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Overwhelming evidence has shown the significant role of the tumor microenvironment
(TME) in governing the triple-negative breast cancer (TNBC) progression. Digital
pathology can provide key information about the spatial heterogeneity within the TME
using image analysis and spatial statistics. These analyses have been applied to CD8+
T cells, but quantitative analyses of other important markers and their correlations
are limited. In this study, a digital pathology computational workflow is formulated for
characterizing the spatial distributions of five immune markers (CD3, CD4, CD8, CD20,
and FoxP3) and then the functionality is tested on whole slide images from patients with
TNBC. The workflow is initiated by digital image processing to extract and colocalize
immune marker-labeled cells and then convert this information to point patterns.
Afterward invasive front (IF), central tumor (CT), and normal tissue (N) are characterized.
For each region, we examine the intra-tumoral heterogeneity. The workflow is then
repeated for all specimens to capture inter-tumoral heterogeneity. In this study, both
intra- and inter-tumoral heterogeneities are observed for all five markers across all
specimens. Among all regions, IF tends to have higher densities of immune cells and
overall larger variations in spatial model fitting parameters and higher density in cell
clusters and hotspots compared to CT and N. Results suggest a distinct role of IF
in the tumor immuno-architecture. Though the sample size is limited in the study, the
computational workflow could be readily reproduced and scaled due to its automatic
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nature. Importantly, the value of the workflow also lies in its potential to be linked to
treatment outcomes and identification of predictive biomarkers for responders/non-
responders, and its application to parameterization and validation of computational
immuno-oncology models.

Keywords: digital pathology, image informatics, spatial patterns, breast cancer, tumor heterogeneity, immuno-
architecture, QuPath

INTRODUCTION

Triple negative breast carcinoma (TNBC) is an aggressive form
of breast cancer that is negative for estrogen receptor (ER),
progesterone receptor (PR), and human epidermal growth factor
receptor 2 (HER-2). Treatments for TNBC have historically
been confined to surgery, radiation and chemotherapies due
to the lack of biologic targets which enable endocrine therapy
(ER and PR) and targeted therapy (HER2) in other subgroups
of breast cancer. Recent studies deciphering the role of
the immune system in cancer revealed a significant effect
of the tumor microenvironment (TME) in modulating the
tumor progression, especially how the tumor hijacks the anti-
inflammatory mechanism of inhibitory immune checkpoint
molecules to develop its immune resistance and evasion
capability. These studies inspired the emergence of anti-cancer
immunotherapy by promoting the host anti-tumor immunity.
This idea has led to an array of successful treatments against
cancers. Recently, the Impassion130 study demonstrated that
first-line treatment with atezolizumab and nab-paclitaxel resulted
in an overall survival benefit in patients with advanced
programmed death-ligand 1 (PD-L1) positive TNBC, and this
is a new standard of care (Schmid et al., 2020). Meanwhile,
immune checkpoint blockade also advances the treatment
outcomes for other cancer types including melanoma (Long
et al., 2016), non-small cell lung cancer (Melosky et al., 2020),
and renal-cell carcinoma (Motzer et al., 2019). However, not
all patients experience therapeutic benefit from immunotherapy.
Heterogeneity within the TME may account for some of the
variability in patient response to immunotherapies (Klemm and
Joyce, 2015). Therefore, characterization of the tumor immuno-
architecture is a critical step toward understanding the complex
interplay between pro-and anti-tumor immunity.

Previous research indicates that the existence of tumor-
infiltrating lymphocytes (TILs) possesses a unique predictive or
prognostic value in different types of cancer (Haanen et al.,
2006; Kawai et al., 2008; Suzuki et al., 2010; Ladányi, 2015;
Lianyuan et al., 2018), including TNBC (Denkert et al., 2018)
as the infiltrating profiles are associated with favorable patient
outcomes. Specifically, high overall survival scores are often
accompanied by high levels of cytotoxic CD8+ T cells, whereas
forkhead box protein 3+ (FoxP3+) regulatory T cells and Type
2/Type 17 CD4+ helper T cells (Th2 and Th17 T cells) diminish
this effect (Fridman et al., 2011). Therefore, monitoring the
distribution of different TILs and their associations should yield
insights into how cancer progresses. Hence, further studies are
needed to elucidate the underlying mechanisms from the spatio-
temporal perspective.

Digital pathology is an emerging discipline that allows
quantitative analysis of digital images of histological specimens
using computational approaches. Digitized images provide easy
access for pathologists to high-resolution histological data with
typically gigapixel content (Al-Janabi et al., 2012). Therefore,
tissue contexts are well preserved and amenable to computer-
assisted techniques for quantitative analysis of the spatial
immuno-architecture. We started the development of a workflow
for spatial statistical analysis in a previous study with a single
immune marker for CD8+ T cells (Gong et al., 2018). The
process started with image processing, during which tumor
specimen images were segmented to map CD8+ T cells into a
Cartesian coordinate system, then the density of point pattern
within each subregion (first-order property in spatial statistics
terminology) were gathered to reveal spatial variations. For
each subregion, cell coordinates were converted into spatial
point patterns, then Thomas cluster process was fitted to
clustered patterns (assessed by complete spatial randomness
test). For the entire point pattern, cell clustering morphometrics
were performed. Collectively, fitted clustering parameters and
morphometric measurements were harvested to characterize the
immuno-architecture (Gong et al., 2018). Other investigators
examined the CD8+ T cells infiltration profile by constructing
profiles of cell pixel density vs. distance from the tumor boundary
and then used a computational model to interpret the data
(Li et al., 2019). Alternative approaches introduced the pattern
of tumor cells as a reference to measure the infiltration of
lymphocytes. CD8+ T cells and the tumor cells were colocalized
and then a series of metrics were introduced to measure the
spatial interactions such as quantifying the nearest neighbor
distribution function for two different cell types using spatial
G-function (Barua et al., 2018) and evaluating the spatial
clustering using Morisita index and Getis-Ord hotspots analysis
(Yuan, 2016). These studies adopt different metrics to interpret
spatial distributions of various entities extracted from pathology
data; spatial heterogeneity is a universally observed hallmark of
cancer whether it is gauged in terms of density, model fitting
parameters, clustering size, or infiltration level. Such variations
can also be linked to treatment outcomes to better understand
the effects of the TME and to assist clinicians in making more
accurate diagnoses.

The integration of image processing, statistical analysis, and
computational biology has already shown to be powerful in
characterizing and interpreting the spatial heterogeneity in
multiple tumor types including breast cancer (Brown et al.,
2014; Mani et al., 2016; Altan et al., 2018; Du et al., 2019;
Wong et al., 2019). Nevertheless, high dimensional quantitative
measurements of the interaction between immune markers
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and assessment of their spatial correlations have not been
conducted. Such metrics will not only provide additional
layers of tumor spatial heterogeneity information valuable for
patient stratification, but also allow us to better understand the
mechanisms behind the formation of the patterns we observe in
the TME. In this study, we propose a multi-module workflow
to quantify the spatial patterns of five immune markers that
control the functional status of T cells, on consecutive pathology
sections: CD3, CD4, CD8, CD20, and FoxP3, and from a small
patient population (n = 5) with TNBC to obtain statistically
and pathologically meaningful results. For each patient, our
workflow starts with image processing, evaluation of point
patterns from three perspectives, and implementation of region-
based characterization. To the best of our knowledge, our analysis
evaluates the heterogeneity of TNBC in a broad immune context
for the first time, therefore paving the way to the identification
of reliable predictive biomarkers and the design of innovative
therapies when properly correlated with clinical outcomes.

In addition, the cell densities derived from the workflow can
be converted to 3D numerical densities to facilitate development
and calibration of spatially resolved computational immuno-
oncology models. For example, 3D densities of different cell
types calculated from point patterns can be utilized to populate
in silico computational agent-based models (ABMs) that have the
potential of predicting spatio-temporal TME (Gong et al., 2017;
Norton et al., 2017, 2018, 2019). Such three-dimensional ABM
could be combined with Quantitative Systems Pharmacology
(QSP) models for whole patient to enable mechanistic systems
biology modeling of different drugs or combinations (Cheng
et al., 2017; Rieger et al., 2018; Bai et al., 2019; Jafarnejad
et al., 2019; Milberg et al., 2019; Wang et al., 2019, 2020;
Sové et al., 2020).

