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Abstract

For Alzheimer’s disease–a leading cause of dementia and global morbidity–improved identi-

fication of presymptomatic high-risk individuals and identification of new circulating biomark-

ers are key public health needs. Here, we tested the hypothesis that a polygenic predictor of

risk for Alzheimer’s disease would identify a subset of the population with increased risk of

clinically diagnosed dementia, subclinical neurocognitive dysfunction, and a differing circu-

lating proteomic profile. Using summary association statistics from a recent genome-wide

association study, we first developed a polygenic predictor of Alzheimer’s disease com-

prised of 7.1 million common DNA variants. We noted a 7.3-fold (95% CI 4.8 to 11.0; p <
0.001) gradient in risk across deciles of the score among 288,289 middle-aged participants

of the UK Biobank study. In cross-sectional analyses stratified by age, minimal differences
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in risk of Alzheimer’s disease and performance on a digit recall test were present according

to polygenic score decile at age 50 years, but significant gradients emerged by age 65. Simi-

larly, among 30,541 participants of the Mass General Brigham Biobank, we again noted no

significant differences in Alzheimer’s disease diagnosis at younger ages across deciles of

the score, but for those over 65 years we noted an odds ratio of 2.0 (95% CI 1.3 to 3.2; p =

0.002) in the top versus bottom decile of the polygenic score. To understand the proteomic

signature of inherited risk, we performed aptamer-based profiling in 636 blood donors

(mean age 43 years) with very high or low polygenic scores. In addition to the well-known

apolipoprotein E biomarker, this analysis identified 27 additional proteins, several of which

have known roles related to disease pathogenesis. Differences in protein concentrations

were consistent even among the youngest subset of blood donors (mean age 33 years). Of

these 28 proteins, 7 of the 8 proteins with concentrations available were similarly associated

with the polygenic score in participants of the Multi-Ethnic Study of Atherosclerosis. These

data highlight the potential for a DNA-based score to identify high-risk individuals during the

prolonged presymptomatic phase of Alzheimer’s disease and to enable biomarker discovery

based on profiling of young individuals in the extremes of the score distribution.

Author summary

Alzheimer’s disease is a leading cause of dementia and global morbidity. Despite decades

of research, disease modifying therapies remain elusive. One possible explanation for

failed clinical trials is intervention too late in the disease process when therapies are

unlikely to be effective. Here, we developed a genetic predictor for Alzheimer’s disease

allowing us to identify asymptomatic individuals at increased risk of developing Alzhei-

mer’s disease. We next measured the levels of 3,231 proteins in the blood of middle-aged,

healthy individuals and found proteins whose levels were changed in individuals with a

high genetic risk of developing Alzheimer’s disease. Several of these proteins have not pre-

viously been studied in Alzheimer’s. Our study suggests a method to identify high genetic

risk individuals during the presymptomatic phase of disease, enabling us to discover new

protein-based biomarkers in the early stages of disease progression.

Introduction

Alzheimer’s disease is a neurodegenerative disorder characterized by slowly progressive

impairment in memory and executive function, with a lifetime risk of up to 10% [1]. Although

clinical diagnosis typically occurs late in life, the pathologic hallmarks–including neuritic pla-

ques and neurofibrillary tangles–begin to accumulate during a prolonged presymptomatic

phase [2,3]. Risk stratification using advanced neuroimaging [4–7] or biomarker assessment

from cerebrospinal fluid is possible [8–12], but is resource-intensive or invasive, and is

unlikely to be useful when applied to asymptomatic individuals early in life [13]. Although

some treatments can improve symptoms, no disease-modifying therapies are currently avail-

able [14,15].

For a range of conditions, patient stratification based on inherited DNA variation has

proven useful in providing insights into disease biology or enabling targeted therapy [16]. The

traditional approach has relied on rare, ‘monogenic’ variants of large effect that disrupt a
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specific physiologic pathway. For Alzheimer’s disease, causative variants in three key genes–

amyloid precursor protein (APP) [17–19], presenilin 1 (PSEN1) [20], and presenilin 2 (PSEN2)

[21]–were uncovered in studies of families enriched for early-onset cases. These observations

have provided key insight into the role of amyloid precursor protein secretion and cleavage

abnormalities that accelerate disease but are present in fewer than 5% of afflicted individuals

[22].

A second approach to DNA-based risk stratification involves polygenic scoring, which inte-

grates information from many variants that confer individually modest increases in risk via

many different pathways. Advances in polygenic score development have demonstrated poten-

tial clinical utility for several important and preventable diseases, identifying–in some cases–

individuals with risk equivalent to rare monogenic mutations [23–25].

Here, we set out to derive and validate a new polygenic score for Alzheimer’s disease to test

two key hypotheses: (i) a polygenic score can stratify the population into differing trajectories

of clinical and subclinical cognitive decline with age; (ii) proteomic profiling of asymptomatic

individuals with high or low polygenic score may nominate new circulating biomarkers of dis-

ease (Fig 1).

Results

To create a polygenic score, we used summary association statistics from a previously pub-

lished genome-wide association (GWAS) study involving 21,982 AD cases and 41,944 unaf-

fected controls and analyzing 7,055,881 common DNA variants [26]. Importantly, individuals

in the UK Biobank study were not included in this previous GWAS. Summary statistics from

more recent studies were not used because–although they were larger–they included partici-

pants of the UK Biobank needed for our validation and testing strategy [32,33]. The summary

statistics were used as input into the LDPred computational algorithm, which reweights each

variant according to its effect size, strength of statistical significance, correlation with nearby

variants, and a global tuning parameter that denotes the number of variants with non-zero

effect size [29]. Because the optimal value of this global tuning parameter is difficult to know a
priori, a range of six values was tested as previously recommended in order to create six candi-

date scores [29].

