
1

Vol.:(0123456789)

Scientific Reports |         (2022) 12:5021  | https://doi.org/10.1038/s41598-022-08728-6

www.nature.com/scientificreports

An object‑based sparse 
representation model 
for spatiotemporal image fusion
Afshin Asefpour Vakilian* & Mohammad Reza Saradjian

Many algorithms have been proposed for spatiotemporal image fusion on simulated data, yet 
only a few deal with spectral changes in real satellite images. An innovative spatiotemporal sparse 
representation (STSR) image fusion approach is introduced in this study to generate global dense 
high spatial and temporal resolution images from real satellite images. It aimed to minimize the 
data gap, especially when fine spatial resolution images are unavailable for a specific period. The 
proposed approach uses a set of real coarse‑ and fine‑spatial resolution satellite images acquired 
simultaneously and another coarse image acquired at a different time to predict the corresponding 
unknown fine image. During the fusion process, pixels located between object classes with different 
spectral responses are more vulnerable to spectral distortion. Therefore, firstly, a rule‑based fuzzy 
classification algorithm is used in STSR to classify input data and extract accurate edge candidates. 
Then, an object‑based estimation of physical constraints and brightness shift between input data 
is utilized to construct the proposed sparse representation (SR) model that can deal with real 
input satellite images. Initial rules to adjust spatial covariance and equalize spectral response of 
object classes between input images are introduced as prior information to the model, followed 
by an optimization step to improve the STSR approach. The proposed method is applied to real 
fine Sentinel‑2 and coarse Landsat‑8 satellite data. The results showed that introducing objects 
in the fusion process improved spatial detail, especially over the edge candidates, and eliminated 
spectral distortion by preserving the spectral continuity of extracted objects. Experiments revealed 
the promising performance of the proposed object‑based STSR image fusion approach based on 
its quantitative results, where it preserved almost 96.9% and 93.8% of the spectral detail over the 
smooth and urban areas, respectively.

Emerging remote sensing satellite instruments with various spatial and temporal resolutions have made spec-
tacular improvements in the variety of available  data1. However, it is yet impossible to achieve temporally dense 
global satellite images with high spatial resolution simultaneously due to the technological challenge or budget 
 limitations2. Therefore, a trade-off between high spatial resolution and dense temporal coverage is always con-
sidered when designing a satellite sensor. Another limitation of achieving dense high-spatial-resolution optical 
images is the problem of gaps due to the cloud and snow cover in the captured  scenes3,4. Lack of frequent data 
directly impacts the dynamic monitoring of high-frequency phenomena. Therefore, the high demand for fine 
spatial resolution satellite images with frequent temporal coverage has changed the focus of recent studies to fuse 
available temporally dense coarse spatial resolution images with high spatial resolution  images5. Spatiotemporal 
satellite image fusion is a cost-effective solution to reduce the data gap resulting from cloud and snow cover and 
long revisit time intervals of a fine spatial resolution  instrument6. Applications of dense, fine spatial resolution 
fused images might include high-frequency phenomena  detection7, land use  classification8, global-scale forest 
cover  mapping9, monitoring earth  hazards10, and  dehazing11–14. However, color distortion is often a problem in 
the fusion methods due to the different environmental circumstances at the time of image  acquisition15.

Many spatiotemporal models have been proposed for remote sensing applications; however, they were applied 
over simulated data, and a few were capable of dealing with changes (e.g., conversion of ground features and 
vegetation phenology changes) in real satellite scenes. In the case of simulated data, a coarse image is usually 
the downsampled version of an existing satellite image in which neighboring pixels are aggregated correspond-
ing to the ground sample distance (GSD) of the target satellite image. More complex simulated data use pixel 
shifting and linear transformation to simulate geometric and radiometric errors, respectively. This indicates 
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that simulated data are too preliminary to provide real experimental data. There are three main factors in real 
spatiotemporal image fusion applications that can affect the results that are misregistration of geometric features, 
radiometric inconsistency between fine and coarse input images, and spatial resolution ratio7. Lack of stud-
ies to deal with spatiotemporal fusion approach over real satellite data and evaluate the interpretability of the 
results and technical limitations towards accurate fused results is also a problem. This study aims at introducing, 
implementing, and evaluating a spatiotemporal fusion approach over real satellite images that can deal with the 
three mentioned factors.

A spatiotemporal fusion of the fine spatial resolution Sentinel-2 multispectral imager (MSI) data with coarse 
spatial resolution Landsat-8 optical land images (OLI) data in the visible and near-infrared (Vis/NIR) wavelengths 
with 10 m and 30 m GSD, respectively, is proposed in this study to produce more cloud-free fine MSI images. The 
results obtained from the proposed approach were carried out and compared to results obtained from well-known 
spatiotemporal fusion approaches in terms of spatial and spectral distortions using a quality assessment step.

Main contributions. Compared with existing spatiotemporal fusion approaches that focus on simulated 
input data to avoid the effect of inevitable spectral distortions and spatial artifacts in real applications, this paper 
proposes a new object-based image fusion framework based on edge pixels in satellite data to deal with real spa-
tiotemporal image fusion tasks. The proposed object-based approach is called spatiotemporal sparse representa-
tion (STSR). The main contributions of this study are summarized as follows:

(1) It alleviates the main drawback of spatiotemporal fusion approaches that is the inconsistency of the pre-
dicted results in dealing with real satellite data.

(2) The object-based procedure towards the spatiotemporal fusion problem improves the effectiveness of the 
proposed STSR approach in dealing with spatial artifacts and preserves the spectral continuity of extracted 
objects.