MATERIALS AND METHODS

Pathology Specimen Materials and
Methods
This study was approved by the Institutional Review Board of
the Johns Hopkins Medical Institutions. Digitally scanned slides
from a subset of previously described primary breast tumors
were evaluated (Cimino-Mathews et al., 2016). Briefly, formalin
fixed, paraffin embedded blocks from surgically resected primary
breast carcinomas with no prior neoadjuvant chemotherapy were
randomly selected from the pathology archives at Johns Hopkins
Medical Institutions (associated response data to treatment
not available). TNBC was defined as negative for ER, PR,
and the HER-2. Consecutive sections (approximately 5 µm
each) from whole tumor were individually stained for CD3
(mouse monoclonal, clone PS1, catalog no. ORG-8982; Leica
Microsystems, Bannockburn, IL, United States), CD4 (rabbit
monoclonal, clone Sp35, catalog no. 790-4423; Ventana Medical
Systems), CD8 (mouse monoclonal, clone C8/C8144B, catalog
no. 760-4250; Cell Marque, Rocklin, CA, United States), CD20
(monoclonal, clone MS/L26, catalog no. 760-2531; Ventana
Medical Systems, Tucson, AZ, United States), and FoxP3
(mouse monoclonal, clone 236A/E7, catalog no. 14-4777-80,

dilution 1:50; eBioscience; San Diego, CA, United States).
Immunohistochemically labeled slides were scanned at 20×
objective (0.49 microns/pixel) using the Aperio Scanscope AT
(Aperio/Leica Biosystems, Vista, CA, United States). Five (5)
cases of TNBC were selected for this current study based on
intact tissue integrity on the scanned images (i.e., complete cross
sections and lack of tissue folds). To simplify the analysis, two
tumor islands in Case 1 are split into Case 1A (upper left island)
and Case 1B (lower right island). Supplementary Figure S1
shows a representative biomarker panels across Cases 1–5.

Computational Methods
The overall workflow includes a central module and four
submodules (Figure 1). First, the stained (positive) cell nuclei are
detected and the tissue annotation module is launched to identify
regions of normal tissue (N), central tumor (CT), and invasive
front (IF). In this module, image registration is performed
for each case on the five slides with different labels, and raw
coordinates obtained from image segmentation are mapped to
the same reference coordinate system using the transformation
matrix. Cell densities are the output of this step, and therefore
can be directly visualized using 3D and waterfall graphical
representations to visualize intra- and inter-tumor heterogeneity.
Also, cell density vs. distance profiles can be constructed. In
the spatial point model-fitting module, for each slide, the full
point pattern is divided into smaller patches with overlaps,
and the Thomas point process model is then fitted based on
subregion data if complete spatial randomness (CSR) hypothesis
is rejected for this subregion (Baddeley et al., 2015). In the
clustering and morphometrics module, for the full point pattern
of each slide, the cell clusters are detected using a hierarchical
clustering algorithm (Tang et al., 2016). For each detected cluster,
morphometrics including convexity, circularity, and eccentricity
are calculated and recorded. In the correlation analysis module,
a clustering and degree of colocalization-based method is applied
to quantify the correlations between immune marker pairs. All
spatial statistical measurements used in this study have shown
promising application values in the context of digital pathology.
Results from these metrics are classified based on tissue type
regions and then used for statistical comparison to reveal intra-
tumoral heterogeneity. Such workflow is repeated for all cases,
thus capturing inter-tumoral heterogeneity.

Image Processing
Cell nucleus segmentation and coordinate extraction from
IHC slides
Stained (positive) nucleus segmentation is performed using
software platform QuPath (v0.2.0-m10) (Bankhead et al., 2017).
QuPath is selected for this study because it is a flexible open-
source software with well-managed version control and technical
support, and it is capable of a wide range of digital pathology
analyses. As the IHC staining may vary both between and within
each case, the image processing workflow is initiated by manual
correction to the stain estimates for each whole slide image using
the ‘estimate stain vectors’ function. Nucleus detection is then
carried out using an unsupervised watershed algorithm with
custom parameters tuned on a validation set of WSIs from Case
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1, 2, and 3. This built-in algorithm has been implemented by
a wide range of peer-reviewed studies (Bankhead et al., 2018;
Zhang et al., 2018; Acs et al., 2019a,b; Ferré et al., 2019; Habets
et al., 2019; Kather et al., 2019; Santiago et al., 2019; Berben et al.,
2020; Blagih et al., 2020; Tsakiroglou et al., 2020). Importantly,
the performance was found equivalent to commercial software
and pathologists’ manual annotations (Bankhead et al., 2018;
Acs et al., 2019b; Berben et al., 2020). While the nuclei are
identified, centroid coordinates are recorded to represent the
cells’ location. Afterward, pseudo cell objects are formed by
expanding the nuclei boundaries for 7.5 µm and then a list
of features is calculated based on intensity and morphometry
measurements. For each IHC biomarker, 25 regions of interests
(ROIs) are randomly selected for Cases 1–3 (75 in total) and
a Random Tree classifier (Breiman, 2001) is trained using the
aforementioned features by annotating regions in a subset of
subregions. The classification results are updated in the form
of color marks when each annotation is drawn. The classifier is
then validated on the remaining WSIs to ensure the robustness.
A low-resolution image in the testing set is shown in Figure 2A.
Exemplar segmentation and classification results are shown in
Figures 2B,C. Segmentation and classification settings are shown
in Supplementary Material and Supplementary Tables S1, S2.

To evaluate the performance of the image segmentation
algorithm, 20 subregions are sampled from each slide for each
case using the random sampling method. Figure 2D shows
four exemplar subregions for performance evaluation, where
red outlines indicate QuPath segmentation results and green
dots indicate manual approach. For each subregion, we also
manually detect labeled cells, and then measure the sensitivity
(recall) and precision of our algorithm. Results indicate that
there is a strong correlation between manual and automatic
approaches (Spearman’s correlation coefficient ρ = 0.978).
Details of the evaluation of QuPath can be found in the
Supplementary Material.

Registration and coordinate transformation of IHC slides
The pathology images available for this study were single label
IHC slides produced with consecutive sections from each tumor
excision. In this process, z-axis difference for each section,
location and rotation when placed onto slides, as well as
possible folding of tissue during preparation, all contributed to
discrepancies between coordinate systems of each slide from
the same patient. These discrepancies are minimized by image
registration. As the cutting sequence of these immune marker
slides was unknown, all slides are treated equally and the CD4+
slide is selected as the reference for all cases. Global automatic
registration by Matlab application “Registration Estimator” is
first performed for all pairs (Figure 3A). The registration
accuracies are manually assessed based on tissue overlap level:
among 20 registration pairs, we find that global registration
produces high accuracy for five pairs; for the remaining, the
local registration is required, which is performed using software
Icy (De Chaumont et al., 2012) (Figure 3B). Both global and
local registrations generate transformation matrices for the
corresponding regions. These matrices can be used to estimate
registration accuracy. First, global registrations are performed

for all pairs as the baseline. Next, transformation matrices
generated from global and local registrations are used to register
tissue contours, separately. Dice Similarity Coefficients (DSCs)
(Guy et al., 2019) are calculated, respectively, and cumulative
results are collected (Figure 3C). Finally, we compared the
registration accuracy by performing the Wilcoxon rank-sum
test between global and local DSC groups (Figure 3D) and
observed a significant improvement (p = 4.90e-3). Results
also show that the average global registration DSC scores for
those five pairs (0.916) are very similar to the average local
registration DSC scores (0.917). Technical details on global and
local registrations and performance evaluation can be found in
the Supplementary Material.