To select the global tuning parameter, we assessed our candidate scores in an independent

validation set of 119,248 randomly-selected participants of European ancestry from the UK

Biobank of whom 279 (0.2%) had been diagnosed with Alzheimer’s disease. Each of the 6 can-

didate scores was associated with disease in logistic regression models that included age, sex,

and principal components of ancestry as covariates. Odds ratios per standard deviation higher

polygenic score in these models ranged from 1.1 to 1.9 and area under the receiver operator

curve (AUROC) ranged from 0.72 to 0.78 (S1 Table).We selected the score with the maximal

AUROC (0.78) to carry forward into our testing set of 288,940 additional UK Biobank partici-

pants, all of whom were distinct from our validation set. Among these participants, mean age

at enrollment was 57 years, 54% were female, and 651 (0.2%) had been diagnosed with Alzhei-

mer’s disease. Results in the testing dataset were highly concordant with the validation dataset,

with odds ratio per standard deviation higher polygenic score of 1.9 (95% CI 1.7 to 2.0; p = 4.6

x 10−69) and AUROC of 0.77, accounting for 3.4% of the observed variance. We estimate that

64% of this variance explained was contributed by variants near the gene encoding apolipopro-

tein E (APOE)–which include the well-known ApoE ε4 risk haplotype [34–36]–and 36% by

variants in the remainder of the genome (see Methods). This model was well calibrated (cali-

bration slope: 1.04; Hosmer-Lemeshow p value: 0.19; S1 Fig). As expected, the frequency of
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the ApoE ε4 risk haplotype varied substantially across polygenic score deciles–from an allele

frequency of 0 for those in the lowest decile to 59% for those in the highest decile (S2 Fig).

The association between polygenic score for Alzheimer’s disease and disease was analyzed

in a testing set of 288,940 UK Biobank participants, of whom 651 had been diagnosed with

Alzheimer’s disease. Odds ratios were calculated by comparing those with high polygenic

score to the middle quintile of the population in a logistic regression model adjusted for age,

sex, genotyping array, and the first four principal components of ancestry.

Across the entire testing dataset, presence of Alzheimer’s disease ranged from 0.1% in the

bottom decile to 0.7% in the top decile, corresponding to an adjusted odds ratio of 7.3 (95% CI

4.8 to 11.0; p = 4.5 x 10−21; Fig 2A). As noted for other diseases, increased risk was most pro-

nounced for those in the extreme tail of the distribution [23–25]. As compared to those in the

middle quintile, odds ratios for those in top 20%, 10%, 5%, and 1% of the score distribution

were 3.1, 4.2, 5.1, and 6.2 respectively (Table 1).

Age dependent association of Alzheimer’s disease polygenic score with

Alzheimer’s disease

Given that rates of Alzheimer’s disease are known to increase substantially with age, we next

performed age-stratified analyses (Fig 2B). Among participants aged less than 50 years, almost

none had been diagnosed with disease and there was no detectable gradient according to poly-

genic score (0% in the bottom decile, 0.01% for those in deciles 2–9 and 0% in top decile,

p = 0.45). However, with increasing age, we noted progressively more pronounced gradients.

Among individuals aged 65 years and older, the gradient had increased significantly– 0.1%

Fig 1. Study Design and Workflow. Using previously published genome-wide association study summary association statistics [26] and a

linkage disequilibrium reference panel of 503 European-ancestry participants from the 1000 Genomes study [27], we derived six candidate

polygenic scores for Alzheimer’s disease using the LDPred computational algorithm [28]. The best performing polygenic score was selected

based on maximal area-under-the curve in a validation dataset derived from the UK Biobank [29] (n = 119,248 European-ancestry

participants) and subsequently calculated in an independent set of UK Biobank participants (n = 288,940). Associations with a clinical

diagnosis of Alzheimer’s and performance on a neurocognitive test were determined in both overall and in age-stratified analyses. In an

independent dataset derived from the INTERVAL study of healthy blood donors [30], we compared the levels of 3,231 circulating proteins

between 636 participants in the top or bottom decile of the polygenic score. We sought to replicate proteins significantly associated with the

polygenic score in the INTERVAL study in participants of the MESA study. IGAP: International Genomics of Alzheimer’s Project [26];

UKBB: United Kingdom Biobank [29]; MESA: Multi-Ethnic Study of Atherosclerosis [31].

https://doi.org/10.1371/journal.pgen.1010294.g001
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versus 1.1% for those in the bottom versus top decile, respectively (p = 4.5 x 10−21). We repli-

cated this age-dependent association of the polygenic score with Alzheimer’s disease among

30,541 participants of the Mass General Brigham Biobank, of whom 460 (1.5%) had a diagno-

sis of Alzheimer’s disease (S3 Fig). We again noted no significant differences at younger ages,

but for those over 65 years we noted a prevalence of 2.0% versus 4.0% in the bottom versus top

decile respectively, p = 0.002.

