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Spinal cord injury (SCI), resulting in para- and tetraplegia caused by the partial

or complete disruption of descending motor and ascending sensory neurons,

represents a complex neurological condition that remains incurable. Following SCI,

numerous obstacles comprising of the loss of neural tissue (neurons, astrocytes, and

oligodendrocytes), formation of a cavity, inflammation, loss of neuronal circuitry and

function must be overcome. Given the multifaceted primary and secondary injury events

that occur with SCI treatment options are likely to require combinatorial therapies. While

several methods have been explored, only the intersection of two, cell transplantation and

biomaterial implantation, will be addressed in detail here. Owing to the constant advance

of cell culture technologies, cell-based transplantation has come to the forefront of SCI

treatment in order to replace/protect damaged tissue and provide physical as well as

trophic support for axonal regrowth. Biomaterial scaffolds provide cells with a protected

environment from the surrounding lesion, in addition to bridging extensive damage

and providing physical and directional support for axonal regrowth. Moreover, in this

combinatorial approach cell transplantation improves scaffold integration and therefore

regenerative growth potential. Here, we review the advances in combinatorial therapies

of Schwann cells (SCs), astrocytes, olfactory ensheathing cells (OECs), mesenchymal

stem cells, as well as neural stem and progenitor cells (NSPCs) with various biomaterial

scaffolds.

Keywords: cell transplantation, biomaterial scaffolds, spinal cord injury, axonal regeneration, combinatorial

therapy

INTRODUCTION

Traumatic spinal cord injury (SCI) results in the disruption of neuronal circuitry leading to the
partial or complete loss of motor control, autonomic function and sensory input. Paraplegic
or tetraplegic patients must also contend with chronic consequences ranging from spasticity,
neuropathic pain, bladder and bowel dysfunction, pressure ulcers, respiratory and cardiovascular
complications which significantly decreases quality of life.World-wide SCI has an annual incidence
ranging from 20 to 30 patients per million people (Lee et al., 2014; Singh et al., 2014; Jain et al.,
2015; Jazayeri et al., 2015). However, to date there is no effective SCI therapy that can entirely
restore neurological deficits. Such therapies must address various complex obstacles that develop
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after SCI, in particular, cyst formation, neural cell death,
a growth-inhibitory microenvironment, scar formation,
demyelination, and the disruption of the blood supply (Silva
et al., 2014). Although, any treatment option that allows a patient
to partially regain lost neuronal circuitry, whether it be motor,
sensory or autonomic, will prove to be invaluably beneficial.

In previous decades, a myriad of experimental studies have
been conducted to develop potential treatment options for SCI
patients. Many studies showed a certain degree of morphological
changes partially accompanied by behavioral improvements in
various animal models (Fouad et al., 2005; Blesch and Tuszynski,
2009; Franz et al., 2012; McCall et al., 2012; Zhao et al., 2013;
Danilov and Steward, 2015; Gomes-Osman et al., 2016; Kadoya
et al., 2016). Amongst these studies, cell-based transplantation
has been considered as a promising therapeutic strategy due
to: (1) direct replacement of the damaged neural tissue, (2)
neuroprotective properties for spared neuronal connections,
and (3) providing a permissive and supportive cellular growth
substrate for axonal regrowth and/or plasticity (Ohta et al., 2004;
Feron et al., 2005; Granger et al., 2014; Kanno et al., 2015).
Obstacles for cell-based transplantation therapy remain to be the
low survival rates of the grafted cells after transplantation into
the injured spinal cord, retention of grafted cell at the lesion
site without migration, filling the lesion cavity that has formed
as well as directional guidance of axonal growth (Pearse and
Barakat, 2006; Pearse et al., 2007; Parr et al., 2008; Takahashi
et al., 2011). Although a huge effort has been made to modify
delivery mechanisms and surgical techniques, success has been
modest and relatively inconsistent. In addition to the beneficial
effects stated above, some drawbacks of cell transplantation
must also be stated and further explored, including tumorgenic
formation (Matsuda et al., 2009; Fu et al., 2012; Liu et al.,
2013), maladaptive plasticity such as pain hypersensibility
(Hofstetter et al., 2005; Macias et al., 2006; Davies et al.,
2008), non-beneficial differentiation or dedifferentiation (Hill
et al., 2004; Lepore et al., 2004), increased immunoreactivity to
transplanted cells (Swanger et al., 2005), complications arising
from surgical delivery (Takahashi et al., 2011) and deficits due
to immunosuppression (Antonic et al., 2013). Nonetheless, some
candidate cell types have already been investigated in clinical
trials in SCI patients such as autologous (cells from the same
individual) Schwann cells (SCs) (Anderson et al., 2017), olfactory
ensheathing cells (OECs) (Mackay-Sim et al., 2008; Tabakow
et al., 2013), bone-marrow mesenchymal stem cells (BMSCs)
(Park et al., 2005; Kumar et al., 2009; Karamouzian et al.,
2012; Mendonca et al., 2014; Oraee-Yazdani et al., 2016) and
different neural stem and progenitor cells (NSPCs) (Shin et al.,
2015).

Biomaterials have been combined with various cell types to
address the issues of cell viability, cell retention at the lesion site,
supportive physical matrix, filling of the lesion cavity as well as
mediating directed growth (Atala, 2000;Madigan et al., 2009; Cao
et al., 2011; Luo et al., 2016; Ogle et al., 2016). Numerous studies
have proven diverse biomaterials to be appropriate delivery
vehicles for cells as well as bioactive molecules and drugs in
different injury and disease models in the central nervous system
(CNS) (Krishna et al., 2013; Führmann et al., 2017).

FUNCTION OF CELL-SEEDED
BIOMATERIALS IN EXPERIMENTAL SCI
MODELS

Biomaterial scaffolds can fulfill multiple functions for SCI
transplantation approaches: (1) specific three-dimensional
microarchitectures can be designed with small “chambers” or
aligned channels/fibers suited for cell seeding and axonal growth
in a directed linear pattern facilitating substantial axonal growth
across the lesion for establishment of synaptic connections (Gros
et al., 2010; Gunther et al., 2015a; Onuma-Ukegawa et al., 2015);
(2) serves as a physical matrix for cell adhesion and thereby
enhancing survival and retention of grafted cells at the lesion
site (Hurtado et al., 2006; Olson et al., 2009; Bozkurt et al., 2010;
Park et al., 2012) and affect host cell migration (e.g., SCs and
astrocytes) (Suzuki et al., 2015); (3) influence the behavior of
grafted cells and differentiation (Mekhail et al., 2015); and (4)
control the release of encapsulated bio-active molecules (Mothe
et al., 2013).

Biomaterials can be fabricated from natural or synthetic
polymers and subdivided into three major forms: solid scaffolds,
hydrogels and micro-/nanoparticles (Boisserand et al., 2016).
Various types of biomaterials have been explored in tissue
engineering for SCI repair (Table 1). Crosslinking of hydrogels
typically increases the overall long-term stability of biomaterials,
however this also increases the stiffness and the balance
between stiffness and stability is a delicate one for cell
adhesion, migration and neuroregenerative work (Khaing et al.,
2011; Seyedhassantehrani et al., 2016). Additionally, surface
modification with extracellular matrix (ECM) components,
e.g., laminin and fibronectin, or synthetic peptides represents
another way to improve cell adhesion and survival by
generating a less hostile molecular microenvironment within
the biomaterial (Miller et al., 2001; Chen et al., 2009).
Injectable in situ polymerizing hydrogels help to deliver cells
and factors directly into a lesion site with less invasive surgical
interventions, forming a homogenous three-dimensional matrix
mimicking natural ECM microstructure to modulate cell fate
(Bidarra et al., 2014; Führmann et al., 2016). Importantly,
biomaterials can effectively fill a cystic cavity and bridge the
lesion dramatically reducing the number of cells required
for transplantation. This is particularly appealing for clinical
use since the availability of autologous cells from patients is
limited.