Measuring Intra- and Inter-tumoral Heterogeneity
Region characterization based on pathologist’s annotations
For each case, the breast cancer pathologist (AMC-M) annotated
(outlined) the tumor boundary, which was considered the
‘ground truth’ for the present analysis. Green contours
in Figure 4A and Supplementary Figure S2 indicate the
annotations for Case 1 and Cases 2–5. Annotations are
converted into coordinate sets and then registered to the
reference slide (CD4+ slide) using the transformation matrices.
Each annotation is a closed curve so that the corresponding
coordinate set can form a polygon. Next, we create a score map
by overlaying the five coregistered polygons (from five slides,
one for each immune marker) and recording the number of
polygons each pixel of the WSI resides within. Now that each
pixel is assigned a score, we apply a smoothing filter to the
score map and threshold all pixels with scores exceeding 2.5 to
determine the consensus tumor boundary. Finally, we obtain
a dense region, the contour of which functions as the averaged
boundary between normal tissue [sometimes referred to as
stroma (Tyekucheva et al., 2017)] and CT. Next, we buffered
the boundary with 0.5 mm inward and outward to create the
IF, which separates the normal tissue (N) and CT with a band
of 1 mm (Pages et al., 2009; Halama et al., 2011; Hendry et al.,
2017). Note that in some studies the region is considered 0.5 mm
wide (Gong et al., 2018; Li et al., 2019); we will show below
the quantitative implications of either assumption. Afterward,
we remove those pixels that fall within the IF from the tumor
mask, thus the contour of remaining points gives the outline
of CT. Similarly, to extract the normal tissue, we computed
the mean value of the RGB channels for each pixel. To exclude
background and noise, we set a customized threshold to rule
out high-intensity pixels. The remaining pixels contain complete
WSI foreground information, and the normal region can be
easily extracted when IF and CT pixels are removed. For all
pixels associated with each region, we obtain the outline to form
a polygon to represent the region. In this step, specimen images
and annotations from pathologist are the only inputs. Pixel
coordinate maps are generated using python. All subsequent
computations are performed using R: the point-in-polygon test
is performed using ‘point.in.polygon’ function from R package
‘sp’ (Pebesma and Bivand, 2005); the outlines are generated
using ‘concaveman’ function from R package ‘concavemann’
(Gombin et al., 2017).
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FIGURE 1 | Overall workflow of spatial pattern quantification for immune markers. The workflow is initiated by two steps, first the image processing for IHC slides to
extract coordinates of immune marker-labeled cells; second, the tissue type regions are characterized based on pathologist’s annotations of the tumor boundary and
original IHC images. The results from these two steps construct regional density profiles. The point patterns are fed to all remaining submodules to quantify intra- and
inter-tumoral heterogeneity. In the spatial model-fitting submodule, point patterns within subregions are tested for CSR, and the Thomas model is fitted to data if test
is rejected. In the clustering and morphometric submodule, point clusters are detected and multiple shape descriptors are calculated for each cluster. In the
correlation analysis submodule, a cluster-colocalization based method gauges the spatial distributions near each point to identify correlation hotspots, where highly
correlated immune marker pairs are engaged in. For each slide, the collective results from the aforementioned metrics capture intra-tumoral heterogeneity and the
analyses repeated across all cases capture inter-tumoral heterogeneity.

Whole slide image partitioning and extraction of first-order
properties
We partition the WSI into subregions for local spatial analysis
using a moving rectangular window with edge lengths of
xwindow and ywindow, which traverses the WSI with step size
of xstep and ystep. The window size should be large enough to
capture local density variations, and sufficiently small to have
multiple subregions and stationary underlying point pattern
processes. Based on these considerations, we performed fractal
analysis (see Supplementary Material and Supplementary
Figure S3) and determined the window lengths and step size as
xwindow = ywindow =0.4 mm and xstep = ystep =0.2 mm (complete
discussion is in Supplementary Material). In this study, we
define all individual rectangular areas that the moving window
has scanned as subregions. As the window is moving through the
whole slides, first-order properties such as number and density
of points are recorded for subsequent visualization and local
statistical analysis.

Measuring the heterogeneity with spatial entropy
measurement
A form of Shannon’s entropy (Claramunt, 2005) uses the entropy
as a measure of diversity of density of multiple point species in
space. This modified version incorporates the factor of distance.
Assuming that the increase of distance between same type of
points and the decrease of distance between different types of
points will result in the increase of entropy, this spatial entropy
is defined as:

HSC = −

n∑
i=1

dint
i

dext
i

pi log2 pi (1)

where dint
i is the average Euclidean distance between all points of

type i; dext
i is the average Euclidean distance between all points of

type i and the points of other types; pi is the percentage of type i
within the subregion.

For each case, we first map registered and reference point
patterns into a Cartesian coordinate system. Next, we calculate
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FIGURE 2 | IHC image segmentation, classification using QuPath and performance validation. (A) Original IHC image (Case 5, CD20). (B) Nucleus detection results
of the subregion marked in panel (A). In this process, nucleus boundaries are detected (inner red contour) and then expanded outward for 7.5 µm (outer red
contour) to form a pseudo cell. Then morphology and intensity features of the cell objects are fed to the classifier to identify positive cells. (C) Classification results of
the subregion marked in panel (C) using the corresponding classifier. Green: negative (non-stained) cells. Red: positive (stained) cells. (D) Results of manual
detection (green dots) and algorithmic detection (red outlines) are mapped together to evaluate the performance. 20 subregions are randomly sampled across the
slide. Two subregions marked in panel (C) are shown as examples.

the Hsc for the multi-type point pattern within subregions.
Collective results are then classified based on tissue type
associated with their locations. Then we examine intra- and
inter-tumoral heterogeneity of spatial entropy in each tissue
type by showing their distributions with a series of probability
density functions.

Constructing cell density versus distance profile for whole
slide image
To compute cell density-distance profiles, infiltration intensities
are quantified as the immune-marker labeled cell densities at
the corresponding distance from consensus tumor boundary

obtained in the previous step. To generate the density-distance
profile, we utilized pixel-distance based algorithm to segment
the whole tissue into multiple equal-width band sections: all
foreground pixels are classified according to their locations,
denoted as CT-, IF-, and N-pixels; for both CT- and IF-pixels,
the distance toward the IF inner (adjacent to CT) boundary
are computed; for each N-pixel, the distance toward the IF
outer (adjacent to normal tissue) boundary are computed; next
we group the pixels into multiple intervals with the interval
length of 150 µm (first interval: 0–150 µm; second interval:
150–300 µm; . . .) based on their distance value; then we
extract the shape outline for each group by computing the
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concave hull; consequently each group comprises a polygon
with 150 µm width. Minor adjustments are needed to ensure
all points within each shape outline are properly arranged so
that they can be connected in clockwise or counterclockwise
direction, if necessary.

To ensure the density-distance profile proceeds along the
direction of immune infiltration, first we assign index 0 to the
central band polygon of the IF as the reference polygon. Then
we render negative indexes, decreasing from 0 until we reach
the most distant band within the normal tissue, and render
positive indexes, increasing from 0 until we reach the most
distant polygon within the tumor. With all groups are arranged
in a consecutive numerical order that expands from the edge
of normal tissue toward the CT, the cell density is generated by
calculating the area and counting the cells inside. The described
methods are summarized in Figures 4A–C.

For all aforementioned calculations, the concave hull is
computed using a function from R package ‘concaveman’;
the pixel distance and polygon areas are computed using
the function ‘gDistance’ and ‘gArea’ from R package ‘rgeos’
(Bivand and Rundel, 2017).

Constructing cell density versus distance profile within
invasive front
The IF is segmented into sections along its own direction: the
length of central reference line is first calculated; then multiple
equispaced points along the line are sampled based on a given
interval. A Voronoi tessellation was created within the IF region
based on Euclidian distance to each chosen point. The area
of each resulting polygon and the number of cells it encloses
are computed to determine cell density, and all polygons are
indexed in a numerical order starting from 1 with the left-most
point, in a clockwise direction. The methods are summarized in
Figure 4D. The length of the reference line is calculated using the
function ‘lineLength’ from R package ‘SDraw’ (McDonald, 2016);
the length of interval is set to be 0.2 mm; the points are sampled
using the function “spsample” from R package ‘sp.’