Alzheimer’s disease polygenic score is associated with cognitive function

Because a clinical diagnosis of overt Alzheimer’s disease occurs late in the disease process, we

explored the existence of similar variability in disease trajectory using a subclinical measure of

cognitive function. Among 30,853 participants with available genetic data who completed the

assessment, mean number of digits recalled was 6.5 (standard deviation 1.7). As noted for dis-

ease diagnoses, we noted no significant difference for those less than 45 years but progressively

larger differences among older participants (Fig 2C). For those aged 65 years or older, the

mean number of digits remembered was 6.4 versus 6.0 digits among those in the bottom versus

top decile respectively, p = 0.002). Results were nearly identical in a sensitivity analysis that

removed 65 participants who had been previously diagnosed with Alzheimer’s disease.

Table 1. Association of High Polygenic Score with Alzheimer’s Disease in the UK Biobank.

High Polygenic Score

Definition

Reference Group Odds Ratio for High Polygenic Score (95% CI) P Value

Top 1% of distribution Middle Quintile 6.2 (4.1–9.2) 5.9 x

10−19

Top 5% of distribution Middle Quintile 5.1 (3.6–7.2) 8.1 x

10−20

Top 10% of distribution Middle Quintile 4.2 (3.0–5.8) 2.0 x

10−17

Top 20% of distribution Middle Quintile 3.1 (2.3–4.3) 2.4 x

10−12

https://doi.org/10.1371/journal.pgen.1010294.t001

Fig 2. Association of a polygenic score for Alzheimer’s disease with clinical diagnosis and cognitive function. a. Relationship of polygenic score decile to

rates of Alzheimer’s disease diagnosis within the UK Biobank testing dataset. b. Age-stratified analysis of the relationship between polygenic score decile

groupings and Alzheimer’s disease diagnosis within the UK Biobank testing dataset. Age is assigned based on age at diagnosis of Alzheimer’s disease for those

affected or date of last follow-up for others. c. Age-stratified analysis of the relationship between polygenic score decile groupings and performance on a ‘digit

recall test,’ a measure of cognitive function. Age is binned into groups corresponding to<50,�50–54,�55–59,�60–64, and�65 years at time of assessment.

Error bars represent 95% confidence intervals.

https://doi.org/10.1371/journal.pgen.1010294.g002
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A high polygenic score is associated with circulating proteins in

asymptomatic individuals

Polygenic risk scores have important potential implications for biomarker discovery because

they identify at-risk individuals before they experience symptoms. To test the hypothesis that

circulating biomarkers would vary according to polygenic risk for Alzheimer’s disease among

putatively unaffected individuals, we studied 3,231 circulating proteins using the Somalogic

aptamer-based assay in the INTERVAL study of 3,175 blood donors in the UK [37,38]. We

compared levels of each of the proteins for those in the bottom versus top decile of the poly-

genic score (n = 318 in each group). Among these 636 participants, mean age was 43 years and

47% were female without significant differences in age or sex according to the polygenic score

(S2 Table).

Given a well-characterized role in amyloid plaque deposition [39–41], levels of apolipopro-

tein E served as a useful positive control. We noted significantly increased levels of apolipopro-

tein E in participants with a high polygenic score, mean values (expressed in terms of Z score

as described previously) of -0.05 versus 0.28 for those in bottom versus top decile respectively

(p = 2.3 x 10−9; Fig 3A and 3C) [37].

In addition to apolipoprotein E, there were 27 additional proteins whose levels varied

according to low versus high polygenic score for Alzheimer’s disease at a Bonferroni corrected

p-value 1.5 x 10−5 (0.05/ 3231; Fig 3A and 3C and S3 Table). For several proteins, the differ-

ences in levels were significantly more pronounced than for apolipoprotein E. The strongest

associated biomarker was tubulin specific chaperone A (Fig 3B), a protein with a role in pre-

venting neurotoxicity due to abnormal beta tubulin folding.42 Individuals with a high poly-

genic score had substantially lower circulating levels of this protein–mean score of 0.40 versus

-1.2 for those in bottom versus top decile. For other proteins, such as S100 calcium binding

protein A13 (a member of the S100 family known to interact with the advanced glycation end

product pathway [42,43]) and leucine-rich repeat neuronal protein (known to regulate early

neuronal progenitor cell signaling [44]), levels were substantially higher in those with higher

inherited risk. Additional description of each of the 28 polygenic score-associated proteins is

presented in S4 Table).

Among the 28 proteins associated with a high polygenic score, 20 proteins had at least one

cis-pQTL or trans-pQTL in the INTERVAL cohort, consisting of 14 unique pQTLs. Several of

the pQTLs were in known AD-risk genes including APOE, APOC4, APOC1, C7, CRP (S5

Table). Among the 14 pQTLs, 7 were significantly associated with the overall polygenic score.

As an additional sensitivity analysis, we restricted our proteomics analysis to younger par-

ticipants from the INTERVAL study, in whom any meaningful clinical manifestation of Alz-

heimer’s disease is even less likely to have occurred. Among 334 participants aged less than 45

years (mean 33 years)– 163 with a polygenic score in the bottom decile versus 171 in the top

decile–we note directionally consistent and nominally significant results (p<0.05 in a logistic

model that included age, sex and the first four principal components of ancestry) for 25 out 28

proteins identified in the overall cohort (S4 Fig).

