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Abstract

DNA-binding proteins play crucial roles in various cellular processes. Developing high throughput tools for rapidly and
effectively identifying DNA-binding proteins is one of the major challenges in the field of genome annotation. Although
many efforts have been made in this regard, further effort is needed to enhance the prediction power. By incorporating the
features into the general form of pseudo amino acid composition that were extracted from protein sequences via the ‘‘grey
model’’ and by adopting the random forest operation engine, we proposed a new predictor, called iDNA-Prot, for
identifying uncharacterized proteins as DNA-binding proteins or non-DNA binding proteins based on their amino acid
sequences information alone. The overall success rate by iDNA-Prot was 83.96% that was obtained via jackknife tests on a
newly constructed stringent benchmark dataset in which none of the proteins included has §25% pairwise sequence
identity to any other in a same subset. In addition to achieving high success rate, the computational time for iDNA-Prot is
remarkably shorter in comparison with the relevant existing predictors. Hence it is anticipated that iDNA-Prot may become
a useful high throughput tool for large-scale analysis of DNA-binding proteins. As a user-friendly web-server, iDNA-Prot is
freely accessible to the public at the web-site on http://icpr.jci.edu.cn/bioinfo/iDNA-Prot or http://www.jci-bioinfo.cn/iDNA-
Prot. Moreover, for the convenience of the vast majority of experimental scientists, a step-by-step guide is provided on how
to use the web-server to get the desired results.
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Introduction

DNA-binding proteins play a vitally important role in many

biological processes, such as recognition of specific nucleotide

sequences, regulation of transcription, and regulation of gene

expression. At present, several experimental techniques (such as

filter binding assays, genetic analysis, chromatin immunoprecip-

itation on microarrays, and X-ray crystallography) have been used

for identifying DNA-binding proteins. Although these techniques

can provide a detailed picture about the binding, they are both

time-consuming and expensive [1]. Particularly, the number of

newly discovered protein sequences has been increasing extremely

fast. For example, in 1986 the Swiss-Prot [2] database contained

only 3,939 protein sequence entries, but now the number has

jumped to 530,264 according to the release 2011_07 on 28-Jun-

2011 by the UniProtKB/Swiss-Prot at http://web.expasy.org/

docs/relnotes/relstat.html, meaning that the number of protein

sequence entries now is more than 134 times the number from

about 25 years ago. Facing the avalanche of new protein sequences

generated in the postgenomic age, it is highly desired to develop

automated methods for rapidly and effectively identifying and

characterizing DNA-binding proteins based on the protein

sequence information alone.

Actually, numerous predictors were developed in this regard.

For instance: Shanahan et al. [3] demonstrated how structural

features were employed to determine whether a protein of known

structure and unknown function was a DNA-binding proteins or

not; Ahmad et al. [4] depicted how to distinguish DNA-binding

and non DNA-binding proteins with net charge, net dipole

moment and quadrupole moment, respectively; Nordhoff et al.

[5] introduced identification and characterization of DNA-

binding proteins by mass spectrometry, which was regarded as

the most sensitive and specific analytical technique available for

protein identification [6]. All the aforementioned methods were

considerably relied on the results from biochemical experiments.

Among the existing methods, those which are purely based on

theoretical approaches are of using various classifying engines,

such as support vector machine (SVM) [6,7,8,9,10,11,12,13,

14,15], artificial neural network (ANN) [16,17,18,19,20,21],

random forest [22,23,24], nearest neighbor [25], and boosted

decision trees [26].

In addition to using different prediction engines, a remarkable

difference among the existing methods is in that different features

were extracted to represent protein samples. For instance,

Bhardwaj [13] used a 40-D (dimensional) feature vector to

formulate a protein sample that contains positive potential surface

patches, overall charge of the protein, and overall surface

composition. Yu et al. [10] constructed a 132-D feature vector

to represent a protein sequence by using the information of

hydrophobicity, predicted secondary structure, solvent accessibil-
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ity, normalized van der Waals volume, polarity, and polarizabil-

ity. Bhardwaj and Lu [9] represented the sample of a protein by

harnessing the 70 features of the DNA-binding residues,

including the residue’s identity, charge, solvent accessibility,

average potential, secondary structure, neighboring residues, and

location in a cationic patch. Kumar et al. [14] extracted the

features from the PSSM (Position-Specific Scoring Matrix) profile

obtained from PSI-BLAST [27] to represent the protein sample.