Constructing 95% confidence interval (CI) along with the cell
density profile
Depending on the shape of whole slide images, polygons at a
certain distance may be small in size, which could result in
inaccurate estimation of the average cell density of that distance.
Therefore, to test the reliability of all average cell density point
estimates along the 2D projection, we construct a 95% CI along
the profile. For better accuracy, we assume the variance of density
between each window within one distance polygon band is equal
to the variance of the entire region with the same tissue type as the
polygon of interest, which is denoted as σ. Hence the confidence
interval can be computed according to the formula (Efron, 1981):

D ± Tc ·
σ
√

n
(2)

where D is the density of cells within a polygon, Tc is the critical
t-value. In this study Tc is defined as 1.96 (95% confidence
level); n is the number of samples, and is calculated according
to the equation:

n =
A

sl × sw
(3)

where A is the area of the polygon; sl and sw are the length and
width of the window. In this study, window size is defined as sl =

sw = 0.4 mm.
Confidence intervals are calculated along with the density

profile; however, when visualizing the data, we truncated the
portion below zero, and use 80% of the density as the threshold to
filter out locations at which the density estimates are not reliable
as the mean of the region (labeled as red dots).

Constructing the three-dimensional immune landscape
For each slide, the recorded density mapped to original locations
to construct the landscape. The entire landscape is then
characterized to reflect region-specific information (N, IF, and
CT). The landscape data visualization is implemented using
software Blender 2.80 (Hess, 2007).

Measuring the heterogeneity from spatial point pattern
process model fitting results
In our study, the local point pattern is defined as the point
pattern of the immune marker within a given subregion. For
each captured local point pattern, Complete Spatial Randomness
(CSR) is tested using the Clark-Evans test with the null hypothesis
being a uniform Poisson process (one-tailed, HA: clustered
distribution, significance level α = 0.05) (Baddeley et al., 2015).
If the pattern failed to pass the CSR test, we fit a Thomas
point process model to the local point pattern and record fitted
parameters. The model assumes cluster patterns are generated
in two steps: in the first step, a pattern of parent points within
the window is generated according to a homogeneous Poisson
process given the intensity κ; in the second step, a random
number of offspring points is generated, so that the number of
offspring points that belong to any parent point also follows
Poisson distribution with intensity µ, at the same time the
location follows isotropic Gaussian distribution with standard
deviation σ. The theoretical Ripley’s K function of the Thomas
process is:

K(r) = πr2
+

1
κ
(1 − e−

r2
4σ2 ) (4)

where r is the distance of a sample random point of the
point pattern within which the function is evaluated. For each
sub-region, the fitted parameters κ, µ, and σ are biologically
interpreted as features of the clustering pattern of immune
marker-labeled cells. κ stands for the number of labeled cell
clusters per unit area; µ is the number of labeled cells per cluster.
We further use the distance of the cell toward the cluster center
to quantify the internal cell distribution of each cluster (Thomas,
1949; Waagepetersen, 2007; Tanaka et al., 2008). We observe that
the components of distance vector are normally distributed and
independent since each point in the generated clustered pattern
is produced from an isotropic Gaussian process so that the
collective distance profile within each cluster follows a Rayleigh
distribution with a probability density function:

G(r ; σ) =
r
σ2 e−

r2
2σ2 (5)

The average moment can be calculated as

µ(r) = σ
√

π/2 (6)
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FIGURE 3 | Image registration and performance evaluation workflow, Case 1 is taken as an example for illustration. (A) Whole slide image panels with pathologist’s
annotations (green outlines) for Case 1. In this study, CD4+ slide is selected as the reference. Global registration is first applied to all registration pairs. The
performance for each pair is then evaluated manually and prepared for local registration if necessary. (B) Poorly registered slides are subject to local registration.
Slides and references are segmented into multiple subregions and using software Icy to perform local pairwise registration. (C) Transformation matrices obtained
from both local and global registrations are applied to tissue contours. For each method, the DSC is then computed between registered contours and the contours
of the reference slide. (D) Registered contours from two methods and reference contours are mapped to the same coordinates. DSC is computed by calculating
their respective and intersection areas. The Wilcoxon rank-sum test is performed when DSCs for all 20 registrations pairs are collected. The result showed that the
local registration performs significantly better than global registration (Wilcoxon rank-sum p = 4.90e-3).

and the radius of the circle where 95% of the cells would fall in is
calculated as:

Q(F, σ) = σ
√
−2ln(1− F/100) (7)

where F = 95. The CSR testing is performed using functions
“clarkevans.test” and “kppm” from R package “spatstat,”
with parameters “clustered” and “Thomas,” respectively
(Baddeley et al., 2015).

For each slide, we measure and compare spatial statistics
between different regions (intra-tumoral) and between different
cases (inter-tumoral). We use the quartile coefficient of
dispersion (QCoD) and the coefficient of variation (CoV)
to assess the variability of the metrics (density and spatial
model fitting parameters) within one slide. Furthermore,
the median value of each metric is used to represent the
corresponding case for the case-wise comparison. QCoD
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FIGURE 4 | Summary of the pixel-distance based method to generate sections for cell density-distance profiles. We use Cases 1A and 1B here for illustration.
(A) For the downsampled image, we generate a grid whose size is equal to the number of pixels. Then the center coordinate of each square is recorded to represent
the pixel. (B) For all pixels within tissues, we calculated the distance toward the tumor boundary of the corresponding case. (C) All pixels are grouped based on their
distances to generate equidistant sections. (D) To segment the invasive front, multiple equidistant points are sampled along the boundary, and each pixel within the
IF is assigned to their nearest sample point. Then all pixels associated with each sample points form a polygon to calculate density. The color codes in the right
panels indicate different sections.

and CoV are computed using the following formulas:

QCoD =
Q3 − Q1

Q3 + Q1
(8)

CoV =
σ

µ
(9)

where Q1, Q3, µ, and σ are the first quartile,
third quartile, standard deviation, and mean of
each metric.

Measuring the heterogeneity from clustering and
morphometric analysis
Immune contexture heterogeneity in the TME holds a significant
value to the study of the anti-tumor immune response
(Beck et al., 2011; Schwen et al., 2018). Therefore, we
performed immune cell cluster analysis to assess the intra-
and inter-tumoral heterogeneity. We first identify clusters
from the global point patterns using an adjusted version of
the clustering algorithm Hierarchical DBSCAN (HDBSCAN)
from R package ‘largeVis’ (Tang et al., 2016). This method
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generates the cluster hierarchy based on density-adjusted
distance connectivity, and parent and child cluster stabilities
are compared to extract clusters. The algorithm arguments
are defined as minPts (minimum cells per cluster) = 30,
and K (the number of cells in the core neighborhood) = 4.
Next, morphological analysis is performed on each previously
identified cluster by calculating shape descriptors. To describe
the structure of clusters, we introduced α-shape, which envelops
a set of points by point pairwise segments that could be
regarded as a chord of a circle with a given radius α.
To identify the α-shape which exactly harbors all points
within the given region, the value of α is increased from
10 µm until the polygon reaches the ideal size. α-shapes
are computed using the function “ashape” from R package
‘alphahull’ (Rodríguez Casal and Pateiro López, 2010). Then
the morphometrics for each cluster are calculated for the
following measurements:

Convexity: Measures the degree of the object. Convexity is
mathematically defined as:

fconvex =
Aα

Aconvex
(10)

where Aαis the area of the α-shape and Aconvexis the area of the
convex hull, generated upon the same dataset.