The potential of biomaterial application alone in SCI
treatment has been explored in numerous pre-clinical studies
and now even clinical trials (Carballo-Molina and Velasco, 2015;
Siebert et al., 2015; Theodore et al., 2016; Xiao et al., 2016).
Fibroglial scarring around the graft is a prominent phenomenom
after biomaterial scaffold implantation. Typically, only sparse
axons re-enter the caudal host spinal cord, while most are
confined within the scar surrounding the implants (Suzuki et al.,
2002; Grulova et al., 2015; Gunther et al., 2015b; Pawar et al.,
2015a; Figure 1). To overcome this barrier without interference
with its beneficial roles, targeting inhibitory molecules is one
possible solution. For instance, delivery of Chondroitin sulfate
proteoglycan (CSPG) cleaving enzyme chondroitinase ABC
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TABLE 1 | Biomaterials of different origins used for animal SCI experimentation.

Origin Biomaterials

Natural Agarose

Alginate

Chitosan

Collagen

Fibrin

Fibronectin

Gellan gum

Hyaluronan

Hyaluronic acid

Synthetic Calcium sulfate cement

Oligo[poly(ethylene glycol) fumarate] (OPF)

Poly(ethylene glycol) (PEG)

Poly-b-hydroxybutyrate (PHB)

Poly(2-hydroxyethylmethacrylate) (PHEMA)

Poly(D, L-lactic acid) (PLA)

Poly(lactide-co-glycolide) (PLG)

Poly(lactic-co-glycolic acid) (PLGA)

(ChABC) rostral and caudal to the graft was able to facilitate
axonal growth through and beyond the scar (Fouad et al., 2005).
Alternatively, cell injections into the host parenchyma around
the biomaterial implantation site provide a continous permissive
cellular substrate spanning the lesion cavity and biomaterial
bridge (tissue bridging) (Ramon-Cueto et al., 1998; Fouad et al.,
2005; Deumens et al., 2006a; Liu et al., 2017).

In this review, we assess combinatorial strategies of
biomaterial-supported cell transplantation to reconstruct
lost host tissue physically, cellularly and chemically after SCI.
This includes the integration of biomaterials into the host
tissue, bridging the host-graft interface, limiting the effect of
the surrounding scar formation which may prevent axonal
growth into and through the injury site as well as increasing cell
survival to provide the axons with physical, directional guidance
and trophic support to regenerate toward disconnected targets
(Geller and Fawcett, 2002; Tetzlaff et al., 2011; Kim et al., 2014;
Assuncao-Silva et al., 2015; Wu et al., 2015; Lin et al., 2016).
Candidate cell populations that enhance biomaterial integration
into host tissue such as SCs, astrocytes, OECs, mesenchymal
stem cells as well as NSPCs (Tetzlaff et al., 2011; Wu et al., 2015;
Badner et al., 2017) will be discussed here.

The delivery method of biomaterials and cells into a SCI
has been undertaken by several different techniques which we
will group into categories here for reference throughout the
review (Figure 2). Category I, transplantation matrix, is when
cells and biomaterials are mixed together in vitro and allowed
to form a matrix prior to implantation. This technique has been
widely used as a delivery system to confine the transplanted
cells to the injury site and will not be covered extensively in
this review. Category II, pre-seeded scaffold, is when a pre-
fabricated biomaterial is seeded with cells prior to implantation.
This technique is primarily used for solid scaffolds with a
pre-determined shape. Category III, injection and in situ gelling,
is when self-assembling biomaterials are injected along with

cells into the injury site to assemble a seeded scaffold in vivo.
This technique has become popular to fill irregular lesion
cavities that form after SCI. Category IV, facilitated biomaterial
implantation, is when a biomaterial is implanted and cells are
injected surrounding the biomaterial. This technique has been
used to increase the integration of the scaffold into the host tissue,
to increase axonal bridging.

CELLULAR CANDIDATES

Schwann Cells
In the peripheral nervous system, SCs are vital for regenerative
growth following an axonal injury by providing trophic and
physical support as well as remyelination (Rath et al., 1995; Triolo
et al., 2006). SCs secrete ECM components (Tabesh et al., 2009)
and neurotrophic factors such as brain-derived neurotrophic
factor (BDNF), neurotrophin-3 (NT-3), nerve growth factor
(NGF) (Dey et al., 2013; Godinho et al., 2013) and glial cell-
derived neurotrophic factor (GDNF) (Iannotti et al., 2004).
Therefore, transplantation of SCs after SCI has been widely
studied and numerous results demonstrate that SCs can support
survival and maintenance of spared neural tissue, bridge lesion
cavities, promote re-growth of both motor and sensory axons
into the lesion after engraftment and remyelinate CNS axons
(Xu et al., 1997; Weidner et al., 1999; Marcol et al., 2015).
Unfortunately, SCs form a distinct divide between themselves
and CNS tissue both in vitro and in vivo (Ghirnikar and Eng,
1994; Lakatos et al., 2000). A reformation of the glial limitans
and increased production of growth inhibitory CSPG (Plant et al.,
2001) likely restrict the regenerative effect of SCs on descending
motor neuronal tracts (Vroemen et al., 2007; Kanno et al., 2014).

Xu and colleagues conducted a series of studies demonstrating
that naïve SCs or SCs overexpressing neurotropic factors
embedded in a semi-permeable single channel composed of
polyacrylonitrile and polyvinylchloride copolymers (PAN/PVC)
(Category II) in T8 hemisection and transection rat SCI models
enhanced the growth of propriospinal and some supraspinal
axons into the lesion (Xu et al., 1995a,b, 1997, 1999). However,
most often axons did not exit the lesion site on the caudal side
likely due to the formation of the glial limitans restricting the
SC migration and further beneficial effects. In addition, in a rat
C4 2–3mm hemisection model, biodegradable tubular poly-β-
hydroxybutyrate (PHB) scaffolds filled with SCs (Category II)
were able to support the survival of the SCs by promoting
attachment as well as facilitating raphespinal and sensory axonal
growth within the conduit; similar to previous observations, no
rubrospinal or corticospinal tract (CST) re-growth was observed
(Novikova et al., 2008).

To address the lack of re-innervation of the uninjured host
parenchyma caudal to the biomaterial bridge by regenerating
axons one aspect is to limit the formation of the glial limitans
and reactive astrogliosis. One method that at least extended
growth of descending axons (serotonergic) back out of a 2mm
alginate-based anisotropic capillary hydrogel in a C4 unilateral
hemisection was the injection of SCs caudal to the SC-seeded
hydrogel with the additional caudal viral expression of BDNF
(Liu et al., 2017) (Category II and IV). Further work needs to be
done to elucidate if this moved the glial limitans further down the

Frontiers in Cellular Neuroscience | www.frontiersin.org 3 January 2018 | Volume 11 | Article 430

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Liu et al. Biomaterial-Supported Cell Transplantation in SCI

FIGURE 1 | Targets of combined biomaterial-supported cell transplantation following SCI. SCI induced neural damage leads to severed connections, tissue loss and

the appearance of a cystic cavity. Combined biomaterials and cell transplantation can be used to fill the lesion cavity to provide physical support and bridge the

distance that regrowing axons must traverse. Cell transplantation as well as newly introduced neurotrophic factors may provide trophic support (secreted growth

factors) supporting axonal growth. An immune reaction, consisting of activated microglia, macrophages, fibroblasts and astrocytes, is elicited following injury to close

off and prevent the spread of damage as well as re-establish the blood-spinal-barrier, possibly obstructing axonal regrowth. Additionally, neural injury leads to the

release of growth inhibitory components [myelin debris, inflammatory cytokines, and chondroitin sulfate proteoglycans (CSPG)] that can be down regulated by either

cell transplantation or the release of biomolecules into the lesion site.