Subsequently, a different approach was proposed [22] to encode

each protein sequence with 116 features by incorporating various

physic-chemical properties of amino acids. Meanwhile, Nanni

and Lumini [15] proposed a method to represent a protein

sample by combing ontologies and dipeptide composition. Later,

the same authors [6] introduced the grouped weight to represent

protein samples for predicting DNA-binding proteins. Langlois

and Lu [1] represented a protein sample with 472 features, of

which 240 were secondary structure features, 231 dipeptide

composition features, and one for the total charge over its amino

acid sequence.

However, the existing predictors have the following shortcom-

ings. (1) The extracting features are very complicated and their

dimensions are too large. Particularly, during the prediction

process, some of the existing predictors even need the informations

of query proteins that were obtained from other experiments, such

as their three-dimensional (3D) structures, functions, and the other

relevant knowledge. (2) The computational time needed by these

predictors is usually very long; for instance, the predictor iDBPs
[23] would usually take about 30 minutes for predicting one query

protein. (3) Most predictors did not provide a web-server for the

public usage, while the others claimed they did but are currently

not in working condition and hence their practical application

value is quite limited.

In view of this, the present study was initiated in an attempt to

develop a new and more powerful predictor by addressing the

aforementioned three problems.

According to a recent comprehensive review [28], to establish a

really useful statistical predictor for a protein system, we need to

consider the following procedures: (i) construct or select a valid

benchmark dataset to train and test the predictor; (ii) formulate the

protein samples with an effective mathematical expression that can

truly reflect their intrinsic correlation with the attribute to be

predicted; (iii) introduce or develop a powerful algorithm (or

engine) to operate the prediction; (iv) properly perform cross-

validation tests to objectively evaluate the anticipated accuracy of

the predictor; (v) establish a user-friendly web-server for the

predictor that is accessible to the public. Below, let us describe how

to deal with these steps.

Materials and Methods

1. Benchmark datasets
DNA-binding protein sequences were collected from the Protein

Data Bank (PDB) release 03-May-2011 at http://www.pdb.org/,

in which there are 72,838 structures. By searching the keywords

of ‘‘Protein-DNA complex’’ and ‘‘DNA binding’’ through the

‘‘Advanced Search Interface’’, we extracted 3,689 structures from

(PDB).

To construct a high quality benchmark dataset with a wider

coverage scope and lower homology bias, the data obtained above

were screened strictly according to the following criteria. (1)

Sequences with less than 50 amino acid (AA) residues were

removed because they might just belong to fragments [29]. (2)

Sequences with more than 10 consecutive character of ‘‘X’’ were

taken away because they contained too many unknown amino

acids. (3) To reduce redundancy and homology bias, the PISCES

[30,31] was utilized to cutoff those sequences that have §25%
pairwise sequence identity to any other in the dataset. Finally, we

obtained 212 DNA-binding proteins. Similarly, 212 non DNA-

binding protein domains were randomly picked from the data

bank. Accordingly, the benchmark dataset SBench thus obtained

consists of 424 protein sequences of which half are DNA-binding

protein sequences and the other half non-binding protein

sequences. Their accession codes and sequences are given in

Information S1.

2. A novel pseudo amino acid composition of grey model
To develop a powerful predictor for a protein system, one of the

keys is to formulate the protein samples with an effective

mathematical expression that can truly reflect their intrinsic

correlation with the attribute to be predicted [28]. To realize this,

the concept of pseudo amino acid composition (PseAAC) was

proposed [32] to replace the simple amino acid composition

(AAC) for representing the sample of a protein. According to Eq. 6

of [28], the general form of PseAAC for a protein P can be

formulated as

P~ y1 y2 � � � yu � � � yV½ �T ð1Þ

where T is a transpose operator, while the subscript V is an integer

and its value as well as the components y1, y2, … will depend on

how to extract the desired information from the amino acid

sequence of P.

In this study, we are to use the grey model parameters to define

the V elements in Eq. 1. In 1989, Deng [33] proposed a grey

system theory to investigate the uncertainty of a system. According

to this theory, if the information of a system investigated is fully

known, it is called a ‘‘white system’’; if completely unknown, a

‘‘black system’’; if partially known, a ‘‘grey system’’. The model

developed on the basis of such a theory is called ‘‘grey model’’,

which is a kind of nonlinear and dynamic model formulated by a

differential equation. The grey model is particularly useful for

solving complicated problems that are lack of sufficient informa-

tion, or need to process uncertain information and reduce random

effects of acquired data.