(3) The proposed STSR approach prevents spectral distortion over edge pixels by dividing an input image 
into the edge and non-edge pixels and eliminates spectral distortion over object classes and refinement of 
spectral and spatial responses of edge pixels in fused results.

(4) A general optimization problem is exploited in the STSR approach to predict dictionary matrix along with 
sparse coefficients in a well-constraint sparse model.

(5) The proposed approach is tested on real satellite data with a variety of object classes (OLI and MSI images 
from Tehran and Khorasan-e Razavi datasets), and experiments show that the proposed STSR approach 
can achieve reliable fusion results with lowest spectral distortion possible.

Related work. Various spatiotemporal image fusion models have been proposed for different applications. 
Among them, some models are more typical and are widely used. These models require two coarse spatial reso-
lution images captured at different times and one fine image as input to combine their merits. The most typical 
models include the spatial and temporal adaptive reflectance fusion model  (STARFM16), unmixing-based data 
fusion  (UBDF17), one-pair dictionary learning  (OPDL6), Fit-FC18 (a three-step model consisting of regression 
model fitting, spatial filtering, and residual compensation), linear mixing growth model  (LMGM2), and flexible 
spatiotemporal data fusion  (FSDAF19), which are described briefly below.

STARFM16 assumes that the spectral difference between two different sensors is constant for homogeneous 
areas over time. A temporal weight factor is then deployed over a moving window to predict the behavior of the 
mixed land cover types using spectrally similar neighboring pixels. In this model, geometric misregistration, 
radiometric inconsistency between two sensors, and heterogeneity of the landscape cause drastic degradation 
of fused results. UBDF uses a linear spectral mixing model to predict the fine image by employing a constrained 
least square model with a moving window. In this model, fine pixels are assumed as pure end-members, and 
coarse pixels are linear combinations of the pure end-members. This assumption neglects the possibility of 
misregistration of geometric features and radiometric inconsistency over real satellite data. Thus, this model is 
recommended for geometrically and radiometrically corrected input images, and it is not ideal for real satel-
lite data fusion. OPDL is a two-layer sparse representation (SR) framework that assumes sparse coefficients for 
coarse and fine images acquired from a specific scene are the same (which is not the case in real satellite data). 
In this model, temporal changes can be transferred using a high-pass modulation. Fit-FC18 establishes a linear 
regression model to capture temporal changes and apply them to fine pixels. Then, a weight function is defined 
to adjust the spectral response of a moving window based on nearest similar neighboring pixels, followed by 
interpolation of residuals over fine pixels. Although Fit-FC can deal with strong temporal changes, it fails to 
deal with high radiometric inconsistency due to disregarding the correlation between two coarse input  images7.

LMGM is an unmixing-based fusion model that solves a linear system to estimate a constant growth rate for 
each end-member over time by selecting sufficient neighboring pixels via a moving window. Fusion results from 
this model are robust in dealing with the radiometric inconsistency yet fail to deal with geometric misregistra-
tion. FSDAF is an improved unmixing-based fusion model similar to LMGM except for considering the whole 
image instead of a moving window for selecting similar pixels to end-members. An interpolation step for residual 
compensation and smoothing the neighboring pixels is also conducted to achieve robust fusion results. FSDAF 
is recommended for spatiotemporal fusion applications based on the best performance among other proposed 
fusion models in the literature7. Results from the FSDAF model showed better preservation of spatial details 
and improvements in the accuracy of fused results compared to STARFM and UBDF20. Therefore, among the 
common spatiotemporal fusion approaches, Fit-FC and FSDAF are selected in this study to be compared with 
the proposed STSR approach because of their remarkable contribution in the spatiotemporal fusion of satellite 
data and the availability of source codes.
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Material and methods
Sentinel‑2 and landsat‑8 data. The twin Sentinel-2 satellites are composed of Sentinel-2A and -2B satel-
lites with a similar design that orbit the Earth in the same path with a 180° delay. Both platforms can revisit a 
particular location on Earth’s surface every 10 days (5 days when considering both satellites). The existence of 
clouds and shadows in a scene increases the time to capture a cloud-free Sentinel-2 image to more than five days 
for areas with a higher chance of covering with clouds (even several months). Sentinel-2 carries the MSI sensor 
with a 10 m GSD with 13 spectral bands on board. Vis/NIR spectral bands from MSI were selected and used as 
the input fine data in this study.

Spatiotemporal image fusion techniques require one pair of coarse- and fine-spatial resolution images cap-
tured simultaneously and one coarse spatial resolution image captured at a time different from the image pair. 
Real satellite data from OLI and MSI were selected as coarse and fine input images. Hereafter, we call the real 
coarse- and fine-spatial resolution images acquired at the same time as  OLI1 and  MSI1, respectively, and the other 
real coarse spatial resolution image as  OLI2. As the reference fine spatial resolution image, the corresponding 
real MSI image captured at the same time as  OLI2 is then used to assess the obtained results and is called  MSI2.

The proposed STSR approach. This study introduces a new spatiotemporal fusion approach based on an 
SR model. The overall architecture of the proposed STSR approach is depicted in Fig. 1. The goal of this study 
is to predict an unavailable fine spatial resolution image using the corresponding coarse resolution image based 
on the spatiotemporal framework developed over another available coarse–fine pair image. One  OLI1, one  MSI1, 
and one  OLI2 are considered inputs, and then, an image corresponding to  MSI2 is predicted using the proposed 
STSR approach and compared to the real  MSI2. According to Fig. 1, the proposed approach includes: (a) creating 
a fuzzy classification algorithm to improve the ability to distinguish different objects, especially over the object 
boundaries, where spectral mixing usually happens; (b) adopting membership functions in the fuzzy classifica-

Figure 1.  Flowchart of the proposed STSR approach.
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tion approach to identify the best pixels for edge candidates and improve their spectral response to achieve a 
more reliable fused result; (c) defining prior rules to adjust spatial covariance and equalize spectral response 
between input images and add them as constraints to the SR model; and finally (d) providing a well-constraint 
sparse model to estimate dictionary matrix along with sparse coefficients to predict fused results.