To assess the generalizability of our results to a multiethnic population, we computed the

association between polygenic score and each of the 28 proteins in the multi-ethnic MESA

cohort [31]. Of the 28 proteins associated with a high polygenic score in INTERVAL, 8 were

measured in the MESA study: SNRPF, Moesin, MMP8, MMP3, APOE, APOB, CBPE, and

CRP. We compared levels of each of the proteins for those in the bottom versus top decile of

the polygenic score (n = 170 in each group). Among these 340 participants, mean age was 60

years and 53% were female. Seven proteins (all except MMP3), were also associated with a

high versus low polygenic score in MESA (S5 Fig).
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Discussion

In this study, we describe a systematic approach to identify a proteomic signature of an ele-

vated genetic susceptibility to disease quantified through a polygenic score. Focusing on Alz-

heimer’s disease as a common disease with significant public health burden for which few

circulating biomarkers exist, we first computed a polygenic score using previously published

summary association statistics. In an independent testing cohort from the UK Biobank, we

found a striking association between the polygenic score and diagnosis of Alzheimer’s disease

and cognitive function, a finding that was replicated in the independent Mass General Brig-

ham biobank. Interestingly, we found that an elevated polygenic score for Alzheimer’s disease

is associated with levels of 28 circulating proteins in a group of 636 healthy, middle aged partic-

ipants in the INTERVAL cohort. For 25 out of the 28 proteins, their association with a high

polygenic score was present even among individuals <45 years of age, suggesting an early

proteomic signature of disease that begins decades before clinical manifestation of Alzheimer’s

disease.

Our analysis of the relationship between a polygenic score for Alzheimer’s disease with dis-

ease trajectories and potential new biomarkers has at least two implications:

Fig 3. Proteomic signature of inherited risk for Alzheimer’s disease a. The levels of each of 3,231 plasma proteins quantified using an aptamer-based assay

were compared between 636 participants from the INTERVAL study with top versus bottom decile of the polygenic score in models adjusted for age, sex,

duration between blood draw and processing and the first three principal components of ancestry. The x-axis shows difference–in standardized units with

mean 0 and standard deviation 1 –in concentration and the y-axis -log10 p-value for strength of association. The horizontal dashed line represents the

Bonferroni-corrected threshold for statistical significance (P< 1.55 x 10−5). b. Boxplots show levels of the three most significantly associated proteins and

apolipoprotein E, a known Alzheimer’s disease-related protein. c. The associations between 28 proteins with levels that significantly differed according to high

vs low polygenic score. The x-axis refers to the difference in concentration in standardized units. Whiskers represent 1.5�IQR. TBCA: tubulin-specific

chaperon protein A; S100A13: S100 calcium-binding protein A13; RUXF: Small Nuclear Ribonucleoprotein Polypeptide F; CUZD1: CUB and zona pellucida-

like domain-containing protein 1; ARL1: ADP-ribosylation factor-like protein 1; CRP: C-reactive protein; VPS29: Vacuolar protein sorting-associated protein

29; SG1D2: Secretoglobin Family 1D Member 2; ZO1: Tight junction protein 1; MA2B2: Mannosidase Alpha Class 2B Member 2; CPBE: Choline binding

protein E; ApoB: Apolipoprotein B; SYVC: Valyl-TRNA Synthetase 1; LCN10: Lipocalin 10; APOE: Apolipoprotein E; NRBP: Nuclear Receptor Binding

Protein 1; MMP-3: matrix metalloproteinase-3; DCK: Deoxycytidine kinase; SNAB: Beta-soluble NSF attachment protein; MMP-8: matrix metalloproteinase-8;

SELS: Selenoprotein S; GPR110: Adhesion G-protein coupled receptor F1; CA056: Protein MENT; PSD1: PH and SEC7 domain-containing protein 1; CEI:

Protein CEI; LRRN1: Leucine-rich repeat neuronal protein 1

https://doi.org/10.1371/journal.pgen.1010294.g003
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First, one possible reason for failure of past Alzheimer’s trial may be intervention too late in

the disease process [42]. These failures–which are costly and likely to have prevented addi-

tional investment in drug development–often occur even when a therapeutic target is believed

to be pathophysiologically sound, as was the case for solanezumab, an antibody designed to

clear amyloid-beta from the brain.47,48 While there have been examples of clinical trials aimed

at rare genetic forms of early-onset Alzheimer’s disease [45–47], a primary prevention trial

enrichment strategy focused on middle-aged asymptomatic individuals with high polygenic

score might prove useful [48].

Second, molecular profiling of individuals with very high or very low inherited risk based

on a polygenic score–but who remain unaffected–may provide a new approach to nominating

new biomarkers or pathways for a given disease [38]. This strategy is different from the tradi-

tional approach of profiling individuals after symptom onset, where distinguishing whether

changes are a cause or consequence of disease onset often proves challenging. Although differ-

ences in circulating biomarkers do not prove disease relevance, additional research into those

nominated here may prove useful in uncovering new biology or serving as biomarkers of ther-

apeutic efficacy or target engagement within drug development efforts.

In the current study, our finding that levels of APOE were increased in individuals with a

high polygenic score served as a useful positive control, given the well-documented role of

APOE in the pathophysiology of Alzheimer’s disease. Serum levels of APOE have been associ-

ated with increased risk of developing Alzheimer’s disease and cognitive impairment [49,50].

In addition to proteins known to play a pathophysiological role in Alzheimer’s disease such as

APOE, numerous other proteins were associated with the polygenic score and replicated in the

MESA cohort. Overall, we found 8 proteins whose levels were lower in the high polygenic

score group and 20 proteins whose levels were higher in the high polygenic score group.