In the grey system theory, an important and generally used

model is called GM(1,1). It is quite effective for monotonic series,

with good simulating effect and small error, as reflected by the fact

that using the GM(1,1) model has remarkably improved the

success rates in predicting protein structural classes [34]. However,

if the series concerned are not monotonic, the simulating effect of

GM(1,1) would not be good and its error might be quite large.

To overcome the above problem, the grey system theory used in

the current study is a special grey dynamic model called GM(2,1),

which can be used to handle the oscillation series. In GM(2,1) the

strategy of minimum squares will be adopted to determine the

uncertain parameters, as can be briefly described below.

One of the most commonly used approaches in the grey system

theory is the accumulative generation operation (AGO), which can

convert a series without any obvious regularity into a strict

monotonic increasing series so as to reduce the randomness and

enhance the smoothness of the series, and minimize interference

from the random information. Let us assume that X(0)~ x(0)(1),
�

x(0)(2), � � � ,x(0)(n)Þ is the original series of real numbers with an

irregular distribution, and it is a non-negative original data

sequence. Then, X(1)~ x(1)(1),x(1)(2), � � � ,x(1)(n)
� �

is viewed as

the first-order accumulative generation operation (1-AGO) series

forX(0); i.e., the components in X(1) are given by

Predicting DNA Binding Proteins
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x(1)(k)~
Xk

i~1

x(0)(i), k~1,2 � � � ,n ð2Þ

The GM(2,1) model can be expressed by the following second-

order grey differential equation with one variable:

a(1)x(0)(k)za1x(0)(k)za2z(1)(k)~b ð3Þ

where:

a(1)x(0)(k)~x(0)(k){x(0)(k{1), k~2,3, � � � ,n ð4Þ

z(1)(k)~0:5x(1)(k)z0:5x(1)(k{1), k~2,3, � � � ,n ð5Þ

In Eq. 3, the coefficients {a1and {a2 are the developing

coefficients, and b the influence coefficient. Then we have

P~½a1,a2,b�T ð6Þ

Thus, it follows by the least-squares method that

P~ BTB
� �{1

BTU ð7Þ

where

B~

{x(0)(2) {z(1)(2) 1

{x(0)(3) {z(1)(3) 1

..

. ..
. ..

.

{x(0)(n) {z(1)(n) 1

2
66664

3
77775

ð8Þ

U~

a(1)x(0)(2)

a(1)x(0)(3)

..

.

a(1)x(0)(n)

2
66664

3
77775

ð9Þ

The least-square estimator for the coefficients {a1, {a2 and b
should carry some intrinsic information contained in the discrete

data sequence X(0) sampled from the system investigated. In view

of this, the incorporation of these coefficients into the general form

of PseAAC (Eq. 1) will make the formulation of a protein sample

better to reflect its intrinsic correlation with the attribute to be

predicted. This is the key of the novel approach. The concrete

procedures are as follows.

A protein sequence is composed of 20 different types of native

amino acids denoted by A, C, D, E, F, G, H, I, K, L, M, N, P, Q,

R, S, T, V, W and Y. Before using the grey dynamic model

GM(2,1), we need to represent the protein sequence by a series of

real numbers. Listed in Table 1 is the numerical codes used in this

study to represent the 20 amino acids.

The factor score for molecular volume are adopted [35] that is

related to the molecular size or volume as well as side chain weight

[35]. Because in the current study, only the non-negative

sequences will be considered, we can adopt the following function

for modeling

f xð Þ~ 1

1ze{x
ð10Þ

Through the above function, each of the 20 amino acids can be

translated into numerical variable within the region of (0, 1)

(Table 1). With the numerical codes thus obtained, we can

convert a protein sequence to a series of real numbers. Thus, the

three coefficients ½a1,a2,b� for any protein sequence can be derived

with the grey model GM(2,1) by following Eqs.2–9.