Fuzzy classification algorithm. The fuzzy classification algorithm can deal with noisy data according to 
the characteristics of membership functions in converting crisp mathematical data to linguistic  variables20. Local 
spectral variations, especially over the object boundaries—where the most spectral mixing occurs—reduce the 
quality of fusion results. Object-based procedure towards a fusion problem improves the effectiveness of the 
fusion approach in dealing with spatial artifacts and preserves the spectral continuity of extracted objects. Thus, 
an object-based classification method is required before sparse coding to extract objects, detect edge pixels, 
and prevent spectral mixing by assigning object classes with the most spectral similarity to edge pixels. Many 
researchers have suggested fuzzy inference systems (FISs) for such  classification20. Firstly, the connected com-
ponents of input  MSI1 are extracted, followed by a merging step to eliminate the isolated components. Initial 
candidates for object boundaries are pixels with high spectral variances. The geometric pattern (GP) is derived 
from the morphology of the extracted components. Components with near- rectangular or circular shapes are 
assumed to be segments with high GP values. Therefore, to define components with higher values for GP, at least 
one of the following geometrical conditions need to be satisfied: (1) length-to-maximum width ratio more than 
3/2, and an area close to length multiplied by maximum width, and (2) approximately equal distance from center 
to edge in four cardinal directions. The GP will be a matrix with the same size as  MSI1 consisting of arrays of 1 
for components with high GP and 0 for the rest of the components. Local variances over connected components 
(Var) are also extracted from  MSI1. Secondly, the normalized difference vegetation index (NDVI) and the nor-
malized difference water index (NDWI) are extracted from the input  MSI1.

Then, an FIS approach is used to locate the edge pixels more accurately from extracted boundaries of segments 
by minimizing within-class variations. Fuzzy {if–then} rules are defined according to Table 1, based on Var, GP, 
NDVI, and NDWI. As shown in Table 1, three membership functions {low, moderate, and high} are considered 
for each input variable and output object class. A total of six object classes, namely, impervious surface, cropland, 
vegetated area, waterbody and wetland, bare soil, and others, are selected as output object classes. To use the fuzzy 
rules, first, the values of the variables are normalized within [0,1], with 1 and 0 corresponding to the highest and 
lowest possible values for each variable, respectively. Then, nonlinear Gaussian functions are selected for the 
membership functions. As an example, in Table 1, if Var and GP for a segment are {low} and {low}, respectively, 
then the impervious surface will be {low}. If the {low} membership values are activated for all object classes of 
a segment, it will be labeled as “Other.”

After labeling all the segments in the input  MSI1, membership functions of non-edge 8-nearest neighbors 
(with 10 m spatial resolution of  MSI1) of the edge pixel are used to assign an accurate label to an edge pixel. The 
mean membership functions of the non-edge neighboring pixels (MFp) calculated from an inverse Euclidian 
distance determines the label of the edge pixel (Eq. 1)

where P is the number of non-edge neighboring pixels adjacent to an edge pixel, Fp is the memberships of the 
pixel for all object classes of non-edge neighboring pixels adjacent to the edge pixel, di,j is the Euclidean distance 
between the pixel located on edge (xi,yi) and its non-edge neighboring pixels (xj,yj). The label (object class) for 
each edge pixel (Ce) is assigned based on the highest value for MFn calculated from the non-edge 8-nearest neigh-
boring pixels. This approach prevents spectral distortion over predicted edge pixels followed by a refinement of 
spectral and spatial responses and eliminates spectral distortion over predicted object classes.

Sparse representation. SR is a technique that can decompose image signals to a linear combination of a 
few components from a predefined or learned dictionary, and infer those components (known as spectral bases), 
to extract salient features for increasing the capability of image  reconstruction21. SR models tend to construct an 
over-complete dictionary over input images by dividing them into several overlapping patches to achieve mean-
ingful representation of the source  images22. SR models outperform many other image fusion methods’ capabili-
ties, from stability and robustness to misregistration. These models define a trade-off between enhancing spatial 

(1)MFP =
∑

P

FP
√

(

xi − xj
)2

+
(

yi − yj
)2

Table 1.  Proposed fuzzy rules for the determination of each object class by having Var, GP, NDVI, and NWDI.

Object class

Membership functions

Low Moderate High

Impervious surface Low Var + low GP High Var + moderate GP High Var + high GP

Cropland High Var + low GP Low Var + moderate GP Low Var + high GP

Vegetated surface Low NDVI + low Var Moderate NDVI + high Var High NDVI + high Var

Waterbody and wetland Low NDWI Moderate NDWI High NDWI

Bare soil Low NDWI + low NDVI + High Var Low NDWI + low NDVI + Moder-
ate Var Low NDWI + low NDVI + low Var
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detail and maintaining of spectral information to reduce spectral  distortion23. Although both spatial and spectral 
information is considered simultaneously, defining an appropriate dictionary in SR models is  necessary24.

