1Þ½W 02
c sin

2ð2�a0 þ ycÞ þW 02
c þ 2k1k2�

þ8ðk1r
2
2 þ k2r

2
1ÞW 0

ccosð2�a0 þ ycÞ þ 2ðk1 þ k2ÞW 03
c cos

3ð2�a0 þ ycÞ
: ð31Þ

Obviously, when κ1 > 0, κ2 > 0, ρ1 > 0, ρ2 > 0 and 4r1r2 �W 02
c cos2a0 > 0, we have

~H 1
~H 2 � a0 ~H 0

~H 3 > 0, and so the asymptotic stability of the synchronization state of the two
rotors can be carried out. In the light of parameterW 0

c � W 0
c1 � W 0

c2 larger than zero in Ap-
pendix B in S1 File, we have cosð2�a0 þ ycÞ > 0 according to Eq (29). Thus, one can see that
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2�a0 þ yc 2 ð�p=2; p=2Þ, from which the region of the stable phase difference is confirmed by
parameter θc (i.e., θc1 or θc2 in Appendix B in S1 File).

Hypothesis (2): If ~H 0 < 0, only conditions ~H 1 or ~H 2 < 0, ~H 3 < 0, ~H 1
~H 2 � a0 ~H 0

~H 3 > 0 are
satisfied, the asymptotic stability of the synchronization state of the rotors would
be implemented.

By ~H 0 < 0, we have 4r1r2 �W 02
c cos

2ð2�a0 þ ycÞ < 0. Moreover, by ~H 1 < 0, and we obtain

κ1< 0, κ2< 0, β1> 0, β2> 0 or κ1> 0, κ2> 0, ρ1 < 0, ρ2< 0. Then by ~H 3 < 0, and we acquire
W 0

ccosð2�a0 þ ycÞ < 0.

Obviously, ~H 1
~H 2 � a0 ~H 0

~H 3 is less than zero according to Eq (31) when ~H 0 < 0, ~H 1 or
~H 2 < 0, ~H 3 < 0. Therefore, this is not in accordance with stability condition of hypotheses (2).

Numerical Discussions
Above-mentioned sections have given some theoretical discussions in the simplified form on
synchronization problem for the near-resonance vibration system coupled with the far-reso-
nance vibration system. This section will quantitatively discuss the numerical results of the sta-
ble phase difference.

Base on the balance of the force moment, the value of rl can be written as

r2lmax ¼ lim
l!1

r2l ¼
1

Zrm
þ 1: ð32Þ

If r2lmax satisfies Eqs (22) and (30), the synchronization of the two unbalance rotors can rotate
stably. As shown in Fig 3, rlmax = 7 for η = 1 and rm = 0.02, the value of rl can be confined range
from zero to seven in the following discussions.

According to Ref. [22], when an induction motor rotate with the synchronous velocity ωm,
its electromagnetic torque and stiffness coefficients of the angular velocity, Te0k and kek
(k = 1,2), can be simplified as

Tek ¼ np

LmkU
2
S0

L2
skosRrk

ðos � npom0Þ: ð33Þ

kek ¼ n2
p

L2
mkU

2
S0

L2
skosRrk

: ð34Þ

Fig 3. The value of parameter rl.

doi:10.1371/journal.pone.0126069.g003
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Where Lmk is the mutual inductance of the kth induction motor; Lsk is stator inductance of the
kth induction motor;np is the number of pole pairs of the induction motor; ωs is synchronous
electric angular velocity; Rrk is the rotor resistance of the k

th induction motor; US0 is the ampli-
tude of the stator voltage vector.