3. Predicting algorithm
The three coefficients obtained in the above section, in addition

to the 20 components in the classical amino acid composition [36],

can be used to form a new mode of PseAAC, with V~20z3~23
components. Thus, according Eq. 1, the protein P can be

formulated with a new mode of PseAAC as given by

P~ y1 y2 � � � y20 y21 y22 y23½ �
T

ð11Þ

where yi(i~1,2, � � � , 20) are the occurrence frequencies of the 20

different types of amino acids in the protein concerned, while

yj(j~21, 22, 23) represent the absolute value of coefficientsa1,a2

and b, respectively.

Now the Random Forest (RF) algorithm was adopted to

perform the prediction. RF is a popular machine learning

algorithm and recently it has been successfully employed in

dealing with various biological prediction problems [37,38,39,40].

RF is a combination of tree predictors such that each tree depends

on the values of a random vector sampled independently and with

Table 1. The numerical codes of 20 native amino acids.

Amino acid Factor score [35] f (x)~
1

1ze{x

A {0.733 0.325

C {0.862 0.297

D {3.656 0.025

E 1.477 0.814

F 1.891 0.869

G 1.330 0.791

H {1.673 0.158

I 2.131 0.849

K 0.533 0.630

L {1.505 0.182

M 2.219 0.902

N 1.299 0.720

P {1.628 0.164

Q {3.005 0.047

R 1.502 0.818

S {4.760 0.008

T 2.213 0.901

V {0.544 0.367

W 0.672 0.662

Y 3.097 0.957

doi:10.1371/journal.pone.0024756.t001
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the same distribution for all trees in the forest. It has been shown

that combining multiple trees produced in randomly selected

subspaces can significantly improve the prediction accuracy. RF

performs a type of cross-validation by using out-of-bag samples.

During the training process, each tree is constructed using a

different bootstrap sample from the original data. For the detailed

description about of the RF algorithm, refer to the papers

[41,42,43].

The RF algorithm is available via the link at http://www.stat.

berkeley.edu/,breiman/RandomForests/cc_home.htm. Recent-

ly, the RF tool for the MATLAB windows is also available at

http://code.google.com/p/randomforest-matlab/that has two

important functions: one is ‘‘classRF_train’’ for training given

data and returning the prediction model, and the other is

‘‘classRF_predict’’ for predicting query input with the prediction

model. The classifier in this paper was developed based on the RF

tool for the MATLAB windows.

The classifier thus established is called iDNA-Prot, which can

be used to predict whether a protein can bind with DNA

according to its sequence information alone.

For practical applications, a web-server of iDNA-Prot was

established at the web-site http://icpr.jci.edu.cn/bioinfo/iDNA-

Prot. Moreover, for the convenience of the vast majority of

experimental scientists, a step-by-step guide on how to use the

web-server is given in Information S3, by which users can easily

get their desired results without the need to follow the complicated

mathematic equations involved in developing the iDNA-Prot
predictor.

Results and Discussion

In statistical prediction, the following three cross-validation

methods are often used to examine a predictor for its effectiveness

in practical application: independent dataset test, subsampling test,

and jackknife test [44]. However, of the three test methods, the

jackknife test is deemed the most objective [45]. The reasons are as

follows. (1) For the independent dataset test, although all the

proteins used to test the predictor are outside the training dataset

used to train it so as to exclude the ‘‘memory’’ effect or bias, the

way of how to select the independent proteins to test the predictor

could be quite arbitrary unless the number of independent

proteins is sufficiently large. This kind of arbitrariness might result

in completely different conclusions. For instance, a predictor

achieving a higher success rate than the other predictor for a given

independent testing dataset might fail to keep so when tested by

another independent testing dataset [44]. (2) For the subsampling

test, the concrete procedure usually used in literatures is the 5-fold,

7-fold or 10-fold cross-validation. The problem with this kind of

subsampling test is that the number of possible selections in

dividing a benchmark dataset is an astronomical figure even for a

very simple dataset, as demonstrated by Eqs.28–30 in [28].

Therefore, in any actual subsampling cross-validation tests, only

an extremely small fraction of the possible selections are taken into

account. Since different selections will always lead to different

results even for a same benchmark dataset and a same predictor,

the subsampling test cannot avoid the arbitrariness either. A test

method unable to yield a unique outcome cannot be deemed as a

good one. (3) In the jackknife test, all the proteins in the

benchmark dataset will be singled out one-by-one and tested by

the predictor trained by the remaining protein samples. During

the process of jackknifing, both the training dataset and testing

dataset are actually open, and each protein sample will be in turn

moved between the two. The jackknife test can exclude the

‘‘memory’’ effect. Also, the arbitrariness problem as mentioned

above for the independent dataset test and subsampling test can be

avoided because the outcome obtained by the jackknife cross-

validation is always unique for a given benchmark dataset.