Sparse coding represents a signal sparsely using an overcomplete dictionary and obtains promising perfor-
mance in practical image processing applications, especially for signal restoration tasks. Equation (2) shows the 
most common form of sparse coding for multi-view problems in the form of an optimization problem15

where X and D, are multi-view images with V spectral bands and the corresponding dictionary matrix, respec-
tively, S is the sparsest possible representation matrix, known as the sparse matrix that satisfies Eq. (2), and β||S|| 
is a regularization function that improves the learning performance of dictionary  matrix25. β is a constant value 
that controls the sparsity of the sparse matrix. The optimized value for β is estimated using an optimization 
method that maximizes the peak signal-to-noise ratio (PSNR) for all spectral bands of the predicted  MSI2

26. 
According to the literature, the feature sign search (l1 least squares) has been extensively used to optimize the 
sparse matrix, while the Lagrange dual method is used to optimize the dictionary  matrix27. The optimization 
problem (Eq. 2) tries to minimize the difference between the product of D and S, and X, and estimate X more 
accurately. The optimization of SR parameters in remote sensing problems is severely ill-posed, with no unique 
solution. Thus, prior information is required to provide a unique solution for SR models.

Implementation of the proposed approach. According to Fig. 1, for the prediction of the fine spatial 
resolution image,  MSI2 is considered as a function of  OLI2 image. Moreover, a good prediction of the unknown 
fine image requires a well-constraint SR model. Spatial and spectral relevance between  OLI1 and  MSI1, along 
with relationships between  OLI1 and  OLI2 are exploited as constraints to the SR model to predict the target  MSI2.

A histogram equalization matrix is used to adjust spectral differences between input OLI images. Further-
more, FIS with nonlinear Gaussian membership functions is used to extract robust spatial and spectral con-
straints. It is then deployed over the  MSI1 and upsampled  OLI1 to assign labels to pixels with similar spectral char-
acteristics. Results from the fuzzy classification are refined by a region growing and merging step for eliminating 
small objects. Then, the classified image is downsampled to the size of  OLI1 followed by eliminating the isolated 
pixels. Investigation of the membership functions of fuzzy classification results for pixels located on the bounda-
ries of adjacent objects reveals the best edge candidates. The label of an edge candidate in  OLI1 is defined by the 
largest count of pixels of a specific label that occurred within the 3 × 3 corresponding pixel window in the  MSI1.

Brightness shift or global spectral differences caused by the relative position of the sun and satellite sensor 
to the observation point and atmospheric condition between the two different acquisition times is preserved in 
the proposed approach by introducing a local histogram equalization constraint (H) in the SR model (Eq. 3). 
H was calculated separately for each spectral band of the OLI image. This constraint compares and matches 
corresponding local histograms over the objects in the input  OLI1 and  OLI2. Extracted objects from the fuzzy 
classification are used as local patches in the histogram equalization step to preserve the continuity of the spectral 
response in the fused result.

Furthermore, another constraint is defined in the proposed approach to extract the spatial information: 
covariance between the same objects of the  MSI1 and  MSI2 over a short period remains the same with slight 
changes that can be neglected. Thus, the covariance between  OLI1 and  MSI1 is equal to the covariance of those 
images captured at any other time (Eq. 3). Therefore, Eq. (3) is proposed to add spatial and spectral constraints 
into the SR model for predicting  MSI2

where y, Y, and X are the OLI, upsampled OLI that is resampled to the size of MSI (Eq. 3), and MSI, respectively. 
i denotes the acquisition time and can be set to 1 or 2. Xi is the target  MSI2 when i = 2. H implies the local histo-
gram equalization matrix between  OL1 and  OLI2, over object classes in the input images. Di and Si are dictionary 
matrix and representation coefficients, respectively. They may vary depending on the acquisition time. R is the 
resampling matrix that downsamples input MSI to the size of OLI, and B is the proposed blurring matrix. Both 
R and B are physical constraints of the OLI sensor and are constant. B is defined according to the modulation 
transfer function (MTF) or point spread function (PSF) of the imaging system, whichever is available. The PSF 
is the essential characteristic of a sensor that defines the sensor’s spatial response to a point energy source within 
the instantaneous field of view. In this study, PSF is used to reconstruct B in Eq. (3). The spreadsheet of prelaunch 
measured PSF values for each spectral band of the OLI sensor in both the along- and across-track directions is 
provided by the US geological survey (USGS)28. According to this data, nearly 96.9% of all energy received by the 
OLI sensor encircles in a one-pixel radius of any given pixel for each spectral band. Similarly, a radius between 
3 and 5 pixels of the MSI is suggested for the radius extension of the  PSF29, equivalent to almost a one-pixel 
radius of the OLI sensor. Consequently, only 8-neighbors of a pixel in the OLI image are used to calculate the 
proposed blurring matrix. PSF for each spectral band was then simulated with a 3 × 3 Gaussian blurring matrix. 
The spectral response of neighboring pixels of a given pixel to the energy acquired by the OLI B4 (red channel) 
in both across- and along-track directions is shown in Fig. 2.

To calculate the covariance between input images for a specific time, OLI image (y) should be upsampled to 
the spatial size of MSI (X). Therefore Eq. (4) is proposed as below

(2)min
D,S

∑

V

∥

∥

∥
XT − DS

∥

∥

∥

2
+ β�S�

(3)

{

HR - MSI - ti : Xi = Di × Si
LR - MSI - ti : yi = Xi × R⊗ B⊗H → yi = Di × Si × R⊗ B⊗H
Cov(Xi ,Yi) : Cov(X1,Y1) = Cov(X2,Y2)
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Cov(Xi,Yi) indicates the proposed covariance constraint that is the covariance between Xi and Yi, and can be 
expressed as Eq. (5)