Among the proteins whose levels were lower in the high polygenic score were a number of pro-

teins critical for maintaining the integrity of endolysosomal-trans-golgi axis, an important

mechanism for neuronal proteostasis [51]. For example, VPS29 is one such protein that is part

of the retromer complex which functions in recycling protein cargoes from endosomes to the

trans-golgi network. This process has been associated with amyloid beta trafficking and pro-

cessing, and deficiency in retromer has been associated with neuronal loss and amyloid-beta

aggregation in a mouse model of Alzheimer’s [52]. Another protein whose levels were lower

the high polygenic score group is Arl1, whose downregulation leads to loss of trans-golgi cis-

ternae [53]. Overall, these findings support the hypothesis of an early defect in the endolysoso-

mal-trans-golgi network priming the brain for amyloid-beta accumulation. Among the

proteins elevated in the high polygenic score group include MMP-8 and MMP-3, members of

the metalloproteinase family. MMP-8 is known to play a role in macrophage [54] and micro-

glia-mediated immune activation [55]. These results suggest a role for increased peripheral

and central nervous system immune activation in Alzheimer’s disease, a finding that has been

observed by others and validated through PET neuroimaging [56,57] and CSF studies [58–60].

Further, MMP-8 has been widely nominated as a therapeutic target in AD [61,62], suggesting

the ability of proteomic profiling at the extremes of a polygenic score distribution to uncover

therapeutic targets. Interestingly, other than APOE, none of the genes encoding the 28 poly-

genic score-associated proteins are near (<500kb) loci implicated in Alzheimer’s disease

GWAS efforts [63]. This suggests the proteins identified using our approach would likely not

have been identified in traditional GWAS studies.

Several limitations exist to the current study. Although we demonstrate here–and others

have demonstrated previously [64–68]–that it is possible to create a polygenic score for Alzhei-

mer’s disease, we urge caution prior to deployment outside of a research setting. First, as is the

case with most polygenic scores developed to date, effect size is likely to be lower in non-
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European populations due to lack of training data [67,69]. Second, current clinical guidelines

do not yet support assessment of genetic risk for Alzheimer’s’s disease outside of suspected

rare monogenic forms, largely due to concerns about implications for long-term-care or dis-

ability insurance, inducing anxiety, and relative absence of efficacious preventive measures

[64]. The polygenic score developed in the present study demonstrated an odds ratio per

standard deviation increase of 1.90. Although this effect estimate is comparable to that noted

with other recent polygenic scores [64–67]–with odds ratios per standard deviation increase

ranging from 1.38 to 2.20–we did not directly compare them in the present study. Additional

efforts to characterize the relationship between future polygenic scores, neurocognitive trajec-

tory, and proteomic signatures are warranted in future studies. Additionally, several rare

mutations of large effect have been associated with Alzheimer’s disease [17–21], our polygenic

score was restricted to common DNA variants. Future efforts to develop an integrated risk

model that includes both common and rare variants for Alzheimer’s disease is likely to be of

significant utility. Another limitation of the current study is the lack of a multiethnic polygenic

score, which is important given the reduction in performance when European-derived scores

are applied to non-European populations [19,70,71]. A key additional limitation of the current

study is limitation of the analysis to individuals of European ancestry. While these analysis

provide important proof-of-concept for the potential value of polygenic scoring for risk strati-

fication or clinical development, additional assessment in diverse ancestral populations or

development of a multiethnic polygenic score are of major interest. Lastly, while we replicated

proteins associated with a high versus low polygenic score in the MESA cohort, additional rep-

lication in large-scale studies will be of interest.

Methods

Ethics statement

This research was approved by the UK Biobank Application Committee (application number

7089) and by the Massachusetts General Hospital Institutional Review Board.

Informed consent and study approval

All participants provided written informed consent at the time of enrolling in the UK Biobank,

INTERVAL, MESA and Mass General Brigham Biobank studies. Analysis for this study was

approved by the Mass General Brigham Institutional Review Board (Boston, MA).

Study cohorts

The polygenic score was validated and tested in the UK Biobank, a large observational, longitu-

dinal study that enrolled 502,505 participants aged 40–69 from centers across the United King-

dom starting in 2006[70]. A subset of participants completed a cognitive assessment, including

the Forward Digit Span Test to assess working memory [71]. We selected participants who

underwent genomic profiling using either of two genotyping arrays covering 800,000 common

genetic markers [29]. Genotype imputation was performed previously by the UK Biobank

using the Haplotype Reference Consortium panel version 1.1, the UK10K panel, and the 1000

Genomes panel. To minimize potential confounding related to genetic ancestry, analyses were

restricted to participants of White British ancestry previously defined by the UK Biobank

using a combination of self-reported ancestry and genetic confirmation. Quality control was

performed as described previously [29]. In brief, participants were excluded based on quality

control metrics, previously computed by the UK Biobank, including a high genotype missing

PLOS GENETICS Neurocognitive trajectory and proteomics signature of a high genetic risk of Alzheimer’s Disease

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010294 September 1, 2022 9 / 20

https://www.zotero.org/google-docs/?7GwfU2
https://www.zotero.org/google-docs/?7GwfU2
https://doi.org/10.1371/journal.pgen.1010294


rate, sex discordance, putative sex chromosome aneuploidy, and withdrawal of informed

consent.

Within the UK Biobank, participants with Alzheimer’s disease were identified centrally

using a combination of primary care, patient inpatient hospital records, and mortality records

using the International Classification of Disease (ICD-10) diagnosis code of G30 and READ

code F00 (UK Biobank Field ID 131036).