Circularity: Measures the roundness of the object. Circularity
is mathematically defined as:

fcircularity =
4 · π · Aα

P2
α

(11)

where Pα is the perimeter of the α-shape.
Eccentricity: Measures the degree of deviation of the object

from being circular. To generate the ellipse, we first assume
the points within each cluster follow chi-squared distribution
Q ∼ x2(k). Then the eigenvectors can be calculated from the
covariance matrix, which indicates orientations. Now the semi-
major and -minor axis lengths can be computed as:

a =
√

λ1X2
2(0.95) , b =

√
λ2X2

2(0.95) (12)

where λ1 and λ2 are eigenvalues of the covariance matrix. By this
definition, the ellipse is represented as the contour where 95% of
points were covered. Thus, the eccentricity is computed as:

e =

√
1 −

b2

a2 =

√
1−

λ2

λ1
(13)

Correlating the Spatial Patterns of Different Immune
Markers
The metrics above all referred to spatial distributions of a
single marker. However, it is of interest to know if the
distributions of cells with different markers are correlated.
For example, CD8+ cells generally inhibit tumor growth
whereas FoxP3+ cells generally promote tumor growth; if they
are colocalized their effects might cancel each other. Such

assumption simplifies the definition of T cell lineages due
to the limitations in materials and the scale of biomarker
panel. In this study, we implement a variation of the Clus-
DoC (clustering-degree of colocalization) approach to analyze
spatial correlation between different immune cell labels (Pageon
et al., 2016). We focused on the correlation between three
pairs of the spatial patterns: CD3+/CD8+, CD4+/FoxP3+,
and CD8+/FoxP3+ as representations for anti-tumor immunity
regions, immunosuppression regions, and immune-crosstalk
regions. With each pair of full point patterns, for both channels,
a DoC score is assigned to each point. This step requires the
comparison of the spatial distribution of all the neighboring
points from both channels for every single point. Centered at
each point of type A, circles with increasing radius are formed
to compute the associated density gradients of points from both
channels. Then for each point of type A, the correlations between
the density gradients between both channels are measured
by Spearman’s rank coefficient ρAB. Next, each coefficient
ρAB is converted to a DoC score by normalization using
the equation:

DoCA = ρAB · e−(
NAB
Rmax ) (14)

where NAB is the distance of the current point of type A
to the nearest neighbor of type B, Rmax is the maximum
search radius. Thus, the DoC score is bounded within [−1,
1], where 1 indicates a strong correlation (colocalization) and
−1 indicates anti-correlation (segregation). These calculations
are performed for both channels and DoC scores are then
used to identify correlated points. To select a proper DoC
threshold, we create a synthetic point pattern by shifting the
full point patterns of a given slide (we use CD8+ slide from
Case 2 in our study, but it can be any WSI within the
study cohort) to a given direction by a minor distance to
simulate a well-localized pattern pair. For simplicity, we unify
the shift directions for all points to left and with a distance
to 10 µm plus uncertainty caused by the registration error.
The averaged DoC score is then selected as the threshold.
Spatially, points with high DoC scores (correlated) are close
to other points of both channels, whereas points with low
DoC scores (non-correlated) are not close to points of at
least one channel.

In the second step, the threshold is used to select highly
correlated points for each channel. Points from both channels
are then mapped to the same coordinate system. Next, we
use the density-based clustering algorithm described in the
morphometric module to detect clusters that contain points
of both types A and B. Such clusters highlight regions with
strong mutual interactions of immune markers. The search of
neighbors for each point is calculated and accelerated using
the C++ implemented k-dimensional tree search algorithm in
Python library ‘SciPy’ (Virtanen et al., 2020); the distance of
a point to its nearest neighbor is calculated using function
‘nncross’ in R package ‘spatstat’ (Baddeley et al., 2015);
the density-based clustering is performed using function
HDBSCAN in R package ‘largeVis,’ with arguments K = 4,
and minPts = 30.
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RESULTS

Assessing Intra- and Inter-tumoral
Heterogeneity With Multiple Metrics
Immune Cell Density Distribution and Infiltration
Profiles
A summary of first-order properties analysis is shown in Figure 5.
Cases 1A and 1B are used here for illustration; both parts of
the tumor are present on the same slide but are separated. For
each slide, the region annotations (Figure 5A) and coordinates
extraction (Figure 5B) are performed first to characterize the
spatial distribution. Figure 5C shows profiles of cell density vs.
distance from the boundary in mm for each case for the five
labels. These are the immune-infiltration profiles for different
cell types. Two definitions of the IF are introduced here, with
a width equals 0.5 mm (blue vertical dashed lines) and 1 mm
(red vertical dashed lines) in accordance with pathologists’
convention. 95% confidence intervals are depicted in gray bands.
Most of the sections consist of sufficient 0.15 × 0.15 mm
windows to estimate CI; however, near the edges of the slide,
in normal tissue (N) and CT, the areas may be small resulting
in wide confidence intervals; in these cases we first exclude all
the small regions (area < 1.1 mm2) from analysis and then
we manually set a threshold with ±80% of real density to
label the remaining unreliable sections (red dots). Importantly,
we observe that the immune-infiltration profiles are unbiased
regardless of how IF is defined. The maxima for the different
immune cells are shifted from the boundary toward the CT,
but still are within the IF. In other words, the cell densities
peak around the 0.2–0.35 mm band and then drop gradually
toward the innermost of the CT. To further corroborate that
such infiltration profiles are caused by tumor heterogeneity,
we compare the actual cell distribution pattern to a binomial
distribution pattern by quadrat test. Theoretically, if a point
set is randomly generated over a region which consists of
multiple sections, then the expected number of points each
section harbored can be calculated as the total number of points
multiplied by the probability a point happened to be in this
section. Therefore, for each WSI, we harvest the actual cell counts
(frequencies) and theoretical frequencies in each section and
performed chi-square independent test. Results show that the
null hypothesis (two types of observation are independent) is
rejected by all trials, suggesting that the actual cell distribution
pattern is not a realization of randomness, rather it is driven by
heterogeneity (Supplementary Figure S4).

Waterfall plots are frequently used in other studies to present
results of clinical trials, when patients’ responses are ranked from
best to worse, using tumor size as a metric, each patient is
represented as a bar in the plot. In this case we use waterfall plot
to rank cell densities from largest to smallest, from 0.4× 0.4 mm
windows throughout the tissue, for each label with colors
corresponding to N (green), IF (red) and CT (yellow). The
results are shown in Figure 5D. Waterfall plots indicate that
CT and IF tend to have higher cell densities whereas fewer
cells tend to accumulate in N, as the left-hand side of the chart
contains more red (IF) bars and right-hand side have more

green bars; the plots illustrate a high degree of heterogeneity as
bars of different color are interspersed throughout the tissue.
As our study focuses on heterogeneity of tumor characteristics,
it is important to assess the level of heterogeneity within the
IF. Figure 5E depicts the cell density distribution of CD4+
T cell plotted as a function of the distance along the middle
of the IF; the densities are averaged over the width of the
IF of 1 mm. Clearly, the spatial heterogeneity is present not
only between different tumor regions, but also within the IF.
Again, quadrat test is performed to assess the distribution
pattern across all tessellations within each IF. Similarly, tests
reject the null hypothesis so that the tumor heterogeneity is
also the key factor that dominate the infiltration profiles in
IF (Supplementary Figure S5). We then depict the immune
landscape by visualizing the cell distribution in 3D (Figure 5F).
For each slide, we map recorded subregion densities to their
corresponding locations and generate surface plot with density
represented by magnitude and region categories represented by
different colors. 3D landscape representation directly depicts the
regional density variations. We repeat the analysis for Cases 2–5
for all five labels and the results are presented in Supplementary
Figure S6 (infiltration profiles), Supplementary Figure S7
(waterfall plots), Supplementary Figure S8 (infiltration profiles
in IF), and Supplementary Figures S9, S10 (3D plots). Note
that the cell density level in Cases 1A and 1B are significantly
higher compared to other cases, which may reflect an efficient
immune infiltration.