Within-class covariance between the objects in Xi, and corresponding objects in Yi, for both acquisition times, 
are calculated/predicted and subtracted implicitly to minimize the spectral variations due to different acquisition 
times and preserve continuity over objects. Therefore, we propose Eq. (6)

where N denotes the total number of labeled segments resulting from the fuzzy classification of X1. In practice, 
the dictionary matrix and sparse coefficients for the reference fine image (D2 and S2, respectively) are unknown 
with no unique solution. Therefore, we consider a regularization term to add object-based prior information to 
Eq. (6). According to this equation, the corresponding sparse matrix of  MSI2 (S2) has to be minimized to achieve 
a unique solution. Spectral similarities between edge candidates and neighboring objects based on fuzzy mem-
bership functions are used to add edge details into the SR model. Therefore, the object-based spectral similarity 
parameter is proposed in this study to preserve spectral continuity over fused results (Eq. (7))

where φ(S2) is the proposed regularization term that provides additional prior information to the sparse problem, 
defined by Eq. (8)

where ||S2||1 is called the sparsity constraint and is the sum of absolute values of all elements of S2, and α and β 
are regularization parameters. Optimized values for α and β are estimated using an iterative evolutionary opti-
mization that maximizes the PSNR for all spectral bands of the predicted  MSI2. ωi,j is the weight function and 
is the inverse number of pixels consisting of a similar object to the edge pixel. The main objective of Eq. (8) is 
to reduce the spectral difference between an edge pixel and the average of total pixels in a similar neighboring 
object extracted by fuzzy classification. This will alleviate inconsistencies in spectral responses from obtained 
results in dealing with real satellite data. After implementing Eq. (8), feature sign search (l1 least squares) and 
Lagrange dual method were used to optimize S2 and D2, respectively. For detailed information on the optimiza-
tion method, readers are encouraged to refer to27.

Performance evaluation method. An image fusion process might produce artifacts both spatially and 
spectrally, affecting the quality of the fusion  products30. In this study, some popular image fusion quality metrics 
(IFQMs) were used to evaluate the performance of the spatiotemporal fusion results. In general, IFQMs are 
sorted into spatial and spectral categories. It is suggested to deploy spatial and spectral IFQMs in collabora-
tion together to investigate the quality of fused results more accurately. Spectral IFQMs, including root-mean-
square error (RMSE)31, relative dimensionless global error in synthesis (ERGAS)32, universal image quality index 

(4)Yi = yi × R−1
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Figure 2.  Across- and along-track spectral response of neighboring pixels of a given pixel to the energy 
acquired by the OLI B4 (red channel)28.
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(UIQI)33, and spectral angle mapper (SAM)34, were used along with spatial IFQMs, including  PSNR3539, and 
average gradient (AG)36, to evaluate the quality of the fusion results. Another IFQM that comprises both spectral 
and spatial aspects is the radiometric and geometric (RG) index (Eq. 9)37, which was introduced to evaluate the 
quality of fused results in a pansharpening procedure. RG index originally uses edge and background compo-
nents from a fine spatial resolution panchromatic image and a multispectral coarse spatial resolution, respec-
tively, to compare them with the edge and background components of fused result quantitatively. We generalized 
the RG index to evaluate the effectiveness of spatiotemporal fusion approaches by the replacement of input 
images with a real  MSI2. Different quality indices can be used to compute both components for any fused results. 
SAM is selected as the quality index to calculate the RG index. Ideal values for the SAMRG index are close to zero.

where F is the predicted  MSI2 from a fusion approach, and E and B are edge and background components 
extracted from real  MSI2, respectively. Wgeometric and Wradiometric are weighting factors for geometric and radio-
metric components, respectively, and are calculated using the ratio between edge and background pixels and the 
total number of pixels in real  MSI2. Among the common spatiotemporal fusion approaches, Fit-FC and FSDAF 
were implemented to quantify the performance of the proposed STSR approach and compare results from the 
proposed STSR approach. IFQMs usually evaluate the quality of fused pixels regardless of spatial, spectral, and 
textural behaviors. They do not report the damage caused by the fusion methods to the continuity of features 
and homogeneity of the objects. This shortcoming can be considered as a drawback to the IFQMs in the field of 
image fusion and can be addressed in future studies.

Results and discussion
In order to evaluate the effectiveness of the proposed object-based STSR image fusion approach, predicted  MSI2 
from the STSR approach was compared to the results from other well-known and popular spatiotemporal image 
fusion methods. Spatial and spectral IFQMs were used to compare results and analyze the performance of the 
spatiotemporal fusion methods. The focus of this study is on the dataset, algorithm performance analysis, and 
discussion on the reasons for any possible anomalies in experimental results. All experiments were programmed 
using MATLAB R2018b software in a Microsoft Windows 10 environment on a desktop PC equipped with an 
Intel® Core™ i7-6700 K processor (8 M Cache, up to 4.20 GHz), and 12 GB of RAM.

Dataset. The proposed STSR image fusion approach requires two available OLI images acquired at two dif-
ferent times and an MSI acquired simultaneously with one of the available OLI images. The three input images 
are input to the STSR approach to predict an unknown MSI simultaneously acquired with the  OLI2. We utilized 
real satellite images acquired over Tehran Province (35° 43′ N, 51° 24′ E) on June 29, 2019 and June 15, 2020 
(Fig. 3A–C), and over Khorasan-e Razavi Province in Iran (36° 18′ N, 59° 36′ E) on July 17, 2018 and May 4, 
2019 (Fig. 4A–C). Real satellite images from Khorasan-e Razavi Province were used in this study because they 
contain various types of land-use/land-cover (LULC). Real satellite images from Tehran Province were also used 
to include urban features with spectral mixing, especially over object boundaries in the fusion process. Both 
Khorasan-e Razavi and Tehran datasets contain four Vis/NIR spectral bands acquired from Landsat-8 OLI with 
a wavelength range of 0.45–0.88 µm, and 4 Vis/NIR spectral bands acquired from Sentinel-2 MSI with a wave-
length range of 0.46–0.88 µm. The B2 (blue channel), B3 (green channel), B4 (red channel), and B8 (near-infra-
red channel) were selected from MSI as spectral bands of the fine image. Vis/NIR spectral bands from Landsat-8 
OLI sensor with a 30 m GSD with a total of nine spectral bands were selected as the input coarse data. The B2 
(blue channel), B3 (green channel), B4 (red channel), and B5 (near-infrared channel) were selected from OLI 
as spectral bands of the coarse image. Due to spectral similarity between vis/NIR spectral bands of Sentinel-2 
MSI and Landsat-8 OLI sensors, a high spectral correlation exists between fine- and coarse-image that reduces 
spectral distortion in the fused result.