The INTERVAL BioResource involves ~50,000 blood donors recruited from 25 centres across

England during 2012–2014[30]. Study enrollment criteria were consistent with standard blood

donation criteria defined by National Health Service Blood and Transplant [72] and excluded

individuals with history of major disease including heart disease, stroke, diabetes, atrial fibrillation,

type 2 diabetes requiring medications, cancer and recent illness or infection [30,73]. Genotyping

was performed using the Axiom UK Biobank genotyping array developed by Affymetrix (Santa

Clara, California, US). Sample and variant quality control had been performed previously and

involved exclusion based on sex mismatch, low genotype call rates, duplicate samples, extreme

heterozygosity and non-European ancestry, as described earlier [37]. Genotyping imputation was

performed previously [37] using the UK10K and 1000 Genomes reference panels.

The polygenic score was independently tested in a cohort of 30,541 European-ancestry par-

ticipants of the Mass General Brigham Biobank who had previously undergone genomic pro-

filing [74]. Among this cohort, 458 participants had been diagnosed with Alzheimer’s disease

based on inclusion of the ICD-10 code G30.X in the electronic health record. Age of Alzhei-

mer’s disease diagnosis or last follow-up for controls, sex and the first four principal compo-

nents of ancestry were recorded for each participant. Samples were imputed to the Haplotype

Reference Consortium panel version 1.1 using the Michigan Imputation Server [27,75].

Among the 45,263 blood donors originally recruited in the INTERVAL cohort, 3,562

underwent proteomic profiling in two batches using 4,034 SOMAscan aptamers developed by

SomaLogic Inc. (Boulder, Colorado, US) as previously described [37]. In brief, the SOMAscan

technology allows for the simultaneous measurement of thousands of proteins from small

sample volumes (15 uL serum or plasma) with a lower detection limit compared to traditional

methods such as immunoassays [76,77]. The SOMAscan aptamer panel measures both intra-

cellular and extracellular proteins with a bias towards secreted proteins, reflecting the availabil-

ity of purified protein targets and targets with a putative role in human disease [76,77].

The Multi-Ethnic Study of Atherosclerosis (MESA) cohort was used to replicate proteins

significantly associated with a high versus low polygenic score. The design of the MESA study

has been described previously and the protocol is available at www.mesa-nhlbi.org. In brief,

MESA is a multiethnic prospective cohort that enrolled 6,814 participants in the United States

free of cardiovascular disease between 2000 and 2002[31]. Whole genome sequencing was per-

formed on a subset of 3,932 participants, of whom 3,761 were retained after application of

sample and variant quality control criteria, as described previously [69].

Polygenic score derivation and validation

Polygenic scores quantify genetic risk across common variants (minor allele frequency�1%)

by summing variants weighted by the strength of their association with a given trait. To derive

a polygenic score for Alzheimer’s disease, we first divided the UK Biobank into a validation set

of 119,248 participants and a test set of 288,940 non-overlapping participants. Within the vali-

dation set, we used the LDPred computational algorithm, summary statistics from a recent

genome-wide association study for Alzheimer’s disease [26] and a reference panel of 503 Euro-

pean-ancestry participants from 1000 Genomes phase 3 version 5[27] to derive candidate poly-

genic scores.
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The LDPred algorithm uses a Bayesian approach to calculate posterior mean effect sizes

using genome wide association summary statistics by assuming priors for genetic architecture

and linkage disequilibrium from a reference panel. A tuning parameter, ρ, is used to control

the fraction of causal (ie. non-zero effect size) variants. Consistent with previous work [23], a

range of tuning parameters– 1, 0.3, 0.1, 0.03, 0.01, 0.003 –was used to derive 6 candidate poly-

genic scores. Each candidate polygenic score was calculated in the validation set by multiplying

the genotype dosage of each risk allele by its respective variant weight, and then summing

across all variants in the score using PLINK279 software, as previously described [23]. To

account for subtle variation in genetic ancestry that may confound the association between

polygenic score and Alzheimer’s disease, we corrected our polygenic score for the effects of

ancestry as described previously [23]. In brief, a linear regression model was used to predict

polygenic score using the first four principal components of ancestry. The residual from this

model was retained as an ancestry-corrected polygenic score for downstream analysis

The polygenic score with the best discriminative capacity was defined as the score with the

maximal AUROC in a logistic regression model with Alzheimer’s disease as the outcome and

the candidate ancestry-corrected polygenic score, age, sex, first four principal components of

ancestry. The best polygenic score was applied to the test set.

Assessment of polygenic score in the UK Biobank test set

Within the UK Biobank testing dataset, we first assessed the risk of Alzheimer’s disease for par-

ticipants in the top 1%, top 5%, top 10% and top 20% of the polygenic score distribution com-

pared to those in the middle quintile. A logistic regression model was fit using covariates of an

indicator variable for having a top polygenic score vs middle quintile score, age, sex, and the

first four principal components of ancestry and Alzheimer’s disease as the outcome. For each

model, we calculated the odds ratio conferred by having a high polygenic score.

To determine the relative contribution of variants near the APOE gene region to the predic-

tive ability of our polygenic score in the UK Biobank testing dataset, we compared the propor-

tion of variance explained–using the Nagelkerke’s pseudo-R2 metric–for two models: (i) a base

logistic regression model that included only the covariates of age, sex, and the first four princi-

pal components of ancestry and (ii) the covariates plus the polygenic score.

We assessed the gradient in Alzheimer’s disease prevalence across polygenic score deciles.

Individuals in the test set were split into polygenic score deciles and disease prevalence was cal-

culated. An odds ratio for the top decile vs bottom decile was calculated using a logistic regres-

sion model with Alzheimer’s disease as the outcome and age, sex, and the first four principal

components of ancestry as covariates. Calibration curves and intercepts were derived by fitting

a linear regression model with observed Alzheimer’s prevalence as the outcome variable and

predicted prevalence as the independent variable. Goodness of fit was evaluated using the Hos-

mer-Lemeshow test.