Spatial Entropy of Multitype Point Patterns
The results above visualize the heterogeneity of cell density
distributions within and between the different regions of the
specimens. The coefficient of variation CoV is one metric
that characterizes the level of heterogeneity. We will also use
a spatially adjusted Shannon’s entropy as a formal metric of
spatial heterogeneity. For each WSI, the point pattern for
each subregion is mapped to a Cartesian coordinate system to
form a series of multitype point patterns. For each multitype
point pattern, the modified Shannon’s entropy is calculated,
and collective statistics are presented using probability density
functions (PDFs, Figure 6). The results show clear clustering
patterns of the entropy scores around 1.5 over HSC measurement
spaces in IF across all cases. The results indicate that regions
with higher entropies are more likely to associate with IF.
Biologically, such ‘chaos’ is possibly driven by the engagement
of various components within the TME, namely the spatial
intra-tumoral heterogeneity. We also note that while the HSC
scores in CT also appear to cluster in Cases 1A, 1B, 2, 4,
and 5, the distribution in Case 3 is comparatively flatten and
is similar to N; whereas the HSC scores in N are normally
flatten with lower magnitude, the distribution in Case 5 is
intense and sharp. This phenomenon is possibly caused by
the different infiltration level of lymphocytes. An efficient
immune response can facilitate the recruitment of infiltrating T
cells into the battlefield to either fuel the immunosuppression
or promote immunoactivation, depending on the recruited
T cell subtypes. Once the infiltration barriers (as seen in
Figure 5C and Supplementary Figure S6) are broken, the
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FIGURE 5 | First-order variables statistics summary, Case 1, AB, is taken as an example for illustration. (A) Region characterization for WSI. Green: normal tissue (N);
Red: invasive front (IF); Yellow: central tumor (CT). (B) CD4+ cell density visualized using heatmap with bin size = 0.15 mm. Color code: blue to red corresponds to
low to high. (C) Cell density-distance profiles with a pop-up window for Cases 1A and 1B. Whole tissues are segmented into equidistant sections. Densities of
different immune markers are calculated for each section and mapped with their distances to the invasive boundary, respectively. 95% confidence intervals are
calculated upon the profile, and we use 80% of the density as the threshold to label those unreliable locations (red dots). Two definitions of IF are introduced here
and are indicated as vertical lines, blue: width of 0.5 mm; red: width of 1 mm. (D) Densities of subregions are visualized using waterfall plots. For each slide, the
densities are shown as bar heights, which are ranked from highest to lowest with colors corresponding to their locations. Color codes are consistent with (A).
(E) The invasive front with thickness of 1 mm is sectioned along its horizontal direction, and the same process is repeated to construct the cell density-distance
profile. (F) 3D visualization for the density of each subregion with location labels. Color codes are consistent with (A). See also Supplementary Material
(Supplementary Figures S6, S7) for additional visualizations for Cases 2–5.

Frontiers in Physiology | www.frontiersin.org 12 October 2020 | Volume 11 | Article 583333

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-583333 October 13, 2020 Time: 17:26 # 13

Mi et al. Digital Pathology Quantifies TME Heterogeneity

FIGURE 6 | Modified Shannon’s method to quantify the spatial entropy of multitype point patterns, denoted as HSC. Green: normal tissue (N); Red: invasive front (IF);
Yellow: central front (CT). For each case, full point patterns for each label are mapped to the same coordinate system and the HSC scores are measured and
presented as the PDFs. In general, the higher the HSC score is, the more disorder/heterogeneity the subregion contains. Strong heterogeneity is observed in IF as
indicated by the clustered HSC scores across cases.

FIGURE 7 | Local spatial point pattern analysis for subregions. We used a moving window to gauge local characteristics across each slide. (A,E) Original exemplar
IHC subregions. (B,F) Associated point patterns obtained from image segmentation and coordinate extraction. (C,G) K-estimation using Ripley’s border correction
for pattern (B) and (F). Clark-Evans method is performed for CSR test, pattern (F) failed to pass the test and clustering model-fitting is performed. (D,H)
L-transformation of K function and 95% confidence interval. For pattern (B), the modified Thomas clustering process model is fit to pattern (F). Results are evaluated
using Dao-Genton goodness-of-fit test (green envelope).

Frontiers in Physiology | www.frontiersin.org 13 October 2020 | Volume 11 | Article 583333

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-583333 October 13, 2020 Time: 17:26 # 14

Mi et al. Digital Pathology Quantifies TME Heterogeneity

immuno-architecture may tend to uniform and mitigate the
spatial heterogeneity within TME.

Spatial Point Pattern Model Fitting
For each subregion (Figures 7A,E), we perform the Complete
Spatial Randomness (CSR) to check whether the associated
point pattern (Figures 7B,F) follows homogeneous Poisson
distribution (Figures 7C,G); if that window failed to pass the CSR
test, we further fit the Thomas process model to the point pattern
to quantify the clustering (Figures 7D,H). In this study, we either
directly use these parameters, e.g., µ as the number of immune
marker-labeled cells per cluster, or perform transformation for
intuitive interpretation, e.g., σ2 is used to calculate the average
distances of points to cluster areas and center.

As the window is moved through the slide, local features
of spatial point patterns are quantified. Collective results are
further classified based on their regions; therefore, the variance
captures the intra-tumoral heterogeneity. Statistics for each
region are also comparable among cases, which can reveal
inter-tumoral heterogeneity. In this study, we use the following
metrics to characterize each region for each case: mean cell
density (counts/mm2), average number of cells per cluster,
mean distance to cluster core, and mean cluster area. QCoD
of the mean values for each parameter across cases are
summarized in Table 1. They collectively reflect intra- and inter-
tumoral heterogeneity.

Cell Cluster Distributions and Morphometrics
We also extend our heterogeneity analysis to a global scale
by quantifying cell clustering patterns. For each slide,
the whole point pattern is clustered using a hierarchical
clustering algorithm (Supplementary Figures S11A,B). For
each detected cell cluster, we describe and characterize the
shape by morphometrics, including convexity, circularity, and
eccentricity. We first generate the alpha-hull (Supplementary
Figure S11C) and convex hull from the point set that forms
the cluster, upon which we derive the convexity and circularity;
then we obtain the minor and major axes of the fitted ellipse
(Supplementary Figure S11D) that covers 95% of the points of
the cluster, from which we derive eccentricity.

Similar to model-fitting analysis, the regional variations
of morphometrics capture intra-tumoral heterogeneity, and
variations among cases capture inter-tumoral heterogeneity. We
use the following metrics to characterize regions, respectively:
average density of cells within clusters, average density of clusters,
nodular cluster density (Supplementary Figures S11E,G) and
elongated cluster density (Supplementary Figures S11F,H).
For each label, we use boxplots to show variations between
cases, and we perform the Wilcoxon rank-sum test between
groups. Figure 8 shows that even though IF is not always
distinguished across labels and metrics, the nodular cluster
densities and elongated cluster densities in IF are consistently
higher than N. We also observe that CD3+ and CD8+
elongated cluster densities in IF are higher than CT. Such
unique immuno-architecture may suggest that the elongated
cytotoxic T cell cluster density in IF is a potential biomarker for
further exploration.

Correlation Analysis of the Spatial
Patterns of Different Immune Markers
The threshold for classification of the degree of colocalization
(DoC) scores is determined by comparison of synthesized
colocalization pairs. Considering the overall accuracy of our
local registration algorithm is 0.976, we shift the point patterns
of CD8+ left by 0.01/0.976 mm. This results in the majority
(≥90%) of DoC for each individual point are larger than
0.84, hereby the threshold is established. In this study, two
types of correlations are considered: positive correlation means
co-occurrence of points of both channels are likely to be
observed in subjects’ neighborhood. High DoC scores of
points from both channels account for this type; negative
correlation means co-occurrence of points of only one channel
are likely to be observed in subject’s neighborhood. High DoC
scores of one channel whereas low DoC scores of the other
account for this type. Based on such criteria, we analyze
the correlations between CD3+/CD8+, CD4+/FoxP3+, and
CD8+/FoxP3+. Results are shown in Figure 9 with Cases 1A,
B as an example, and clusters are represented by outlines in
different colors.

Positive Correlations of CD3+ and CD8+ Immune
Markers Identify Possible Anti-tumor Hotspots
For each case, the DoC scores, defined by Eq. 14, are assigned
to each point of CD3+ and CD8+ markers. Next we use the
threshold established above to select points with high DoC scores
as candidates for clustering analysis using the same algorithm
in cell clustering and morphometrics module (Figures 9A,B),
and finally, the detected clusters that contain correlated cells
from two channels are defined as hotspots of correlation
and the cells within such hotspots are defined as correlated
cells (Figure 9C).