Algorithm performance comparison. Various quality assessment indices were used to evaluate the 
effectiveness of the proposed fusion approach and compare its performance with well-known fusion approaches 
such as Fit-FC and FSDAF. Quantitative metrics for the spatiotemporal approach over different object classes in 
Khorasan-e Razavi and Tehran datasets are presented in Tables 2 and 3. Real  MSI2 images (Figs. 3D and 4D) were 
used to assess the proposed STSR approach for spatial detail enhancement and spectral preservation. Fit-FC and 
FSDAF fusion approaches were also implemented on the two input datasets (Figs. 3E, G and 4E, F) to predict the 
 MSI2, and compare their results with results from the proposed STSR approach. Predicted  MSI2 from different 
spatiotemporal fusion approaches were compared to real  MSI2 that was used as the reference fine image. Quan-
titative evaluation of spatiotemporal fusion approaches over different object classes in the Khorasan-e Razavi 
scene is presented in Table 2. Since the results from STSR, Fit-FC, and FSDAF approaches preserve the radio-
metric resolution (i.e., 12-bit) of the input images, reports for quantitative assessment of the fusion results are 
calculated based on the 12-bit radiometric resolution.

According to Tables 2 and 3, although FSDAF shows better RMSE values than Fit-FC over impervious 
surfaces, RMSE for Fit-FC is higher over more heterogeneous regions. Thus, FSDAF is more robust to spectral 
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Figure 3.  True color input images acquired from Tehran Province; (A, B) Upsampled  OLI1 and  OLI2, (C, D) 
corresponding  MSI1 and  MSI2, (E, G, I) predicted  MSI2 using Fit-FC, FSDAF, and STSR approach, and (F, 
H, J) intensity difference map between predicted  MSI2 and real  MSI2. Scale bar shows the difference between 
predicted and real  MSI2 on a 12-bit basis.
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variations compared to Fit-FC. As shown in Table 2, RMSE values for Fit-FC over the waterbody and wetland 
object class show better spectral preservation compared to STSR. However, STSR outperforms Fit-FC for other 
object classes (Tables 2 and 3). Moreover, other IFQMs show a better performance for the proposed STSR 
approach over the waterbody and wetland object class. The reason for such false alarm in Fit-FC is the smoothed 
results due to the deployment of a local linear regression model in the modeling process. Since Fit-FC uses a 
local linear regression model to capture the temporal changes and deploys spatial filtering to smooth the results, 
some spatial details are lost in the modeling process. That explains the degraded results for Fit-FC according to 
UIQI and AG in Tables 2 and 3. UIQI measures the amount of data being transferred from reference fine image 
to fused image by calculating an average of spectral and contrast similarity between the images. Besides, spec-
tral gradients decrease over smoothed predictions which affect the AG index. AG shows image intelligibility by 
representing the sum of horizontal and vertical spectral variations. Higher values show a better understanding 
of the image. However, spectral distortion over edge pixels increases the values for AG and shows better results 
with higher interpretability which is not true. That explains the higher values for AG over predicted results 
using FSDAF. PSNR is another IFQM that represents the power of distorting noise and is adjusted based on the 

Figure 4.  True color input images acquired from Khorasan-e Razavi Province; (A, B) upsampled  OLI1 and 
 OLI2, (C, D) corresponding  MSI1 and  MSI2, (E, F, G) predicted  MSI2 using Fit-FC, FSDAF, and STSR approach, 
and (H, I, J) intensity difference map between predicted  MSI2 and real  MSI2. Scale bar shows the difference 
between predicted and real  MSI2 on a 12-bit basis.
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radiometric resolution of the imaging system, which is equal to 12-bits in this study. A comparison between 
PSNR values shows promising results for all fusion methods. However, compared to other fusion approaches, 
STSR retrieves slightly more signals with less noise over impervious surfaces. In other words, the proposed STSR 
approach provides better spatial details over impervious and more complex regions compared to other methods. 
This is due to the object-based procedure towards the spatiotemporal fusion problem and the excessive number 
of objects in the Tehran dataset (Table 3 and Fig. 3).

Based on the results from Tables 2, 3, Figs. 3, 4, and 5.
Figure 5, the proposed STSR approach exerted better performance over smooth regions than impervious and 

more complex regions, which is similar to the performance of other spatiotemporal methods. STSR preserves 
spectral information better than spatial information, which is a reason for temporal changes of the objects in 
the scene between the two acquisition times. According to the intensity difference map (Fig. 5F), the spectral 
similarity of predicted and real  MSI2 images (Fig. 5D, E).

Figure 5 is a result of histogram equalization between the extracted labeled segments from the fuzzy classifi-
cation in input images, which was introduced in the SR model as a constraint. The spectral continuity over the 
extracted segments from the fuzzy classification algorithm is another advantage of the proposed STSR approach. 

Table 2.  Image fusion quantitative metrics for spatiotemporal problem for 12-bit MSI and OLI at two different 
acquisition times over different object classes for the Khorasan-e Razavi dataset. Significant values are in bold.