Substituting the above values of these parameters into the Eq (21), we can ascertain the
value of the stable phase difference between the two rotors. To guarantee the synchronous op-
eration of the two rotors, TC in Eq (21) should be larger than parameter |TD|. When the two
identical motors are employed to drive the two identical unbalanced rotors, we have

TD ¼ TR1 � TR2 ¼ m1r
2o2

mðWs2 �Ws1Þ=2 ð35Þ

Here, we assume that Te01−f1ωm−(Te02−f2ωm)�0 just for the convenient discussions. Actual-
ly, in engineering the difference between the electromagnetic torques of two identical motor is
not equal to zero. Eq (22), therefore, can be simplified in the form

W 0
c � jðWs2 �Ws1Þ=2j ð36Þ

According to Eq (36), we can sketch the synchronization regions for the vibration system.
Fig 4 shows the region of implementing synchronous rotation between the two unbalanced

Fig 4. Synchronization region for the two unbalanced rotors.

doi:10.1371/journal.pone.0126069.g004
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rotors for the different value of the parameters. These figures are divided into a blue region, a
black region, and a red region, respectively. If the value of the parameters of the vibration sys-
tem locates in the blue region, the value of the stable phase difference between the two unbal-
anced belongs to the interval of [π/2,3π/2]. If the value of the parameters of the vibration
system locates in the black region, the value of the stable phase difference between the two un-
balanced belongs to the interval of [−π/2,π/2]. If the value of the parameters of the vibration
system locates in the red region, not satisfying the synchronization condition, the two rotors
cannot operate synchronously. Fig 4(a) describes the synchronization region in ηrl-plane for β2
= 0°. It can be seen that the system cannot implement synchronization when the value of rl is
equal to 1.414, in the case, there areW 0

c ¼ 0 andW 0
c < jðWs2 �Ws1Þ=2j. By increasing the

value of parameter β2, we find that the region of the red color and the black color are shrined.
Especially, the black color region is disappeared when the value of parameter β2 approach to
45°. In this case, the value of ac1 and ac2 is less than zero, and so value of the phase difference
only located in the interval of [π/2,3π/2]. As a result, it is obviously demonstrated that parame-
ters η and β2 have influence on the synchronization regions of the vibration system.

Eq (21) describes the approximate analytical solution for the stable phase difference. Base
on the equation and Appendix B in S1 File, we can acquire the approximate value 2α consider-
ing the different value of parameter η with the identical coupling coefficients in xi, yi and ψi di-
rection between the two vibro-bodies (i.e. μxij = μyij = μψij, i = 1,2 j = 1,2), as shown in Fig 5.

Fig 5. The approximate theoretical value of the stable phase difference for the identical coupling coefficients.

doi:10.1371/journal.pone.0126069.g005
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From Fig 5(a)–5(d), it can be seen that the value of parameter η has little influence on the value
of the phase difference 2α when the parameters of the system satisfy the above-mention syn-
chronization condition and synchronization stability criterion. But dimensionless parameters
rl and β2 directly determine the value of 2α: If β2 = 0° and rl<1.414, the phase difference 2α ap-
proximately stabilize at −180°(ac<0 in the case); if β2 = 0° and rl<1.414, the phase difference
2α approximately stabilize at 0° (ac>0 in the case). If β2 = 60°, the phase difference 2α gradually
increase from −180° with increasing the value of rl (ac>0 in the case). If β2 = 90°, the phase dif-
ference 2α always stabilize at −180° irrelevant to the value of rl (ac>0 in the case). According to
Appendix A in S1 File, parameter rl is the function of parameters l and lo, and it can be con-
cluded that the value of the phase difference 2α is determined by the installation position of the
two induction motors (i.e. parameters l and β2).

The analysis above imply that parameter η slightly affect the value of the stable phase dif-
ference, and here we numerically discuss the value of the phase difference considering the
non-identical coupling coefficients with ignoring the variable of parameter η. Fig 6 describes
the approximate analytical solution for the stable phase difference the non-identical coupling
coefficients in the xi, yi and ψi-direction (i = 1,2.). Comparing with Fig 5, it can be found that
the change of value of the non-identical coupling coefficients weakly effect on the value of the
stable phase difference. And in the case of β2 = 90°, the value of the phase difference invari-
ably stabilize at −180° irrelevant to the value of the coupling coefficients between the two
vibro-bodies.

Fig 6. The approximate theoretical value of the stable phase difference for the non-identical coupling coefficients.

doi:10.1371/journal.pone.0126069.g006
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Sample Validations
Further analyses have been performed by computer simulations to verify our above theoretical
solutions, which can be carried out by applying the Runge-Kutaa routine with adaptive stepsize
control to the dynamics equations of the proposed Eq (10).