cord to the host spinal injection site of SCs or if growth past the
grafted SCs is possible. It was found in a 4mm rat T8 complete
transection that the unique combination of SC in fluid Matrigel
in a PAN/PVC single channel scaffold, with OEC grafting in
host parenchyma surrounding the lesion (Category II, III, and
IV) and the delivery of ChABC led to functional improvement
(BBB motor recovery score; up to 6 at 9 weeks vs. 2 with no
treatment) (Fouad et al., 2005). Although this did not correlate
to increased serotonergic fiber number caudal to the injury site
but to SC myelinated fibers in the lesion site. Another approach
to limit reactive astrogliosis (reduction of GFAP upregulation
and CSPG expression) as well as further the intermingling of
SCs and astrocytes within the graft and host tissue was the
genetic modification of SCs to overexpress GDNF in a single
PAN/PVC channel in a 3mm T9-T10 hemisection rat model
which led to enhanced SC remyelination of regenerating axons
that were also aligned with protruding astrocytic extensions
(Category II) (Deng et al., 2011). Additionally, SC grafting
without neurotrophic factor delivery in a full T8 transection with
fluid Matrigel (Category III) vs. pre-gelled Matrigel (Category
I) in a PAN/PVC single channel (combined with Category
II) showed greater growth of virally traced brainstem-derived

(vestibular, noradrenergic, serotonergic, and reticular nuclei)
axons into and up to the caudal interface where they are believed
to have formed synaptic junctions with the help of newly formed
supportive astrocytic protrusions (Williams et al., 2015). This
significantly correlated to increased motor recovery as scored by
BBB. It was proposed that fluid Matrigel led to better bridging
of the host-graft interface and limited meningeal cell infiltration
restricting the re-establishment of the glial limitans.

SC transplantation alone has been found to be beneficial,
however the combination of SCs with biomaterials and other
components provided substantial enhanced axonal regrowth and
thereby functional improvement by eliciting better host-graft
integration (Table 2). This includes the migration of SCs into the
host parenchyma as well as astrocytic protrusions into the graft,
the reduction of the glial limitans and reactive astrogliosis.

Astrocytes/Glial-Restricted
Progenitors/Glial-Restricted
Progenitor-Derived Astrocytes
Making up the majority of the glia cells in the CNS, astrocytes
fulfill essential homeostatic and supportive functions such as
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FIGURE 2 | Delivery methods for biomaterials combined with cell transplantation.

providing an organized physical matrix as well as producing
neurotrophic factors for axonal remodeling and plasticity (Powell
and Geller, 1999; Kimelberg and Nedergaard, 2010; Lukovic
et al., 2015). In response to SCI, a dense network of reactive
astrocytes physically restricts the lesion site by preventing the
spread of neuroinflammation and necrosis immediately after
injury (Faulkner et al., 2004; Sofroniew and Vinters, 2010;
Anderson et al., 2016), although its persistence in the chronic
phase may pose a physical and chemical barrier for re-growing
axons (Smith-Thomas et al., 1994; Afshari et al., 2009; Sofroniew,
2009; Hellal et al., 2011; Cregg et al., 2014). Nonetheless, reactive
astrogliosis is an essential part of the regenerative process as
complete genetic ablation of reactive astrogliosis resulted in
insufficient axonal regrowth (Faulkner et al., 2004; Anderson
et al., 2016; Hara et al., 2017). Furthermore, networks of
intermingled astrocytic protrusions serve as physical guidance
structures for growing axons around spinal lesion sites (Silver
et al., 1982; Fouad et al., 2005; Williams et al., 2015). Given these
beneficial effects, astrocytes have been explored for restoration of
spinal tissue integrity to mediate functional recovery (Chu et al.,
2014). In line with the role of astrocytes in axonal guidance (Silver
et al., 1982) and synapse formation (Baldwin and Eroglu, 2017;
Liddelow and Barres, 2017) during development, it has been
shown that immature (embryonic or neonatal) astrocytes provide
greater regenerative bridging potential than mature astrocytes
in the injured brain in both mice and rats (Smith and Silver,

1988; Smith and Miller, 1991; Filous et al., 2010). In a rat C3
fasciculus gracilis aspiration model, either oriented fetal E14 rat
spinal cord tissue or astrocytes derived from E14 rat spinal cord
were grafted (Bernstein and Goldberg, 1991). Over a 90 day
period, the E14 derived astrocytes showed a significant increase
in errors when crossing a horizontal ladder in comparison to the
controls (aspiration-only), while the E14 rat spinal cord tissue
graft showed a significant decrease in errors when crossing the
ladder. This was found to be due to the astrocytic migration
to the nucleus gracilis, where they protected neurons from
denervation, increasing neuronal survival and networks only
from astrocytes migrating out of the E14 spinal tissue but not
from the E14 derived spinal cord astrocytes. Moreover, GFP
labeled adult rat cortical astrocytes injected caudally (T11) 1 week
after a T7-T8 full transection showed survival, integration and
long distance migration to the lesion site and beyond 6 weeks
post-transplantation (Pencalet et al., 2006).

Astrocytes are extremely heterogeneous and an adaptive cell
population that vary morphologically and functionally, with
phenotypes shifting with maturity, location, environmental cues
and disease/injury-context (Zhang and Barres, 2010; Khakh and
Sofroniew, 2015). For this reason, pre-cursors of the astrocytic
and oligodendrocytic lineages (glial-restricted pre-cursors;
GRPs) have been differentiated into homogenous subpopulations
of astrocytes, GRP-derived astrocytes (GDA) differentiated with
bone morphogenic protein 4 (BMP4, GDABMP4) or with ciliary
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TABLE 2 | Schwann Cell-seeded biomaterial SCI studies.

SCI model Biomaterial Cell type Outcome References

Rat T8 transection 5mm PAN/PVC and Matrigel

(Category II)

Adult rat SC + BDNF and

NT-3 infusion

Increased axonal growth up to biomaterial with

NTFs

Xu et al., 1995a

Rat T8 transection 10mm PAN/PVC and Matrigel

(Category II)

Adult rat SC Increased myelination of propriospinal and

sensory axons within the scaffold but not

exiting

Xu et al., 1995b

Rat T8 transection 8mm PAN/PVC and Matrigel

(Category II)

Adult rat SC Increased myelination of propriospinal and

sensory axons within the scaffold but not

exiting

Xu et al., 1997

Rat T8

hemisection

5mm PAN/PVC and Matrigel

(Category II)

Adult rat SC Increased myelination of propriospinal and

sensory axons within the scaffold with some

exiting

Xu et al., 1999

Rat C4

hemisection

2–3mm PHB (Category II) Adult rat SC Some raphespinal and sensory axonal growth

within the scaffold

Novikova et al., 2008

Rat C4 unilateral

hemisection

2mm alginate-based anisotropic

capillary hydrogel (Category II

and IV)

Adult rat GFP-SC Serotonergic growth through and caudal to the

biomaterial up to the 1mm SC injection site

Liu et al., 2017

Rat T8 transection 4mm PAN/PVC and fluid or

pre-gelled Matrigel (Category I, II,

III and IV)

Adult rat SC and OEC

surrounding the lesion +

ChABC

Increased SC myelination within the scaffold

with increased BBB scores

Fouad et al., 2005

Rat T9-T10

hemisection

3mm PAN/PVC (Categroy II) Adult rat SC expressing

GDNF

Enhanced SC remyelination of regenerating

axons aligned with protruding astrocytic

extensions

Deng et al., 2011

Rat T8 transection 4mm PAN/PVC and fluid or

pre-gelled Matrigel (Category I, II,

and III)

Adult rat SC Greater growth of virally traced

brainstem-derived axons into and up to the

caudal interface, formed synaptic junctions

with the help of newly formed supportive

astrocytic protrusions

Williams et al., 2015

neurotrophic factor (CNTF, GDACNTF). Firstly it should be
noted, that after a T10 contusion in rats, transplantation of
E13.5-derived GRPs alone retain their differentiation potential
along the glial lineage, decrease reactive astrogliosis and CSPG
expression levels as well as decrease axonal dieback of CST fibers
from the lesion site and exhibit axonal growth cones (Hill et al.,
2004). Injection of rat or human-derived GRPs or GDACNTF or
GDABMP4 into a rat C4/C5 dorsal column SCI model equally
supported regeneration of ascending sensory tracts into the
lesion site but not out (Haas et al., 2012; Haas and Fischer, 2013).
Similarly, in a T10 moderate contusion in athymic rats human
GRP and GDABMP4 produced astrocytes at the lesion site that
migrated out of the lesion and led to decreased cystic cavitation
and reactive astrogliosis as well as increased sprouting. However,
this did not lead to any significant changes in thermal and
mechanical sensitivity or motor recovery (GridWalk) compared
to controls (Jin et al., 2011). Several studies have been undertaken
with GDABMP4 showing increased growth of ascending sensory
neurons of the dorsal columns into and through the lesion
site, increased preservation of rubrospinal tracts and decreased
misstep rates on the GridWalk (Davies et al., 2006; Fan et al.,
2013; Wu et al., 2013), whereas GDACNTF has not shown any
functional benefit or axonal regeneration but has led to allodynia
as well as thermal and mechanical hyperalgesia (Davies et al.,
2008, 2011).