We first examined the correlations between CD3+ and CD8+
marker pairs. As Table 2 shows, the numbers of correlated
cells differ drastically from case to case, however, the ratios are
relatively consistent across cases. The density of hotspots in
the IF and CT are significantly higher than normal tissue (N)
(Wilcoxon rank-sum p = 2.20e-3 and 8.70e-3), but there is no
difference between IF and CT (Wilcoxon rank-sum p = 0.3095).
Such distribution pattern of correlation clusters of CD3+ and
CD8+ cells indicates possible sites of tumor infiltrate conferring
anti-tumor immunity (Figure 9D).

Positive Correlations of CD4+ and FoxP3+ Immune
Markers Identify Possible Immunosuppression
Hotspots
The same workflow is repeated for the CD4+ and FoxP3+ pair.
A summary of the results is presented in Table 3. Similar patterns
are observed when compared to CD3+ and CD8+ statistics.
However, the ratios of correlated cells are generally higher than
CD3+ and CD8+ pairs. The density of hotspots within IF and CT
are significantly higher than N (Wilcoxon rank-sum p = 2.20e-
3 and 8.70e-3), plus the density at IF is also significantly higher
than CT (Wilcoxon rank-sum p = 4.11e-2).

Collectively, our analysis identifies several hotspots
in which CD3+/CD8+ and CD4+/FoxP3+ pairs are
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TABLE 1 | Quartile coefficient of dispersion (QCoD), Eq. 8, for spatial model fitting parameters (range and mean).

Marker Region Density Cell/cluster Mean distance Cluster area

CD3 N 0.61–0.82 (0.67) 0.50–0.73 (0.64) 0.12–0.22 (0.16) 0.24–0.41 (0.31)

IF 0.55–0.71 (0.64) 0.67–0.87 (0.77) 0.15–0.20 (0.17) 0.28–0.38 (0.32)

CT 0.42–0.68 (0.57) 0.58–0.79 (0.71) 0.16–0.20 (0.18) 0.30–0.39 (0.34)

CD4 N 0.48–0.72 (0.62) 0.58–0.73 (0.64) 0.13–0.19 (0.17) 0.26–0.37 (0.32)

IF 0.49–0.68 (0.57) 0.64–0.90 (0.76) 0.13–0.18 (0.15) 0.26–0.35 (0.30)

CT 0.26–0.68 (0.53) 0.46–0.78 (0.65) 0.11–0.21 (0.16) 0.22–0.41 (0.32)

CD8 N 0.51–0.82 (0.61) 0.60–0.77 (0.67) 0.16–0.21 (0.18) 0.31–0.40 (0.35)

IF 0.48–0.69 (0.59) 0.59–0.83 (0.71) 0.14–0.20 (0.17) 0.28–0.38 (0.33)

CT 0.53–0.78 (0.64) 0.54–0.75 (0.66) 0.14–0.21 (0.18) 0.28–0.40 (0.35)

CD20 N 0.48–0.68 (0.59) 0.55–0.67 (0.60) 0.14–0.17 (0.15) 0.27–0.32 (0.29)

IF 0.67–0.76 (0.71) 0.65–0.84 (0.78) 0.14–0.20 (0.17) 0.28–0.38 (0.33)

CT 0.36–0.70 (0.50) 0.51–0.65 (0.61) 0.13–0.20 (0.16) 0.26–0.38 (0.32)

FoxP3 N 0.42–0.62 (0.48) 0.44–0.88 (0.60) 0.13–0.55 (0.23) 0.25–0.88 (0.42)

IF 0.52–0.63 (0.58) 0.60–0.85 (0.73) 0.16–0.24 (0.19) 0.31–0.45 (0.36)

CT 0.36–0.64 (0.50) 0.56–0.76 (0.67) 0.11–0.24 (0.18) 0.21–0.45 (0.35)

co-localized. The majority of identified hotspots are located
within the IF. Such hotspots are characterized by strong
correlations of CD3+/CD8+ and CD4/FoxP3+. These
findings further reveal a strong heterogeneity within
IF, as these two T cell subpopulations carry distinct
immune characteristics.

Negative Correlations of CD8+ and FoxP3+ Immune
Markers May Identify an Immune Response
Landscape
We analyzed the negative correlation of CD8+ and FoxP3+
immune markers as a potential indicator of immune response
landscape involving cytotoxic T cells (CTLs) and regulatory
T cells (Tregs). In this section, two types of hotspots are
defined. First, the hotspot with correlated CD8+ cells and
non-correlated FoxP3+ cells; such clusters include FoxP3 cells
that are surrounded by CD8+ cells, namely CD8-dominant
hotspot. Biologically such hotspots may indicate places where
CTLs may efficiently inhibit the strong immunosuppression
of Tregs. Second is the opposite type, namely FoxP3-
dominate hotspot, where the anti-tumor immunity is possibly
impaired by Tregs.

The identification of such landscape can contribute to
evaluating the immunotherapy treatment outcomes. Interactions
are visualized by identifying negative correlation hotspots of
two channels using previous workflow. Unlike the positive
hotspots, negative hotspots are widespread throughout the
entire tumor tissue for both types. For both types, the density
of hotspots at CT and IF (Supplementary Table S3) are
significantly higher than N (Wilcoxon rank-sum p = 1.52e-2
and 2.20e-3) but no significant difference is observed between
IF and CT (Wilcoxon rank-sum p = 0.0649). For FoxP3-
dominate hotspots, the CT and IF (Supplementary Table S4)
are significantly higher than N (Wilcoxon rank-sum p = 1.52e-
2 and 2.20e-3) and the density in IF is also significantly
higher than CT (Wilcoxon rank-sum p = 2.20e-3). Results
are shown in Supplementary Figure S12 with Cases 1 A, B
as an example, and clusters are represented by outlines in
different colors.

DISCUSSION

In this study, we proposed a digital pathology computational
workflow to systematically analyze whole slide images (WSI)
and quantify the intra- and inter-tumoral heterogeneity through
multiple metrics. We analyzed immunohistochemistry (IHC)
slides of tumor resections from five patients with TNBC. The
sample size is limited to make inferences at the population
level, but it is sufficient to look in-depth at each sample with
multiple immune markers and to develop a methodology for
spatial statistical characterization and build a platform that could
be extended to large number of samples, including multiplex IHC
and immunofluorescence microscopy (mIF). It should also be
noted that each WSI contains enormous amount of information
and large numbers of cells of different type to fulfill our need
to obtain statistically and biologically meaningful results. In
principle, this approach is consistent with personalized medicine
where inferences could be made at the level of individual patient.
For each patient, five biomarkers: CD3, CD4, CD8, CD20, and
FoxP3, were labeled using IHC staining methods. The whole
computational workflow starts with image processing: we use cell
nucleus segmentation to obtain location information of labeled
cells in their original slides and perform image registration
using a multimodal protocol to calculate transformation matrices
which map all slides to the reference CD4+ slide. We further
proposed a pixel-distance based method, and with its application,
we can characterize the whole slide into normal tissue (N), IF,
and CT. From this point, all subsequent analysis results can
be classified into tissue type/region categories to reveal intra-
tumoral heterogeneity; for each region, we compare the results
between cases for inter-tumoral heterogeneity.