Age-stratified analyses were conducted by dividing the test set into age groups correspond-

ing to<50,�50–54,�55–59,�60–64, and�65 years. Age was assigned based on age at diag-

nosis of Alzheimer’s disease for those affected or date of last follow-up for others based on the

most recent available hospital inpatient record, mortality record, or primary care re cord. Par-

ticipants were also characterized as belonging to the bottom decile, deciles 2–9, or top decile of

polygenic score. For each age category, we compared the prevalence of Alzheimer’s disease

among participants in the bottom decile to those in the top decile using a logistic regression

model adjusted for sex and the first four principal components of ancestry.

To assess the association between Alzheimer’s disease polygenic score and working mem-

ory, we analyzed 30,853 participants who underwent cognitive testing in the UK Biobank. As
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part of the study protocol, UK Biobank participants completed a test of numeric short-term

memory based on ability to recall strings of digits of various length (‘digit span test’) [71]. Poly-

genic score was associated with the number of digits recalled on the Digit Span Test using a

linear regression model that included age, sex, and the first four principal components of

ancestry as covariates. A sensitivity analysis conducted by removing participants diagnosed

with Alzheimer’s disease yielded nearly identical results.

All statistical analyses were conducted using R version 3.6.1 (The R Foundation).

Assessment of polygenic score in the Mass General Brigham Healthcare

Biobank

The age-dependent association between polygenic score and Alzheimer’s disease was indepen-

dently tested in the Mass General Brigham Biobank [74]. As in the UK Biobank, the Mass Gen-

eral Brigham cohort was divided into age groups corresponding to<50, 50–54, 55–59, 60–64,

and�65 years. Participants were also characterized as belonging to the bottom decile, middle

2nd-9th deciles, or top deciles of polygenic score. For each age category, we compared the

prevalence of Alzheimer’s disease among participants in the bottom decile to those in the top

decile using a logistic regression model with sex and first four principal components of ances-

try as covariates.

Assessment for a proteomic signature of high versus low polygenic score

For participants in the INTERVAL cohort who underwent proteomic profiling, data process-

ing and quality control were performed as described previously [30]. A multiplexed, aptamer-

based approach (SomaLogic SOMAscan assay) was used to measure the relative levels of 3,622

plasma proteins or protein complexes, using 4,034 modified aptamers. Assayed proteins were

selected based on the availability of purified protein targets, and screening of proteins that are

likely to be involved in human disease. Quality control metrics for the SOMAscan platform

have been described [30]. When multiple aptamers mapped to the same protein, we selected

the aptamer with strongest binding affinity (Kd) measured using pulldown pull-down assays

followed by mass spectrometry and SDS-based gel to assess the binding affinity of each SOMA-

mer for its target, as described.82 Following quality control, 3,231 proteins were retained for

analysis.

To test the associations of plasma protein levels with a high polygenic score for Alzheimer’s

disease, we first natural log-transformed the relative protein abundances. Log-transformed

protein levels were then adjusted in a linear regression model for age, sex, duration between

blood draw and processing (binary,�1 day/>1day) and the first three principal components

of ancestry as described previously [37]. The protein residuals from this linear regression were

then rank-inverse normalized and used as phenotypes for association testing. Participants in

the INTERVAL cohort were dichotomized as belonging to the top polygenic score decile (high

polygenic score) or bottom polygenic score decile (low polygenic score), the genotype dosage

of each risk allele was multiplied by its respective variant weight, and then summed across all

variants to yield a score using PLINK2[28] software. Adjusted protein levels were compared

between high and low polygenic score participants using a two-sample t-test. A p value < 1.55

x 10−5 (0.05/3231) was deemed significant. A sensitivity analysis was conducted by restricting

analysis to participants < 45 years of age at the time of plasma sampling.

Protein quantitative trait loci (pQTL) were identified for proteins significantly associated

with the polygenic score. pQTLs were obtained using previously published summary statistics

from the INTERVAL cohort [37]. Genetic associations were considered significant using a

genome-wide threshold as previously described [37]. The association between pQTLs and AD
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PRS was examined using a linear regression model with AD PRS as the outcome and pQTL,

age, sex, and principal components as covariates.

Replication of proteomic markers of proteomics signature of high versus

low polygenic score in the MESA cohort

A subset of MESA participants underwent proteomic profiling using an older version of the

SOMAscan platform–including 1,319 markers–using samples obtained at Exam 1 (2000–

2002) as previously described [76]. Following quality control, 846 individuals who underwent

both proteomic profiling and whole genome sequencing profiling were available for analysis.

This cohort self-identified as White (n = 742, 44%), Asian (n = 108, 6%), Black (n = 338, 20%)

and Hispanic (n = 512, 30%). To compute the AD polygenic score for Alzheimer’s disease in

MESA, the genotype dosage of each risk allele was multiplied by its respective variant weight,

and then summed across all variants to yield a score using PLINK [78]. To enable analysis

across the four self-reported MESA ethnic/racial groups, an ancestry-corrected polygenic

score was computed by retaining the residuals of a linear regression model in which the poly-

genic score was regressed against the first three principal components of ancestry. Participants

in the MESA cohort were dichotomized as belonging to the top ancestry-corrected polygenic

score decile (high polygenic score; n = 85) or bottom ancestry-corrected polygenic score decile

(low polygenic score, n = 85).