Given that previous work with astrocytic grafting shows
a lack of regenerative potential, astrocytes, themselves may

be better suited as living scaffolds, linearly guiding axons in
and out of biomaterials. Comparison of cultured astrocytes on
either anisotropic poly(L-lactic acid) (PLLA) fibers or isotropic
PLLA films revealed linear orientation of astrocytes to the
anisotropic substrate, which provided a guidance matrix for
the cultured astrocytes and dorsal root ganglia (DRG) neurons
(Zuidema et al., 2015). When tethered self-aligning collagen
gels aligned both the biomaterial with astrocytes this lead to
significant increased growth of adult rat DRG in the aligned
portions compared to the unaligned portions (East et al., 2010).
Furthermore, alginate-based anisotropic capillary hydrogels lead
to linear migration of astrocytes along capillary channels that
are supportive of axonal outgrowth from neonatal rat entorhinal
cortex and spinal cord slice cultures (Pawar et al., 2015b).
Early studies already demonstrated that the implantation of fetal
(E16 or E18) spinal cord astrocyte-seeded Millipore pennants
(Category II) into a L5 dorsal root fiber crush model promoted
substantial axonal growth into spinal gray matter tracts (Kliot
et al., 1990). Additionally, implantation of neonatal rat cortical
astrocytes situated in a Gelfoam matrix (Category II) or
transplantation of astrocytes alone into a rat L3 dorsal lateral
hemisection reduced host astrogliosis, scar formation and slightly
increased density of neurofilament (NF) positive fibers when
compared to controls (transplantation of Hanks buffered saline
or implantation of empty Gelfoam) (Wang et al., 1995). While
it is unclear which method has a greater beneficial effect, it was
noted that the Gelfoam delayed the migration of the astrocytes
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from the lesion site and that cell-seeded Gelfoam appeared to
be better integrated into the lesion site than Gelfoam alone.
Fast blue labeled neonatal (P3) neocortical astrocytes embedded
for retention in a collagen gel (modified Category I/II) were
implanted into a 2mm spanning T8 dorsal hemisection leading
to increased neurofilament positive regenerating fibers within the
implant, aligned along processes of the labeled astrocytes (Joosten
et al., 2004). However, a minimal growth of biotinylated dextran
amine (BDA) labeled CST fibers into the rostral edge of the
gel scaffold was observed, although did not exit the lesion site.
Limited improvements were observed in fine motor movements
with the BBB subscore and Catwalk, analyzing hindlimb stride
length and swing duration parameters, but not in the overall
locomotor BBB score or Gridwalk analysis, when compared to
collagen gel implantation alone. These changes may be due to the
other fiber tracts not labeled in this study such as serotonergic
fibers. To increase continuous tissue integrity across a large lesion
site, Hoechst labeled P1 neonatal rat astrocytes were aligned on
PLA/PLA-b-PEO matrices and implanted into a 2mm T11/T12
dorsal hemisection with injection of astrocytes 1mm both rostral
and caudal of the lesion site (Category II and IV) (Deumens
et al., 2006b). An increased BDA-labeled CST was observed up
to the lesion site with astrocytes than controls (empty lesion site
with media injected into the host parenchyma), however growth
into the biomaterial was not observed likely due to the lack of
astrocyte survival within the matrix. Naturally, no functional
benefits were observed by the BBB locomotor score or stride
length performed by Catwalk gait analysis.

Grafting of astrocytes, GRPs and GDAs into SCI lesions
has shown their ability to reduce reactive astrogliosis, support
neuronal survival and a minimal amount of axonal growth into
but rarely beyond the lesion site. However, the regenerative
potential of astrocytic grafting alone appears to be limited
possibly due to their extensive migration away from the
lesion. The combination of astrocytes with biomaterials delays
their migration from the lesion site and enhances the host
integration of the biomaterial by supplying directed growth of
the axons along aligned astrocytes into the biomaterial. What
remains to be examined is the use of GRPs or GDABMP4,
both of which had greater axonal support potential alone than
neonatal astrocytes, in combination with biomaterials to not
only enhance biomaterial integration through tissue continuity
across the lesion but also possibly increase axonal growth. For
combinatorial work with astrocytes (Table 3) likely other factors
such as neurotrophic factors will need to be utilized to increase
axonal regrowth beyond the lesion site.

Olfactory Ensheathing Cells
Acquired from the olfactory bulb andmucosa, OECs represent an
intermediary glial cell type between SCs and astrocytes (Granger
et al., 2014). OECs express both the astrocytic marker GFAP
(glial fibrillary acidic protein) and the SC marker p75-NTR (p75-
neurotrophic factor receptor), however microarray profiling puts
OECs in closer genetic proximity to SCs (Vincent et al., 2005).
Similar to SCs, OECs have been shown to remyelinate injured
axons (Li et al., 1997) and produce neurotrophic factors (Sasaki
et al., 2006), although unlike SCs, OECs intermingle with host

astrocytes to form supportive physical pathways presenting a
growth inducing cellular and molecular substrate (Lakatos et al.,
2000; Li et al., 2005). A review of OEC transplantation studies
following SCI listed 41 studies showing beneficial effects, ranging
from axonal regrowth, tissue sparring, angiogenesis, migration
and remyelination, yet 13 studies showed no effects (Franssen
et al., 2007). Several studies directly compared the transplantation
of OECs or SCs and consistently observed benefits from SCs in
axonal regeneration rather thanOECs (Takami et al., 2002; Pearse
et al., 2007). Furthermore, various OEC extraction protocols have
led to varying purity which likely contributes to the observed high
variability of effects of OECs in SCI studies (Ramon-Cueto and
Nieto-Sampedro, 1992; Vincent et al., 2003; Rizek and Kawaja,
2006; Novikova et al., 2011).

In an attempt to further bridge nerve injuries, biomaterials
have been combined with OECs to support axonal growth.
OECs show a higher compatibility in terms of attachment
and proliferation as well as nerve outgrowth on different
biomaterials such as PLGA (Li et al., 2010), collagen (Wang et al.,
2006), alginate and Matrigel scaffolds (Novikova et al., 2006)
when combined with components of the ECM in a peripheral
nerve injury model or in vitro. In rats a 2mm long T11/T12
dorsal hemisection was filled with aligned OEC/ONF (olfactory
nerve fibroblasts) -poly(D,L)-lactide biomatrix bridges (Category
II) accompanied by Hoescht-labeled OEC/ONF injections
surrounding the lesion site (1mm rostral and caudal, Category
IV), which led to migration of these cells up to the biomatrix but
not within nor did the cells seeded within the biomatrix survive
well, possibly due to the degradation of the biomatrix (Deumens
et al., 2006a). All the same, this cell-seeded biomaterial
implantation led to increased axonal growth into the lesion
site than biomaterial alone, excluding CST growth, coupled
with minimally increased gait parameters of stride length and
swing speed (CatWalk) but no increased locomotor recovery
(BBB). While the cause of this improvement was not specifically
examined it was hypothesized to be due to other descending
or ascending axonal tracts than the CST or the formation of
new intraspinal relays. The use of OEC-seeded collagen-based
multi-channel 3D matrices (Category II) in a 2mm spanning
T13 unilateral hemisection in rats showed no improvement on
motor function (CatWalk) or alleviation of allodynia (von Frey
hair filament test), furthermore axonal regrowth or scaffold
integration was not examined (Deumens et al., 2013). Most
recently, it was found that OEC-seeded PLGA scaffolds (Category
II) in a 2mm T9/T10 complete transection rat SCI model
increased motor recovery (BBB score of 9 vs. 6 of controls and
more successful crossings of an inclined plane) which correlated
with increased axonal preservation and decreased astrogliosis
reflecting neuroprotection as the underlying mechanism (Wang
et al., 2017). As previously mentioned, the combination of OEC
injection surrounding a PAN/PVC SC-seeded Matrigel implant
in a full thoracic transection led to long distance growth both
of ascending and descending axonal tracts into and through the
lesion site (Ramon-Cueto et al., 1998; Fouad et al., 2005).