Object class Approach RMSE ERGAS SAM UIQI PSNR AG

SAMRG index

G R RG

Impervious surface

Fit-FC 39.095 1.599 18.73 0.9203 208.16 149.41 5.69 9.82 7.91

FSDAF 36.948 1.512 16.22 0.9717 208.65 192.98 4.07 11.23 7.44

STSR 23.593 0.965 9.25 0.9924 212.54 183.32 1.91 7.05 3.56

Farmland

Fit-FC 8.653 0.461 7.01 0.9840 221.26 111.57 2.99 5.30 4.07

FSDAF 9.496 0.506 10.59 0.9965 220.45 137.09 3.43 6.47 4.85

STSR 8.221 0.438 3.18 0.9983 221.70 125.79 1.18 1.60 1.49

Vegetated surface

Fit-FC 17.253 0.743 6.58 0.9900 215.26 97.35 2.39 5.16 3.98

FSDAF 18.692 0.805 7.09 0.9976 214.57 118.03 2.54 5.72 4.13

STSR 16.710 0.720 4.43 0.9986 215.54 117.39 2.29 3.11 2.72

Water body and wetland

Fit-FC 2.803 0.101 1.63 0.9951 231.05 90.47 0.70 1.56 1.01

FSDAF 2.971 0.107 1.78 0.9986 230.54 97.88 0.74 1.62 1.24

STSR 2.836 0.102 1.02 0.9989 230.96 98.22 0.55 0.89 0.83

Overall

Fit-FC 16.951 0.726 8.49 0.9723 218.93 112.20 2.94 5.46 4.24

FSDAF 17.027 0.733 8.92 0.9911 218.55 136.49 2.70 6.26 4.42

STSR 12.840 0.556 4.47 0.9971 220.19 131.18 1.48 3.16 2.15

Table 3.  Image fusion quantitative metrics for spatiotemporal problem for 12-bit MSI and OLI at two different 
acquisition times over different object classes for the Tehran dataset. No object class with the farmland label 
was detected in this area. Significant values are in bold.

Object class Approach RMSE ERGAS SAM UIQI PSNR AG

SAMRG index

G R RG

Impervious surface

Fit-FC 92.619 2.601 25.96 0.8544 200.66 167.31 3.35 20.64 12.29

FSDAF 81.236 2.159 21.45 0.9539 201.81 244.06 2.77 17.19 10.53

STSR 30.492 1.186 14.37 0.9896 210.32 208.25 1.88 7.38 3.71

Farmland

Fit-FC – – – – – – – – –

FSDAF – – – – – – – – –

STSR – – – – – – – – –

Vegetated surface

Fit-FC 19.568 0.307 5.36 0.9661 214.17 153.29 3.63 4.39 4.01

FSDAF 23.755 0.372 9.23 0.9913 212.48 170.98 4.52 8.07 4.84

STSR 12.776 0.200 2.95 0.9983 217.87 162.73 2.03 3.10 2.59

Water body and wetland

Fit-FC 0.909 0.104 1.97 0.9904 240.83 92.95 0.74 1.68 1.27

FSDAF 0.987 0.113 2.65 0.9972 240.11 119.06 1.52 2.23 1.95

STSR 0.813 0.093 1.44 0.9990 241.80 130.14 0.49 0.91 0.82

Overall

Fit-FC 37.699 1.004 11.10 0.9370 218.55 137.85 2.57 8.90 5.86

FSDAF 35.326 0.881 11.11 0.9808 218.13 178.03 2.94 9.16 5.77

STSR 14.694 0.493 6.25 0.9956 223.33 167.04 1.47 3.80 2.37
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Minimizing the spectral variations over each object by introducing a patch-wise covariance parameter as a spatial 
constraint eliminates the brightness shift. Therefore, the proposed STSR approach smooths extreme differences 
between spectral responses at different acquisition times, eliminating noise pixels or pixels with a remarkable 
spectral change in a patch due to temporal change to reduce spectral distortions resulting from changes that are 
not captured in OLI image.

According to Fig. 5F, spectral distortions in the fusion process mainly occur over edge pixels where objects 
with different spectral responses are adjacent. Spectral mixing is a regular phenomenon over object boundaries, 

Figure 5.  (A, B) True color  OLI1 and  OLI2, (C) true color  MSI1, (D) predicted results from the proposed STSR 
approach, (E) true color real  MSI2, (F) intensity difference map between predicted  MSI2 and real  MSI2. Scale bar 
shows the difference between predicted and real  MSI2 on a 12-bit basis.
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especially in rural and urban areas with high variation in object classes. Thus, assigning the exact object class to 
each edge pixel extracted from the fuzzy classification and approximating it with the similar object class in the 
SR model reduces the spectral distortion in the fusion results. Considering PSF is another way to predict an MSI 
from an OLI in the sense of spectral mixing. Spectral mixing of neighboring pixels caused by spatial degradation 
of data from MSI to OLI was modeled by a Gaussian blurring matrix, then added into the SR model to predict 
the unknown  MSI2. It is used to create column D from column B in Fig. 5.

Urban areas contain more impervious objects, and therefore, more spectral variations are expected due to 
high spectral variations over impervious surfaces caused by the relative position of the sun and satellite sensor 
to the observation point. Therefore, higher spectral degradation is more likely over urban and complex areas 
than areas with fewer spectral variations, such as Khorasan-e Razavi dataset. By investigating spectral quality 
metrics, e.g., RMSE, ERGAS, SAM, and UIQI in Table 2, it can be seen that IFQMs for all spatiotemporal fusion 
methods are closer to their ideal values compared to those in Table 3. Better spectral detail preservation over 
smoother areas in the Khorasan-e Razavi dataset was expected due to fewer impervious objects than the Tehran 
dataset. However, Table 3 shows that an acceptable performance can also be obtained using the proposed STSR 
fusion approach on the Tehran dataset. The proposed STSR approach eliminates spectral distortion by assigning 
the best object class to each edge candidate, and reducing spectral differences among them.