Accordingly, the jackknife test has been increasingly and widely

used by those investigators with strong math background to

examine the quality of various predictors (see, e.g.,[46,47,48,

49,50,51,52,53,54,55,56,57]). In view of this, here the jackknife

cross-validation was also used to examine the prediction quality of

the current predictor.

The results thus obtained with iDNA-Prot on the benchmark

dataset S
Bench

of Information S1 is given in Table 2, from which

we can see that the overall success rate was 83.96% in identifying

proteins as DNA-binding proteins and non-DNA-binding pro-

teins.

Furthermore, as a demonstration to show that the current

predictor iDNA-Prot is superior to the existing ones, let us

compare iDNA-Prot with DNA-Prot [22]. The reason we chose

DNA-Prot for comparison is because among the existing methods

for predicting DNA-binding proteins, the reported success rate

achieved by DNA-Prot [22] is the highest. The datasets used to

train and test DNA-Prot [22] as well as its standalone version can

be obtained from http://www3.ntu.edu.sg/home/EPNSugan/

index_files/dnaprot.htm.

The training dataset Stran used for DNA-Prot [22] contains

146 DNA-binding proteins and 250 non-DNA-binding proteins.

The data used to test DNA-Prot [22] contain the following

three sets: (i) testing dataset-1, S1
test, consisting of 92 DNA-binding

proteins and 100 non DNA-binding proteins; (ii) testing dataset-2,

S2
test, consisting of 823 DNA-binding proteins and 823 non DNA-

binding proteins; and (iii) testing dataset-3, S3
test, consisting of 88

DNA-binding proteins and 233 non DNA-binding proteins. All

these datasets were elaborated in [22].

However, it was found (see Information S2) that there are 10

identical protein sequences between the 146 DNA-binding

proteins in the training dataset Stran and the 92 DNA-binding

proteins in the 1st testing dataset S1
test, that 19 identical protein

sequences between the 146 DNA-binding proteins in the training

dataset Stran and the 88 DNA-binding proteins in the 3rd testing

dataset S3
test, and that 94 identical protein sequences between the

Table 2. Results obtained by iDNA-Prot on the benchmark dataset of Information S1 through the jackknife testa.

Protein type Number of proteins Number of correct prediction Success rate

DNA-binding protein 212 179 84.43%

Non DNA-binding protein 212 177 83.49%

Overall 424 356 83.96%

aThe following parameters were used for Random Forest algorithm: the number of tree grown was 560 and the number of predictors sampled for splitting at each node
was 5.

doi:10.1371/journal.pone.0024756.t002
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250 non-DNA-binding proteins in the training dataset Stran and

the 233 non-DNA-binding proteins in the 3rd testing dataset S3
test.

In other words, the so-called independent datasets used by DNA-

Prot [22] were actually not independent and hence would lead to

over-estimated success rates.

Accordingly, to perform an objective and fair comparison of

iDNA-Prot with DNA-Prot [22], let us construct a real

independent dataset by randomly picking some DNA-binding

proteins and non DNA-binding proteins from PDB (Protein Data

Bank) according to the following criteria. These proteins must not

occur in the training dataset of iDNA-Prot nor in the training

dataset for DNA-Prot [22], and that none of the proteins included

has more than 40% sequence identity to any other in a same

subset. By doing so, we obtained a real independent dataset SInd,

in which 122 proteins are DNA-binding proteins and 122 non

DNA-binding proteins. The sequences and accession numbers for

such 244 independent proteins are given in the Information S4.

Listed in Table 3 are the tested results obtained respectively by

DNA-Prot [22] and iDNA-Prot on the 244 independent proteins

Table 3. A comparison of the predicted results by DNA-Prot
[22] and iDNA-Prot on the independent dataset in the
Information S3.

Protein type DNA-Prot [22] iDNA-Prot

DNA-binding protein 87/122 = 71.31% 109/122 = 89.34%

Non DNA-binding protein 101/122 = 82.79% 111/122 = 90.98%

Overall 188/244 = 77.05% 220/244 = 90.16%

doi:10.1371/journal.pone.0024756.t003

Table 4. The predicted results by iDNA-Prot on the 100 DNA-binding hypothetical proteins from http://www.ncbi.nlm.nih.gov/
protein/?term = DNA+binding+hypothetical.