These studies (Table 4) show that OEC when injected
surrounding the biomaterial help with growth of axons up to
the lesion site, however they do not appear to migrate out from
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TABLE 3 | Astrocyte-seeded biomaterial SCI studies.

SCI model Biomaterial Cell type Outcome References

Rat L5 dorsal root

fiber crush model

Millipore pennants (Category II) Rat fetal (E16 or E18) spinal

cord astrocytes

Promoted substantial axonal growth into spinal

gray matter tracts

Kliot et al., 1990

Rat L3 dorsal

lateral hemisection

Gelfoam matrix (Category II) Neonatal rat cortical

astrocytes

Reduced host astrogliosis, scar formation, and

slightly increased density NF

Wang et al., 1995

Rat T8 dorsal

hemisection

2mm Collagen gel (modified

Category I/II)

Neonatal rat (P3) neocortical

astrocytes

Increased NF within biomaterial aligned along

astrocytes, minimal CST growth into rostral end

without exiting biomaterial, improvements in

BBB sub-score and Catwalk stride length and

swing duration

Joosten et al., 2004

Rat T11/T12

dorsal hemisection

2mm PLA/PLA-b-PEO matrices

(Category II and IV)

P1 neonatal rat astrocytes,

1mm rostrocaudal

injections

Increased CST growth up to the lesion site,

poor astrocyte survival within matrix

Deumens et al., 2006b

or into the biomaterial to increase tissue continuity, decrease
cavitation surrounding the biomaterial or survive well when
seeded in a biomaterial (this may have been due to biomaterial
integrity, which should be re-examined), therefore currently
at this time, OECs alone may not be the best candidate for
combination with biomaterials.

Bone Marrow Mesenchymal Stem Cells
BMSCs are a widely used cell type for transplantation studies
that can be easily isolated from a bone marrow aspiration
and extensively expanded in culture, which makes autologous
transplantation possible (Mendonca et al., 2014). BMSCs not only
differentiate into a variety of mesodermal lines but also have
been described to differentiate into microglia, oligodendrocytes
and macrophages when transplanted into the spinal cord (Corti
et al., 2002; Cizkova et al., 2006). However, the phenomenon
of transdifferentation into neural cells has been challenged (Lu
et al., 2004) and is likely not relevant for beneficial effects
observed after SCI transplantation. More importantly for use
in SCI, BMSCs can fill the lesion cavity and produce ECM
components, thereby providing structural support for growing
axons (Kim et al., 2013; Volpato et al., 2013). Furthermore,
BMSCs display anti-inflammatory properties by producing
immunoregulatory cytokines (interleukins and transforming
growth factor-β) (Bartholomew et al., 2002; Noh et al., 2016)
and interactions with host immune cells (Deans and Moseley,
2000; Zhang et al., 2016). In this context, transplantation of
BMSCs diminished reactive astrogliosis and microglial activation
(Abrams et al., 2009; Ruff et al., 2012). In addition to cytokines,
BMSCs secrete permissive growth factors (Chen et al., 2002; Ohta
et al., 2004; Kim et al., 2013; Ritfeld et al., 2015), although at
relatively low levels. To enhance the role of BMSC paracrine
secretion on axonal regeneration, genetically modified BMSCs
have been used in various studies to deliver neurotrophic factors
(Gong et al., 2015; Ritfeld et al., 2015; Zhu et al., 2015; Brock
et al., 2016) in experimental SCI models. Although MSCs have
been shown in a meta-analysis of relevant pre-clinical studies to
increase the BBB score of thoracic SCI rats on average by 3.9
points the relevance of this increase has to be treated with caution
due to the lack of a baseline from which locomotor activity is
assessed (Oliveri et al., 2014).

While biomaterials fill the lesion site, they still require tissue
continuity to allow for axonal growth into them. To this
end, BMSC-seeded in porous but undirected 2-hydroxyethyl
methacrylate (HEMA) or 2-hydroxypropyl methacrylamide
(HPMA) scaffolds (Category II) implanted in a unilateral
hemisection increased neurofilament positive axonal growth
into the hydrogels (Sykova et al., 2006). Additionally, growth
permissive BDNF expressing BMSCs were seeded into multi-
component fiber bundled agarose scaffolds (Category II) after
a 2mm long T3 complete transection which led to increased
growth of both descending (raphespinal and reticulospinal tracts)
as well as ascending sensory fibers into the lesion site, far
greater than GFP expressing BMSC-seeded biomaterials (Gao
et al., 2013). To confirm this observation, BMSCs expressing
BDNF seeded in a 2mm alginate-based anisotropic capillary
hydrogel (Category II) in a rat C5 unilateral hemisection
enhanced directed axonal regrowth in comparison to hydrogels
seeded with BMSCs alone (Gunther et al., 2015a,b). Both
studies observed a significant increase of BDNF-driven axonal
growth into and through the biomaterial but not exiting
it nor did either study examine behavioral outcomes. By
co-culture with NT3 overexpressing SCs in a 3D gelatin
sponge scaffold, genetically modified BMSCs overexpressing
Neurotrophic Receptor Tyrosine Kinase 3 (TrkC) differentiated
into cells exhibiting neuronal features (neurofilament and post-
synaptic density 95) (Category II), which were implanted into
a rat 2 mm-wide T9-T10 transection SCI (Zeng et al., 2015).
This treatment led to enhanced axonal growth throughout
the biomaterial, synaptic association of these cells with
mostly serotonergic neurons and some CST axons (electron
microscopy), the upregulation of c-Fos in the grafted as well
as host lumbar spinal cord cells in response to motor cortex
stimulation and the improvement of locomotor function (BBB
score of 8 for the cell-seeded biomaterial vs. 3 for biomaterial
alone). The biomaterial alone vs. control SCI alone was not
significantly different in axonal growth or functional parameters
examined.

Overall, an added value of the combinatorial therapy
with BMSCs and biomaterials is observable (Table 5) over
biomaterials alone by increased ingrowth into scaffolds (Gao
et al., 2013; Zeng et al., 2015), however it appears to not be
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TABLE 4 | OEC-seeded biomaterial SCI studies.

SCI model Biomaterial Cell type Outcome References

Rat T11/T12

dorsal hemisection

2mm poly(D,L)-lactide biomatrix

(Category II and IV)

OEC/ONF within and 1mm

rostrocaudal injections

Migration of cells up to but not within biomatrix,

poor cell survival within biomatrix, increased

axonal growth excluding CST, increased stride

length and swing speed

Deumens et al., 2006a

Rat T13 unilateral

hemisection

2mm collagen-based multi-channel

3D matrices (Category II)

OEC No improvement in CatWalk gait analysis or

alleviation of allodynia

Deumens et al., 2013

Rat T9/T10

complete

transection

2mm PLGA scaffolds (Category II) OEC Increased BBB score and crossing of inclined

plane, increased axonal preservation,

decreased astrogliosis

Wang et al., 2017

sufficient enough growth for functionally relevant improvements
alone without being coupled with other therapies such as
neurotrophin overexpression or co-culture with other cell types.