Here, the parameters of the two motors are assumed to be the same (Three-phase squirrel-
cage, i.e., Rated power 0.7 Kw, Rated voltage 220 V, Rated frequency 50Hz, Pole pairs 2, Stator
resistance 0.56O, Rotor resistance 0.54 O, Stator inductance 0.1 H, Rotor inductance 0.12H,
Mutual inductance 0.13 H, The damping coefficient of shafting 0.04 Nm/ (rad/s)).

The value of the parameters of the vibration system are:m1 =m2 = 5kg,M1 =M2 = 50kg,
r = 0.04m, l<0.7m (for rl 2[0,7]), kx1 = ky1 = 2310kN/m, kψ1 = 231kN m/rad (ni1 = 1.0), kx2 =
ky2 = 250kN/m, kψ2 = 25kN m/rad (ni2 = 3), J1 = J2 = 10kg m2, fx1 = fy1 = fx2 = fy2 = 4.85kN s/m,
fψ1 = fψ2 = 0.54kN s/m.

Simulation results for η = 1.0, rl = 6 and β2 = 0°
Simulation results for η = 1.0, rl = 6 and β2 = 0° (i.e.,m1 =m2 = 5Kg, rm = 0.02m, β1 = 180° and
l = 0.8m) as shown in Fig 7. When the two motors are supplied with the electric source at the
same time, the angular accelerations of the two motor are approximately equal to each other
because the inertia moments of two rotors are identical, as illustrate in Fig 7(a). After a few sec-
onds, the rotational velocity of the two motors approach a steady velocity. In addition, the high
frequency vibration of the vibro-bodies is excited and the load torques of the motors on which
the displacement of the vibro-body is larger, therefore, that makes the two unbalanced rotors
synchronous. To ensure the synchronous rotation of the rotors, the motors should provide the
equal electromagnetic torques to overcome the load torques. In the case, the electromagnetic
torques of the motors should be identical.

From Fig 7(a)–7(d) it follows that the steady synchronization of the system is implemented
at about 2 s. In the synchronization state, the two unbalanced rotors operate with approximate
velocity 150 rad/s, which is called the synchronous velocity; the velocity difference ranges from
-1 to 1 rad/s; the phase difference 2α stabilized in the vicinity of −3.5°, which is according with
the approximate values of the theory analysis, as shown in Fig 5(d); the electromagnetic torques
of the two motors stabilized at 8.15 Nm and are identical each other. It should be noted that, in
this case, the value of the parameters of the vibration system located in the blue region, as
shown in Fig 4(a). The displacement responses of the vibro-bodies in the DOFs are sketched in
Fig 7(e). It can be seen that the displacement in x1, x2, y1 and y2-direction is larger than 0.0025
m as the phase difference −3.5° between the rotors leads to the addition of the exciting forces
through the coupling springs supporting vibro-body-1. And the displacement amplitude of the
vibro-body-1 is slightly larger than the vibro-body 2.

Simulation results for η = 1.0, rl = 0.95 and β2 = 90°
Fig 8 shows simulation results for η = 1.0, rl = 0.95 and β2 = 90° (i.e.,m1 =m2 = 5Kg,
r = 0.02m, β1 = 90° and l = 0.2m). During the starting few seconds, the angular accelerations
of the two motor are also approximately equal to each other. After about 2 s, the two rotors
rotate with synchronization velocity 150 rad/s; the velocity difference ranges from -0.5 to 0.5
rad/s; the phase difference 2α stabilized in the vicinity of 180°, which is coincident with the
approximate values of the theory analysis, as shown in Fig 5(a); the electromagnetic torques
of the two motors stabilized at 5.3Nm and are also identical each other. Fig 8(e) shows dis-
placement responses of the vibro-bodies in the DOFs. It is noted that the displacement in x1,
x2, y1 and y2-direction is less than 0.0025 m as the phase difference 180° leads to the offset of
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Fig 7. Results for the computer simulation for η = 1.0, rl = 6 and β2 = 0°. (a) rotational velocities of the
two inductionmotors; (b) velocity difference of the twomotors; (c) phase difference between the two
unbalanced rotors; (d) electromagnetic torques of the twomotors; (e) displacement responses of the
vibro-body in the DOFs.