For the subset of protein markers that were available in the MESA study participants, we

sought to replicate results from the INTERVAL study. Relative protein abundances were first

natural log-transformed. Log-transformed protein levels were then adjusted in a linear regres-

sion model for age, sex, and the first three principal components of ancestry. The protein

residuals from this linear regression were then rank-inverse normalized and used as pheno-

types for association testing. Adjusted protein levels were compared between high and low

polygenic score individuals using a two-sample t-test. A nominal one-tailed p-value < 0.05

with the direction of effect prespecified based on the INTERVAL analysis was deemed statisti-

cally significant.

Supporting information

S1 Fig. Calibration plots in the testing cohort. A logistic regression model that included the

AD PRS, age, sex, and principal components of ancestry as covariates was well-calibrated in

the test dataset. Slope of the calibration curve is displayed. Error bars represent 95% CI.

(DOCX)

S2 Fig. Distribution of the APOE ε4 allele among polygenic score deciles. The distribution

of APOE ε4 is presented for each polygenic score decile, ranging from 0.59 APOE ε4 allele fre-

quency in the top decile to 0 in the bottom decile. Consistent with the 64% contribution of var-

iants near the gene encoding apolipoprotein E (APOE) to the polygenic score, we observe

significantly more APOE ε4/ε4 homozygous individuals in the top polygenic score decile

(23%) compared to the bottom (0%).

(DOCX)

S3 Fig. Age-stratified relationship between polygenic score and Alzheimer’s disease diag-

nosis in the Mass General Brigham Biobank. The Alzheimer’s disease polygenic score was

independently validated in the Mass General Brigham Biobank. Age was assigned based on

age at diagnosis of Alzheimer’s disease for those affected or date of last follow-up for others.

Similar to the UK Biobank, we observe a significant gradient in Alzheimer’s disease prevalence

across polygenic score deciles at later ages in a logistic regression model adjusted for sex and
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the first four genetic principal components. Error bars represent 95% confidence intervals.

(DOCX)

S4 Fig. Sensitivity analysis of circulating protein levels and polygenic score in

individuals < 45 years. To assess differences in protein levels among individuals <45 years

(mean 32.6 years), when the onset of Alzheimer’s disease is even more unlikely, we analyzed

standardized levels of the 28 proteins identified in the overall dataset. A low polygenic score

indicates individuals in the first decile of the distribution and a high score indicates individuals

tenth decile. � represent proteins with levels significantly different between high and low poly-

genic score individuals. In middle age, protein levels are consistently associated with polygenic

score (p<0.05, two-tailed t-test). Whiskers represent 1.5�IQR.

(DOCX)

S5 Fig. Replication of proteomic signature of high polygenic score in the MESA cohort.

Boxplots are displayed comparing levels of 8 proteins in individuals with a high polygenic

score for Alzheimer’s disease (top 10%) and a low polygenic score (bottom 10%) in the MESA

cohort. Of the 28 proteins associated with a high polygenic score in the INTERVAL discovery

cohort, 8 proteins were available in the MESA cohort. Among the 8 proteins assayed, 7 repli-

cated their association with a high polygenic score for Alzheimer’s disease. P values computed

using a two-sample one-tailed t-test using adjusted protein levels (see Methods). Whiskers rep-

resent 1.5�IQR.

(DOCX)

S1 Table. Association of candidate polygenic scores with Alzheimer’s Disease in UK Bio-

bank validation set. To select the global tuning parameter, six candidate scores were assessed

in a validation set of 119,248 randomly-selected participants of European ancestry from the

UK Biobank of whom 279 (0.2%) had been diagnosed with Alzheimer’s disease. Each candi-

date score was associated with disease in logistic regression models that included age, sex, and

principal components of ancestry as covariates and odds ratio (OR) per standard deviation

(SD) of polygenic score and area under the receiver operator curve (AUROC) was calculated.

The tuning parameter refers to the LDpred ρ parameter used to control the proportion of vari-

ants assumed to be causal. Bold indicates polygenic score with maximal AUROC carried for-

ward to the testing datasets. The calibration curves and intercepts were derived by fitting a

linear regression model with observed Alzheimer’s prevalence as the outcome variable and

predicted prevalence as the independent variable.

(XLSX)

S2 Table. INTERVAL cohort characteristics. �P value defined using a two-sample t-test or

Chi-squared test for categorical variables.

(XLSX)

S3 Table. AD Polygenic Score-Protein Associations. Beta represents average change in pro-

tein level among individuals in 90% AD PRS compared to those in the 10%.
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S4 Table. Description and evidence for role in Alzheimer’s disease of each polygenic score-

associated protein.

(XLSX)

S5 Table. Proteins with pQTL variants and their association with AD PRS. pQTL- AD PRS

assocation was ascertained in a linear regression model with AD PRS as the outcome and

pQTL, age, sex, and principal components as covariates. Beta represents the average change in

PLOS GENETICS Neurocognitive trajectory and proteomics signature of a high genetic risk of Alzheimer’s Disease

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010294 September 1, 2022 14 / 20

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010294.s004
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010294.s005
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010294.s006
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010294.s007
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010294.s008
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010294.s009
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010294.s010
https://doi.org/10.1371/journal.pgen.1010294


AD PRS for a 1 unit change in pQTL variant where the pQTL variant is encoded as 0,1,2. A P

value < 0.05/14, where 14 is the number of unique pQTL variants, was considered significant.

pQTL variants within 1Mb of an aptamer were considered as cis-pQTL with remaining vari-

ants being trans-pQTLs. A P value< 0.05/14, where 14 is the number of unique pQTL variants

considered, was considered significant.”

(XLSX)
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