Neural Stem and Progenitor Cells
NSPCs can be generated from embryonic, fetal or adult CNS
tissues and bear the unique feature of extensive self-renewal
in vivo as well as differentiation into any desired neural cell
type (Iwanami et al., 2005). NSPCs represent a promising and
powerful tool to replace damaged tissue and bridge the lesion
cavity by providing a cellular matrix, tissue replacement through
targeted differentiation, neuroprotection and trophic support,
(Assinck et al., 2017; Vismara et al., 2017). More recently, fetal
spinal cell grafting after SCI is performed with growth factor
trophic support and a fibrin matrix (Category I) to enhance
cell survival and retention of the cells at the lesion site (Lu
et al., 2012; Kadoya et al., 2016; Robinson and Lu, 2017).
This encouraged the most extensive neuronal growth from
NSPCs observed in a SCI (T3 full transection, CST and right
quadrant lesions or C4 CST lesion) with resulting functional
improvement in either hindlimb function (BBB score 6.5 vs.
1.5 BBB score for the lesion-only controls at 6 weeks post-
grafting) or forelimb function (the staircase task with increased
level reached and pellets eaten in the graft vs. lesion alone)
or increased electrophysiology between grafted cells and CSTs
through the creation of functional neuronal relays. Generally
in the absence of growth factors and matrices, neural restricted
progenitors (NRPs) and GRPs survive acute SCI grafting better
than do multipotent neuroepithelial (NEP) stem cells, however
delayed grafting of the fetal or embryonic NSPCs does allow
for better survival and filling of the lesion site (Theele et al.,
1996; Lepore et al., 2004; Iwanami et al., 2005; Lu et al., 2012,
2014a). It was found in mouse C4-CST lesions that grafted
GRPs with NRPs or NPCs alone had surviving neurons and
glia that filled the lesion site and supported CST regenerative
growth, however grafted GRPs alone failed to do so (Kadoya
et al., 2016). Moreover, it was found that adult NSPCs are
incapable of filling the lesion cyst after transplantation into the
injured spinal cord (Vroemen et al., 2003; Sandner et al., 2013).
Another study has found that transplantation of NSPCs that
differentiate primarily into astrocytes in response to SCI leads to
the development of thermal and mechanical allodynia (Macias
et al., 2006). Astrocytes do support axonal growth, however

the type of growth they support may be determined by their
dysregulation by the surrounding injury environment hence the
development of astrocytic-dependent pain (Falnikar et al., 2015).
Protection from direct contact with the lesion environment may
provide NSPC-derived astrocytes with a different outcome (Cao
et al., 2002).

Following SCI, the overall aim of seeding NSPCs into
biomaterial scaffolds is to increase CNS regeneration by (1)
improving the survival and potential differentiation of grafted
NPSCs into mature cells to preserve tissue integrity by serving
as a supportive matrix and (2) decreasing the host response
to the biomaterial implantation by reducing inflammation and
fibroglial scarring (Reeves and Keirstead, 2012; Bellenchi et al.,
2013; Matsui et al., 2014). NSPCs derived from the subventricular
zone (SVZ) of adult rats were incorporated into a PDGF-
A-conjugated hyaluronan and methyl cellulose-based hydrogel
blend (HAMC) (modified Category III/IV) and grafted 9 days
post-clip T2 compression injury 1mm rostral and 1mm caudal
to the injury site (Mothe et al., 2013). Even though cell survival
was increased 1 week post-grafting, hardly any cells survived
after 8 weeks when transplanted alone or in combination with
the hydrogel. Nevertheless, sparing of host oligodendrocytes and
neurons was enhanced, positively affecting functional outcomes
for fine motor (horizontal ladder) changes but not gross motor
skills (BBB). Murine NSCs (clone C17.2) were either seeded
on a 4mm oriented porous PLGA scaffold (Category II) or
transplanted alone in comparison to naïve PLGA scaffolds or
no treatment controls in a rat T9/T10 lateral hemisection model
(Teng et al., 2002). To avoid additional neuroprotective effects
no immunosuppression was used (Guo et al., 2001). Implanted
scaffolds increased cell survival over transplanted cells alone.
The greatest tissue preservation (white matter sparing) was
served by the cell-seeded scaffolds followed by the scaffold alone,
cells alone and finally the no treatment group. In addition to
increased NF positive axonal growth within the lesion site, the
scaffolds with or without cells had increased sensorimotor cortex
traced BDA fibers both rostral and caudal to the lesion site
co-labeled with growth-associated protein 43 kDa (GAP-43, an
axonal regenerating marker) rostral to the lesion site, which
was not observed in the cell transplantation or no treatment
control groups. Both tissue preservation and regenerating fibers
are thought to contribute to the increased motor recovery seen
in the cell-seeded scaffold group (BBB score 11 vs. BBB score
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TABLE 5 | BMSC-seeded biomaterial SCI studies.

SCI model Biomaterial Cell type Outcome References

Rat unilateral

hemisection

2-hydroxyethyl methacrylate

(HEMA) or 2-hydroxypropyl

methacrylamide (HPMA)

scaffolds (Category II)

BMSC Increased neurofilament positive axonal growth Sykova et al., 2006

Rat T3 transection 2mm multi-component fiber

bundled agarose scaffolds

(Category II)

BMSC-BDNF and

BMSC-GFP

Increased growth of raphespinal, reticulospinal

tracts and sensory fibers into but not exiting

scaffold

Gao et al., 2013

Rat C5 unilateral

hemisection

2mm alginate-based anisotropic

capillary hydrogel (Category II)

BMSC-BDNF and

BMSC-GFP

Enhanced directed axonal regrowth into but

not exiting hydrogels

Gunther et al., 2015a,b

Rat T9-T10

transection

2mm 3D gelatin sponge scaffold

(Category II)

co-culture SC-NT-3 and

BMSC-TrkC

Enhanced axonal growth throughout the

biomaterial, synaptic association of these cells

with serotonergic neurons and some CST

axons, upregulation of c-Fos in the grafted as

well as host lumbar spinal cord cells and

improvement of BBB score

Zeng et al., 2015

8 for scaffold alone, and BBB score ∼6 for cells alone or
no treatment controls at 70 days). Implanted in a rat 2mm
full T8/T9 transection, PLGA scaffolds (with 7 longitudinal
channels, each with a diameter of 660µm) were seeded with
rat E14.5 NSCs (telencephalon/diencephalon) or adult rat SCs
suspended in Matrigel (Category II) or no cells (Olson et al.,
2009). Even though seeded PGLA scaffolds increased axonal
fibers throughout the scaffold after 4 weeks it did not lead to
increased motor recovery in such a severe lesion (BBB score
∼1). An oriented PLGA scaffold filled with a macroporous
4-arm poly(ethylene glycol) (PEG) hydrogel and coated with
Poly(L-lysine) (PLL) was seededwith endothelial cells andNSPCs
(from the SVZ zone of P1 GFP rats) in a rat T9-T10 lateral
hemisection (Category II) (Rauch et al., 2009). This yielded a
several fold increase in functional blood vessels over groups
with either cell type seeded alone, biomaterial alone or lesion
alone, recreating the blood spinal barrier. At 8 weeks post-injury,
this also led to differentiation of the seeded NSPCs as well
as increased NF staining at the host/graft interface and lesion
epicenter coupled with GAP-43 staining of regenerating axons
not colocalizing with GFP transplanted cells but with host axons.
In another study, 10mm long laminin-coated chitosan channels
were seeded with either adult brain or spinal NSPCs (Category
II) in a T8 transection rat model which led to long-term survival
(14 weeks), differentiation (astrocytes and oligodendrocytes),
decreased cyst formation and increased tissue bridge formation
compared to empty scaffold or no scaffold (Nomura et al., 2008).
Not surprisingly given the lesion size, no change in functional
improvement occurred nor did any BDA labeled CST axons enter
the channel. Implantation of adult neurosphere NSPC-seeded
un-coated chitosan channels (Category II) 3 weeks post-T8 clip
compression SCI in rats revealed a 5-fold increase in cell survival
compared to NSPC grafting alone, however no tissue bridging or
functional change was observed at 9 weeks (BBB scores ranging
between 9 and 11) (Bozkurt et al., 2010). Non-proliferating
NSPCs differentiated∼50% into oligodendrocytes, with very few
differentiating into astrocytes or neurons, and ∼50% remaining
undifferentiated in the NSPC-seeded chitosan channels. NSPC

grafting alone had greater number of oligodendrocytes and fewer
undifferentiated cells, however overall cell survival was less than
those seeded in channels.