STSR presents spectral characteristics of  OLI2 and spatial characteristics of  MSI1. It prevents spectral distor-
tion over edge pixels and eliminates spectral artifacts while preserving spectral continuity over the extracted 
objects and hence, alleviating the common problem of detail loss. On the one hand, the proposed STSR approach 
preserves local changes that occurred at the time of acquisition of  OLI2 and applies it to available  MSI1 to predict 
the unknown  MSI2 considering constant covariance between images at the two acquisition times. On the other 
hand, the object-based approach reduces errors caused by the misregistration of corresponding images acquired 
at different times.

According to the intensity difference maps (Figs. 3J, 4, 5J,F), the proposed STSR image fusion approach can 
efficiently deal with temporal changes. The maximum intensity difference between predicted  MSI2 and real  MSI2 
from STSR is slightly more than 3.1% and 6.2% over regions with smooth and high spectral variations, respec-
tively. Therefore, the proposed object-based STSR image fusion approach preserves almost 96.9% and 93.8% 
(vs. 92.4 and 80.7 for Fit-FC, 93.1 and 87.5 for FSDAF), of the spectral detail of the MSI image over smooth and 
urban areas, respectively.

According to results from our proposed STSR image fusion approach, we achieved the goals we set out at the 
beginning of this study. We proposed a fuzzy classification algorithm based on membership functions to extract 
different object classes and improve spectral responses over edge pixels to prevent unrealistic predicted results. 
Then, an object-based adjustment of spatial covariances and equalization of spectral responses were made on 
extracted objects to reduce spectral distortion in predicted results. A general well-constraint spatiotemporal 
SR model was then proposed over the real input satellite data to predict fused results. Finally, results from our 
proposed approach were compared to Fit-FC and FSDAF methods that show an outstanding improvement of 
the proposed STSR approach over real satellite images compared to other methods.

Conclusions
In this study, a spatiotemporal image fusion approach was proposed to predict an unknown fine spatial resolution 
image from input real satellite data. When global fine spatial resolution images are not available, this approach 
can be used to predict dense fine spatial resolution images. For this, a set of real OLI images acquired at different 
times and an MSI acquired at the same time with one of the OLI images are selected for the proposed STSR fusion 
approach to predict the target MSI image corresponding to the other OLI image. A rule-based fuzzy classifica-
tion algorithm was proposed to improve the ability to distinguish different objects in a scene and identify edge 
candidates more accurately. Results from the proposed STSR approach were compared to those of the Fit-FC 
and FSDAF as reliable methods available in the literature.

The findings of this study showed that the object-based procedure towards the spatiotemporal fusion problem 
improves the performance of the proposed STSR approach in dealing with spatial artifacts and preserves the 
spectral continuity of extracted objects. Therefore, the proposed STSR focuses on enhancing spectral responses of 
predicted edge pixels to prevent spectral distortion in fused results. An SR model was designed and implemented 
on real input satellite data to create the proposed STSR fusion approach. An object-based estimation of physical 
constraints and brightness shift between real input data was added to the SR model to create a unified framework 
to deal with real satellite data. Due to the underdetermined nature of the spatiotemporal fusion problem for 
remote sensing applications, a well-constraint SR model with the sparsest solution is necessary. Thus, different 
object-based prior information was added to the SR model to provide sufficient constraints to use as regulariza-
tion parameters to solve the SR model. The proposed object-based STSR approach fuses spectral information 
regarding their spatial relationship and focuses on the enhancing of spectral information over edge candidates at 
the predicted result. Consequently, spectral distortion and discontinuity over continuous objects are reduced in 
predicted results. According to the results, a quantitative evaluation of the STSR approach obtained convincing 
values for both spatial and spectral quality metrics. Results from the quality assessment step show a promising 
performance of the proposed STSR approach considering spectral differences over objects between predicted and 
real fine satellite images. Evaluation of results from both study areas indicates that the proposed STSR approach 
can handle slight changes over objects made due to time. Thus, the proposed STSR approach is appropriate for 
dynamic monitoring of high-frequency phenomena over various types of LULCs.
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Data availability
Vis/NIR spectral bands of both OLI and MSI sensors are freely available to users and have global coverage. 
Sentinel-2 MSI data are accessible via the Copernicus open access  hub38 server provided by the European space 
agency (ESA), and Landsat-8 OLI data is downloaded from the USGS Earth  Explorer39 web portal. The datasets 
used in this paper are hyperlinked and available online at Tehran and Khorasan-e Razavi, respectively. Due to the 
launch of the twin satellite Landsat 9 on September 27, 2021, with a similar design to the Landsat-840, the revisit 
time of the captured imagery will soon reduce in half with the twin satellites together. Radiometric precision of 
L9 has improved to 14-bit quantization resolution compared to 12-bit for L8. However, bandwidths and central 
wavelengths for all OLI spectral bands remained the same. Fusing L8-OLI and Landsat-9 OLI-2 (L9-OLI) images 
with Sentinel-2 MSI images to achieve a continuous time series of effective Sentinel-2 observations over the 
regions with a high probability of snow and cloud contamination will be a good opportunity for future studies. 
In future researches, we will focus on the spatiotemporal fusion of the twin Landsat OLI images with the twin 
Sentinel-2 MSI images to fill existing data gaps in the time series of fine images.
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