GI code Predicted result GI code Predicted result GI code Predicted result

21960164 DBP 29122980 non DBP 26832636 DBP

21957418 DBP 21671920 DBP 26832400 DBP

21961058 DBP 32880245 DBP 21835917 DBP

21960858 DBP 90578605 DBP 21835539 DBP

21960204 DBP 90410315 DBP 21843120 DBP

21958545 DBP 89076244 non DBP 21836833 DBP

21958841 non DBP 23326729 non DBP 14627522 DBP

14828174 DBP 90439438 DBP 78363301 DBP

52629876 DBP 90328556 DBP 30116886 DBP

21958534 DBP 89048073 non DBP 20673954 DBP

21958313 DBP 30724697 DBP 88595361 DBP

21957779 non DBP 30726408 DBP 15769834 DBP

21958822 DBP 30726252 DBP 68057023 DBP

21957238 DBP 30725976 DBP 59480370 non DBP

1552778 DBP 30725598 DBP 52004347 DBP

21960397 DBP 30725306 DBP 11114707 DBP

21960196 DBP 30725067 DBP 22984739 DBP

21960777 DBP 30724845 DBP 22984549 DBP

21960121 DBP 16882676 DBP 14564202 DBP

21960008 DBP 30687056 DBP 14563738 non DBP

21959358 non DBP 30686776 DBP 14563550 DBP

21959322 DBP 30686615 DBP 90406920 DBP

21959035 DBP 30686107 DBP 14563368 DBP

21958991 DBP 30685947 DBP 29434364 DBP

21957969 DBP 30685727 DBP 23327083 non DBP

21957386 DBP 30685502 DBP 93211002 DBP

21956952 DBP 30685211 DBP 14498544 DBP

21877200 DBP 30977777 DBP 14526726 DBP

26832542 DBP 18859138 DBP 14527329 DBP

26832403 DBP 52002457 DBP 22981160 DBP

33989345 DBP 17093877 DBP 46913396 DBP

33989345 DBP 30891446 DBP 71382240 DBP

33875610 DBP 26832638 DBP

52004491 DBP 26832637 DBP

doi:10.1371/journal.pone.0024756.t004
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in SInd(Information S4). From the table we can see that the success

rates by iDNA-Prot in identifying both DNA-binding and non-

DNA-binding proteins are remarkably higher than those by DNA-
Prot [22], and that the overall success rate achieved by iDNA-
Prot is about 13% higher than that by DNA-Prot [22].

In addition to yielding higher success rates than those by the

relevant existing predictors, the computational time needed by iDNA-
Prot to complete a prediction is also significantly shorter than any of

its counterparts, and hence iDNA-Prot may become a useful high

throughput tool for large-scale investigation of DNA-binding proteins.

Moreover, as a demonstration to show the efficiency of the

current method, the hypothetical proteins that are annotated as

DNA-binding proteins were used to test iDNA-Prot. The

information about this kind of hypothetical proteins can be

obtained at http://www.ncbi.nlm.nih.gov/protein/?term = D-

NA+binding+hypothetical, from which we randomly picked 100

DNA-binding hypothetical proteins for test. The results predicted

by iDNA-Prot on these proteins are given in Table 4, from

which we can see the overall success rate is 90%.

Supporting Information

Information S1 The benchmark dataset S
Bench includes

424 proteins, classified into 212 DNA-binding proteins
and 212 non DNA-binding proteins. Both the accession

identifier of PDB (Protein Data Bank) and sequences are given. None

of the proteins has more than 25% sequence identity to any other in a

same subset. See the text of the paper for further explanation.

(PDF)

Information S2 List of protein codes that occur in both
the training and testing datasets for DNA-Prot (Kumar
et al., 2009). See the main paper for further explanation.

(PDF)

Information S3 A step-by-step guide on how to use the
web-server of iDNA-Prot to get the desired results.

(PDF)

Information S4 The independent dataset S
Ind includes

244 proteins, classified into 122 DNA-binding proteins
and 122 non DNA-binding proteins. Both the accession

identifier of PDB (Protein Data Bank) and sequences are given.

None of the proteins has more than 40% sequence identity to any

other in a same subset. See the text of the paper for further

explanation.

(PDF)
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