To further improve these beneficial effects, either
neurotrophic factors were overexpressed or bioactive molecules
were conjugated into scaffold backbones. In an oriented
macroporous PLGA scaffold seeded with rat P1-P3 hippocampal
NSCs infected with NT-3 or TrkC (co-culture), naïve NSCs or
unseeded PLGA were implanted into a 2mm T10 full transection
(Category II) (Du et al., 2011). Immunohistology and electron
microscopy (EM) confirm differentiation into mature neurons
(MAP2) forming synapases (PSD95) in the co-culture-seeded
biomaterial group. This treatment also specifically led to the
preservation of neurons in the sensorimotor cortex, red nucleus
(descending tracts) and Clarke’s nuclei (ascending tracts) as
well as a significant increase in NF positive staining rostral
and caudal to the scaffold and in the epicenter. Moreover, at 8
weeks post-injury this increased the motor recovery from 1.5
BBB score in the PLGA unseeded group to 3.5 in the NSC +

PLGA group and 8.5 in the co-culture NT-3/TrkC-NSC+ PLGA
group. A similar study published at the same time in a T10
full transection implanted 2mm Gelfoam scaffolds seeded with
co-cultured NT-3-SC and TrkC-NSC (Category II) compared
to Gelfoam alone, with NSC, with LacZ-SC + LacZ-NSC, with
NT-3-SC + NSCs (Wang et al., 2011). The combination of
NT-3-SC + TrkC-NSC seeded Gelfoam led to increased motor
improvements (BBB 7.6 vs. NSC Gelfoam 1.6 and SCI alone 0.5,
60 days after injury) along with increased cortical somatosensory
evoked potentials and cortical motor evoked potentials. This
treatment also led to increased neuronal differentiation (MAP2),
increased cell survival of internal pyramidal layer, red nuclei
(descending tracts) and Clarke’s nucleus (ascending tracts),
increased SC myelination (EM) and synapse formation (EM
and pre/post-synapse markers). While it needs to be further
examined, the study indicates synapse formation at the epicenter
of the lesion between transplanted NSCs and regenerating host
axons leading to the enhanced functional recovery. A human
immortalized NSC line (F3) was seeded with the addition of NT-3
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expression in poly(ε-caprolactone) (PCL) scaffolds (Category
II) in rat lateral T7-T8 hemisection which led to increased
differentiation in neurons and oligodendrocytes, white matter
sparing, regenerative markers (GAP-43 and synaptotagmin)
by ELISA and Western blot analysis caudal to the lesion, than
the F3-PCL group (Hwang et al., 2011). This correlated with
increased motor recovery (BBB score up to 15 for the F3-NT-3-
PCL, 13 for the F3-PCL, 11 for PCL and 10 for lesion alone as
well as significantly less errors on a GridWalk at 4 and 7 weeks,
errors decreasing with each additional treatment). Moreover, the
addition of Chondroitinase ABC reduced CSPGs and increased
motor recovery of the F3-NT-3-PCL group, including motor
evoked potentials. Another study was conducted using rat
neonatal NPCs (telencephalons) embedded into a 4mm porous
collagen and collagen-cetuximab scaffolds conjugated with
a neutralizing antibody of epidermal growth factor receptor
(EGFR, to block downstream inhibitory Nogo receptor signaling)
(Koprivica et al., 2005), reducing the microglial inflammatory
response (Qu et al., 2012) and reactive astrogliosis (Li et al., 2011)
as well as increasing neuronal over astrocytic differentiation
(Ayuso-Sacido et al., 2010) in a rat T13-L2 lateral hemisection
(Category II) (Li et al., 2013). Here, neuronal differentiation
was increased, whereas astrocytic differentiation was decreased
and modest functional improvement was observed (BBB score 6
from 2 of empty collagen scaffold control and increased angle on
inclined plane between seeded scaffolds vs. empty scaffolds).

In move toward clinical application both canine and African
green monkey models of SCI (a 5mm T11 lateral hemisection
and a 10mm T9/T10 lateral hemisection, respectively) have been
developed to test the use of coated and uncoated PLGA scaffolds
seeded with human NSC lines expressing NT-3 or not (Kim et al.,
2010; Pritchard et al., 2010).While these studies found grafting to
be feasible more work needs to be done to understand the efficacy
of the treatments.

The combination of biomaterial scaffolds with NSPCs
(Table 6) clearly has an enhanced effect on cell survival and
to a lesser extent on differentiation as well as decreased cyst
formation and increased tissue preservation. Many studies
observed increased tissue bridging and regenerating axonal
growth, however this was not always coupled with increased
functional improvement. Importantly, with the addition of other
factors, such as growth factors and biomolecules within the
biomaterial, there was a greater increase in axonal growth into
the scaffold, along with mature neuronal synapse formation
with host neurons and supposed neuronal relays leading to
functional improvements. Here, the combination of biomaterials
with NSPCs (and other treatments) demonstrates a greater effect
than NSPC transplantation alone after a SCI. Interestingly, this
effect appears to be greater than the combination of biomaterials
with other cell types.

It should be noted that while not covered in this review that
both the embryonic stem (ES) cells and induced pluripotent
stem cells (iPSCs) are viable cellular candidates for biomaterial-
supported cell transplantation. Both ES cells and iPSCs are
capable of becoming any cell type and with this ability comes
the potential for undifferentiated proliferation and tumorigenesis
(Assuncao-Silva et al., 2015), which may be further enhanced by

combination with a biomaterial. While ethical concerns constrict
the use of ES cells and find benefit in the iPSCs which can bemade
autologously from a patient’s skin sample, there still remains the
concern of viral expression to induce pluripotency as well as the
time frame it takes from collection of the patient sample until the
iPSC or differentiated iPSC is produced. In addition, neuronal
differentiation of iPSCs is more complicated than ES cells (Hu
et al., 2010). In comparison to the work done with NSPCs and
biomaterials in animal models, work done combining ES cells or
iPSCs with biomaterials ismore limited at this time (Hatami et al.,
2009; Lu et al., 2014b; McCreedy et al., 2014).

CHALLENGES FACING CELL-SEEDED
BIOMATERIAL STRATEGIES

More single application treatments (SCs, OECs, BMSCs,
biomaterial scaffolds) are slowly making their way into clinical
trials (Mackay-Sim et al., 2008; Kumar et al., 2009; Karamouzian
et al., 2012; Tabakow et al., 2013; Amr et al., 2014; Mendonca
et al., 2014; Theodore et al., 2016; Xiao et al., 2016; Anderson
et al., 2017), however combinatory treatments are still primarily
pre-clinical. Currently the field of cell-seeded biomaterials is
in its infancy and targeting proof of concept experiments. If
an experimental combination moves from in vitro to in vivo
and shows substantial axonal regeneration linked to functional
recovery then we can start addressing questions of clinical
relevance. For example, many of the studies presented here were
drastic hemisection or full transection injury models vs. the
human relevant contusion/compression models (Devivo et al.,
2002). In addition, many are thoracic lesions vs. the more
common cervical lesions observed in SCI patients (Singh et al.,
2014). In this thread, most studies work on acute or subacute
SCI, as chronic SCI is time consuming and challenging for a
treatment that has not already shown some promise in the acute
phase. However, patients recruited for such clinical trials would
likely be stable chronic patients who are no longer spontaneously
recovering following the reduction of inflammation or other
secondary damage, thus the obstacles faced in their lesion
microenvironment would be different from that of the acute or
subacute phase and must be taken into consideration.

In regards to cell transplantation in humans, autologous
cells would be ideal, otherwise allogenic samples from other
individuals may require long-term immunosuppression which
will create other obstacles that need to be overcome. For
some autologous cell types, longer periods of culturing are
required to improve purity, quantity or differentiation which
make immediate transplantation impossible in sub-acute SCI
where much of the current preclinical work has been conducted
(Mertens et al., 2016; Vismara et al., 2017).