doi:10.1371/journal.pone.0126069.g007
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Fig 8. Results for the computer simulation for η = 1.0, rl = 0.95 and β2 = 90°. (a) rotational velocities of
the two inductionmotors; (b) velocity difference of the twomotors; (c) phase difference between the
two unbalanced rotors; (d) electromagnetic torques of the twomotors; (e) displacement responses of
the vibro-body in the DOFs.

doi:10.1371/journal.pone.0126069.g008
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the part of the exciting forces through springs supporting vibro-body-1. The displacement
amplitude of the vibro-body-1 is slightly smaller than the vibro-body-2.

Simulation results for η = 0.2, rl = 1.3 and β2 = 0°
To further verify the theory analysis results for absent synchronization of the rotor consider-
ing parameter η, it is necessary for two non-identical to perform computer simulations, and
the results are shown in Fig 9. Here, η = 0.2, β2 = 0° and rl = 1.3 (i.e.,m1 = 5Kg,m2 = 1kg, β1 =
180° and l = 0.3). During the starting few seconds, the angular velocity of rotor 1 is far less
than rotor 2. The reason is that the inertia moment of rotor 1 is greater than rotor 2. After a
few seconds the rotational velocity of two rotors approach the high rotation and absent syn-
chronization rotation, in addition, the maximum value of the velocity difference between the
two rotors exceed 10 rad/s, as shown in Fig 9(a)–9(b). Meanwhile, the phase difference can-
not be stable because of the non-identical velocity of the induction motors, as shown in Fig 9
(c). In this case, the value of the parameters of the vibration system is located in the red re-
gion as shown in Fig 4(a), and the electromagnetic torque of the motors is unstable and un-
equal with the different load torque on the shaft of the motors as shown in Fig 9(d). From Fig
9(e), it follows the displacement responses of the vibro-bodies. It can be seen that the dis-
placement responses of the vibro-bodies is unstable because of the unstable phase difference
and the fluctuation of the motors’ velocity. The system within such parameters cannot be
suitably applied in the engineering.

Conclusions
The vibration system we proposed in this article could be used to invent new vibration screens
for the solid-liquid separation in the offshore drilling engineering when their parameters satisfy
the synchronization condition and the synchronization stability criterion. Due to the develop-
ment in the early stage and clearly understand the operation mechanism, we consider the case
that the stronger stiffness springs between the two vibro-bodies is coupled with the weaker
stiffness springs connected with the fixed foundation. In the future researches, considering the
other coupling styles of the system and the unbalanced rotors drove with Multi-motors will be
interesting for the exploration of the vibration screens. With the theoretical investigation and
the numerical simulations, the following conclusions are obtained:

The average method of modified small parameters is used to simplify mathematically the
deducing process. Base this method, the non-dimensionless coupling equations of the
vibration system are acquired, and then, the problem of synchronization is converted into
that of existence and the stability of zero solutions for the non-dimensional differential
equations of the angular velocity disturbance parameters. The synchronization condition for
the two rotors is that the absolute value of the residual torque between the two motors is
equal to or less than the maximum of their coupling torques. When the value of the parame-
ters of the system is located in the blue region of synchronization, the two unbalanced rotor
can implement the synchronous rotation. With the Routh-Hurwitz criterion, the region of
the stable phase difference is confirmed by parameter θc, obviously, it is demonstrated that
parameters η, β1, β2 and rl have an influence on the synchronization regions of the vibration
system. At last, computer simulations is preformed to verify the correctness of the approxi-
mate solution of the theoretical computation for the stable difference between the two
unbalanced rotors, and the results of theoretical computation is in accordance with that of
computer simulations.
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Fig 9. Results for the computer simulation for η = 0.2, rl = 1.3 and β2 = 0°. (a) rotational velocities of the
two induction motors; (b) velocity difference of the two motors; (c) phase difference between the two
unbalanced rotors; (d) electromagnetic torques of the two motors; (e) displacement responses of the vibro-
body in the DOFs.

doi:10.1371/journal.pone.0126069.g009
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