Great progress has been made in both the fields of tissue
engineering (cell purification procedures, autologous cell culture,
culture methods increasing viability and genetic modifications)
as well as biomaterial sciences (stability, combatibility, purity,
self-assembling scaffolds, consistent capillary scaffolds, and
biomolecule delivery), creating solutions (linear directed growth,
increased viability, increased tissue stablity, decreased immune
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TABLE 6 | NSPC-seeded biomaterial SCI studies.

SCI model Biomaterial Cell type Outcome References

Rat T3 transection Fibrin matrix (Category I) Rat E14 fetal spinal cells

with cocktail of growth

factors

Neuronal differentiation and growth of NSPCs,

extensive axonal growth (serotonergic) into the

matrix creating neuronal relays, increased BBB

score and electrophysiology

Lu et al., 2012

Rat bilateral CST

and right quadrant

lesions

Fibrin matrix (Category I) Rat E14 fetal spinal cells

with cocktail of growth

factors

Neuronal differentiation and growth of NSPCs,

extensive CST growth into the matrix creating

neuronal relays, the staircase task with

increased level reached and pellets eaten

Kadoya et al., 2016

Rat T2 clip

compression

PDGF-A-conjugated HAMC

(modified Category III/IV)

Adult rat SVZ-derived

NSPCs

Enhanced sparing of host oligodendrocytes

and neurons, increased fine motor (horizontal

ladder) changes but not gross motor skills

(BBB)

Mothe et al., 2013

Rat T9/T10 lateral

hemisection

4mm oriented porous PLGA

scaffold (Category II)

Murine NSCs (clone C17.2) Increased cell survival, tissue preservation,

increased NF axonal growth within lesion site,

increased sensorimotor cortex traced BDA

fibers rostral and caudal to graft coupled with

GAP-43, increased BBB

Teng et al., 2002

Rat T8/T9

transection

2mm PLGA scaffolds (with 7

longitudinal channels, each with

a diameter of 660µm) and

Matrigel (Category II)

Rat E14.5 NSCs

(telencephalon/diencephalon)

or adult rat SCs

Increased axonal fibers throughout scaffold but

no change in BBB score

Olson et al., 2009

Rat T9-T10 lateral

hemisection

Oriented PLGA scaffold with

macroporous 4-arm PEG

hydrogel coated with PLL

(Category II)

Endothelial cells and NSPCs

(from the SVZ zone of P1

GFP rats)

Increase in functional blood vessels,

differentiation of NSPCs, increased NF staining

at host/graft interface and epicenter and

regenerating axons

Rauch et al., 2009

Rat T8 transection 10mm laminin-coated chitosan

channels (Category II)

Adult rat brain or spinal

NSPCs

14 week survival, differentiation (astrocytes and

oligodendrocytes), decreased cyst formation

and increased tissue bridge formation, no CST

growth into scaffold nor functional

improvement.

Nomura et al., 2008

Rat T8 clip

compression

Un-coated chitosan channels

(Category II)

Adult rat neurosphere NSPC 5-fold increase in cell survival but no tissue

bridging or functional change at 9 weeks

Bozkurt et al., 2010

Rat T10

transection

2mm oriented macroporous

PLGA scaffold (Category II)

Rat P1-P3 hippocampal

NSC-NT-3/NSC-TrkC

(co-culture), naïve NSCs

Differentiation into mature neurons with

synapse formation, preservation of neurons in

the sensorimotor cortex, red nucleus and

Clarke’s nuclei, increased NF rostrocaudal and

epicenter staining, increased BBB score

Du et al., 2011

Rat T10

transection

2mm Gelfoam scaffolds

(Category II)

Co-cultured NT-3-SC and

TrkC-NSC, naïve NSCs

Increased BBB score, increased cortical

somatosensory evoked potentials and cortical

motor evoked potentials, increased neuronal

differentiation, increased cell survival of internal

pyramidal layer, red nuclei and Clarke’s

nucleus, increased SC myelination and

synapse formation

Wang et al., 2011

Rat lateral T7-T8

hemisection

NT-3 expression PCL scaffolds

(Category II)

Human immortalized NSC

line (F3) + ChABCase

Differentiation into neurons and

oligodendrocytes, white matter sparing,

regenerative markers (GAP-43 and

synaptotagmin), increased BBB score and

MEP, decreased errors on the GridWalk

Hwang et al., 2011

Rat T13-L2 lateral

hemisection

4mm porous collagen scaffold

conjugated with neutralizing

antibody of EGFR (Category II)

Neonatal NPCs Increased neuronal differentiation, increased in

BBB score and angle on inclined plane

Li et al., 2013

reactions) that were non-existent previously, allowing for new
multifaceted approaches. Given these advances it may be of
importance to revisit many combinations that were presented
here but not performed under ideal conditions. For example, cell
survival on some scaffolds was poor, likely due to the degradation
of the scaffold during the study. Such work can now be repeated

with more stable scaffolds and with additional coating of the
scaffold with extracellular matrix proteins to increase survival
and attachement (Hou et al., 2005; Tian et al., 2005). In addition,
experiments comparing the combination of a single biomaterial
with various cell types in a given SCImodel would be beneficial in
contrasting the effectiveness of each combinatorial therapy. For
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example, PGLA scaffolds seeded with NSPCs or SCs (Category
II) were compared to empty scaffolds in a 2mm full transection
T8-T9model, clearly showing that cell-seeded scaffolds increased
axonal regeneration over empty control scaffolds and while
not significant SC-seeded scaffolds trended to greater axonal
regrowth than NSPC-seeded scaffolds (Olson et al., 2009). The
current use of transgenic lines provides easy visual tracking
of grafted cells allowing for a better understanding of cell
survival, cell migration, differentiation, tissue bridging, synaptic
connections and neuronal relays forming. For future studies it is
of great importance that relevant functional assays be performed
in combination with histological work along with proper controls
showing the observed improvement can be directly linked to
the observed host-graft integration or axonal regeneration, for
example through a re-transection or ablation study.

PERSPECTIVES OF CELL-SEEDED
BIOMATERIAL STRATEGIES

The combination of cell transplantation and biomaterial scaffold
implantation provides a promising tissue engineering strategy
for SCI treatment that addresses the replacement of lost neural
tissue and the support of axonal regeneration to achieve
functional recovery. The poor survival rate of cells transplanted
into the harsh post-SCI environment challenges their ability
to fill and bridge the spinal lesion cavity or even provide
physical and/or trophic support for axonal regrowth. In this
context, biomaterial scaffolds provide a physical matrix for cell
attachment, proliferation and differentiation that is protected
from the harsh lesion microenvironment (Novikova et al., 2006;
Führmann et al., 2017). In addition in such combinatorial
approaches, the grafted cells aid scaffold integration into the
host spinal environment by forming tissue bridges enticing
axonal growth into and through the scaffold, recreating the
lost neural tissue. While it is difficult to compare different SCI

lesion models and severities, species, cell types and biomaterial
scaffolds used, many studies indicate that cell-seeded biomaterial
scaffolds lead to greater axonal regrowth and sometimes better
functional outcomes than biomaterial scaffolds alone (Wang
et al., 1995, 2011, 2017; Teng et al., 2002; Joosten et al., 2004;
Deumens et al., 2006a; Nomura et al., 2008; Olson et al., 2009;
Rauch et al., 2009; Du et al., 2011; Hwang et al., 2011; Gao
et al., 2013; Li et al., 2013; Zeng et al., 2015). Additionaly,
from a few studies presented here there is a strong indication
that biomaterial-supported cell transplantation is greater than
cell transplantation alone (Teng et al., 2002; Rauch et al.,
2009; Bozkurt et al., 2010), unfortunately this is not a direct
comparison that is often performed. Biomaterial-supported cell
transplantation reduces tissue loss, inflammation and reactive
astrogliosis, increases tissue integrity and bridging of the lesion
site which has led to increased axonal growth across the lesion as
well as increased functional improvements. Combining various
cell types and growth factors to increase tissue bridging and
integration of the biomaterial along with increased support
of axonal regeneration not only into the biomaterial but also
re-entry and long distance growth into the host parenchyma
would likely substanstially promote functional improvements.
Taken together thus far the work in biomaterial-supported
cell transplantation strongly encourages a path forward toward
combinatorial treatment of SCI.
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