By visualizing the density distributions for each slide
and spatial entropy analysis, we identified significant spatial
variations of cell densities within and across slides, which
qualitatively characterized the intra- and inter-tumoral
heterogeneity. In addition, we are particularly interested in
the spatial profiles along the direction from N through the IF
to the innermost of CT. We observe that for each slide, the cell
densities increase sharply within IF and then drop, in some
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FIGURE 8 | Relationship of cluster morphometrics between regions for specific markers. (A) Average density of corresponding immune cells within a cluster.
(B) Density of clusters within specific regions. (C) Number of nodular clusters; standard: convexity > 0.8, circularity > 0.5, and eccentricity < 0.8. (D) Number of
elongated clusters; standard: convexity < 0.3, or circularity < 0.3, or eccentricity > 0.9.

cases to a plateau and in some precipitously and exhibiting
fluctuations; hence corroborating the distinct role of IF in the
immuno-architecture. This allows us to propose a hypothesis
that the source of the immune cells in the IF is not in the
normal tissue into which the tumor grows, but rather the cells
extravasate from the tumor vasculature whose density is known
to be higher at the rim of the tumor (Stamatelos et al., 2019);

this hypothesis needs to be tested in future studies. We then fit a
spatial point process model to data within subregions to capture
local variabilities. Statistical results indicate that strong intra- and
inter-tumoral heterogeneities co-exist across our study cohort.
For each slide, we also evaluated the cell clustering using a
hierarchical based algorithm against full point patterns. We then
gauged the first-order properties and morphometrics of each
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FIGURE 9 | Results of positive correlation analysis. In this study, we analyze two pairs of markers: CD3+, CD8+ and CD4+, FoxP3+. Each marker within the
correlation pair is defined as a “channel”. (A) DoC scores distributions for Cases 1A (left island) and 1B (right island). (B) Histograms of CD3+ and CD8+ DoC scores
for Case 1A (left) and 1B (right). Red line is the predetermined threshold to select potential correlated cells. (C) Selected cells for both channels are mapped for
clustering analysis (left) using HDBSCAN algorithm. We then define those clusters that both channels are involved as correlation hotspots (right, each cluster is
represented by a colored outline). Green: normal tissue (N); Red: invasive front (IF); Yellow: central tumor (CT). (D) Statistical analysis. Top row: proportions of
correlated CD3+ and CD8+ cells and density of correlated hotspots in different regions; bottom row: same metrics for CD4+ and FoxP3+.
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cluster. Results revealed that variations are more likely to occur
in CT and IF but less likely in N. We also identified a unique
distribution pattern of nodular cytotoxic T cell clusters. As our
recent study has shown (Gong et al., 2018), the distribution
and shape of clusters have certain relations to the treatment
outcomes, thus our findings may lead to predictive biomarkers
that could eventually be used clinically when tested on a large
number of specimens. Finally, we performed correlation analysis
and discovered that the IF is multifaceted and may bear pro-
and anti-tumor functions simultaneously, e.g., with higher
expressions of CD8+ and FoxP3+ cells.

In addition to characterizing intra- and inter-tumoral
heterogeneity, the characteristics obtained from tissue samples,
such as spatial cell density profiles of different immune cells,
the magnitude of spatial cell density fluctuations, and the spatial
correlations between the densities of different immune cell types,
can facilitate development and parameterization of spatially
resolved computational immuno-oncology models. Recently,
QSP models have been applied to immuno-oncology research
as a platform for conducting virtual clinical trials (Cheng et al.,
2017; Bai et al., 2019; Jafarnejad et al., 2019; Milberg et al., 2019;
Ma et al., 2020). These models capture system scale behavior in
cancer patients and are capable of population level predictions
of disease trajectories in response to intervention. On tissue-
cellular scale, ABMs have been employed and used for spatially
explicit simulations to investigate emergent behavior arising
from interactions between cancer and immune cells, such as
spatial and spatio-temporal variations in tumor morphology

and immuno-architecture (Kim et al., 2009; Shi et al., 2014;
Wells et al., 2015; Gong et al., 2017; Norton et al., 2017, 2019;
Pourhasanzade et al., 2017; Hoehme et al., 2018; Ji et al., 2019).
When combining QSP models with ABM, cancer models can
be further enhanced by taking advantage of both model types:
while the QSP module captures whole-body temporal dynamics
including lymph nodes, blood, peripheral compartment, and
tumor, ABM simulation accounts for crucial aspects of high-
granularity features such as cancer cell clonal evolution and
TME heterogeneity. The resulting hybrid model will be able
to closely track and predict the course of cancer development,
both primary tumors and metastases, and potentially during
treatment in individual patients by incorporating patient-
specific TME characteristics, which can be quantified using our
digital pathology platform. Such synergy would enable a better
understanding of impact of spatial heterogeneities in the CT
and IF on the pathophysiological parameters and variables.
Strictly speaking, cell densities calculated directly from digitally
segmented pathology images as described in this study represent
the number of cell profiles per unit area in the tissue slide
typically with a 4–5 micron thickness, which is a common
metric in pathology, where a cell signature is a section of cell
with an area larger than the detectable threshold set in our
segmentation algorithm. However, in computational models the
cell concentrations are usually represented as the number of
cells per unit volume rather than unit area. Using methods
from the field of stereology (Weibel et al., 1966), 3D numerical
densities (NV) can be estimated from 2D density (NA) using

TABLE 2 | Statistical summary for CD3+ and CD8+ immune markers correlation analysis.

Case QDoC (DoC Score) Correlated cell counts Percentage, % Cluster density, mm−2

CD3 CD8 CD3 CD8 CD3 CD8 N IF CT

1A 0.95 0.94 71,630 66,097 23.9 25.7 0.36 3.36 2.00

1B 0.35 0.29 61,342 53,715 33.9 39.6 0.24 2.97 3.20

2 0.15 0.15 91,147 70,859 37.5 42.3 0.08 3.53 3.00

3 0.29 0.39 25,773 17,804 30.3 26.9 0 1.90 0.25

4 0.24 0.30 26,340 22,180 26.1 23.5 0.07 1.63 0.27

5 0.61 0.91 11,672 7,214 16.7 13.7 0.18 1.51 0.15

N, normal tissue; IF, invasive front; CT, central tumor.

TABLE 3 | Statistical summary for CD4+ and FoxP3+ immune markers correlation analysis.

Case QDoC (DoC Score) Correlated cell counts Percentage, % Cluster density, mm−2

CD4 FoxP3 CD4 FoxP3 CD4 FoxP3 N IF CT

1A 0.68 0.60 83,363 17,902 17.1 29.0 0.25 3.18 1.71

1B 0.40 0.36 65,267 14,719 22.5 36.5 0.12 3.31 1.62

2 0.52 0.53 59,281 15,630 15.3 23.9 0.02 2.17 1.34

3 1.30 0.39 25,172 12,085 9.0 31.8 0 2.66 0.26

4 0.85 0.90 19,385 6,547 8.8 13.0 0 0.80 0.21

5 0.87 0.49 18,596 7,586 7.5 28.6 0.15 1.57 0.18

N, normal tissue; IF, invasive front; CT, central tumor.
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the following equation: NV = NA/(t + D − 2h), where t is
the thickness of the section, D is the diameter of stained cells
(which are lymphocytes in the scope of this study), and h is
the minimum height of detectable spherical cap (which can
be derived from cellular segmentation algorithm parameters)
(Royet, 1991). In this equation, 2h in the denominator accounts
for loss of undetected parts of the cell. NV indicates number of
cells per unit volume and can directly be used to inform 3D spatial
models of tumor-immune interactions. Using this equation, one
could convert the 2D densities (in mm−2) to 3D densities (in
mm−3); in the conversion the slide thickness is typically t = 4.5–
5 µm, h = D/2−

√
(D/2)2

− Acrit/π, where Acrit is the minimum
area detectable during the segmentation, typically ∼10 µm2;
diameter values reported for T cell (5–7.1 µm) and for B cell
(5.5–9 µm) are also necessary for the conversion (Chapman
et al., 1981; Turgeon, 2005; Tsourkas et al., 2007; Strokotov
et al., 2009; El Hentati et al., 2010; Mrozek-Gorska et al., 2019;
Renner et al., 2020).

Depending on the purpose of each computer simulation, one
can either derive overall 3D density and use it to populate
the in silico TME; or if spatial heterogeneity is of interest, the
variability of cell density can be taken into account by sampling
multiple NA from different regions of the digital pathology
analysis output to initiate the simulated TME with a range of NV
values in space. After simulation, the same methods employed
in this study to analyze spatial correlations between different
cell types can be applied to virtual sections of model-generated
three-dimensional tumor, which would enable quantitative
comparisons between model-generated spatial patterns of cancer
and immune cells and patient pathology images. QSP and ABM
have been used to model the tumor growth and invasion of
several cancer types, such as melanoma (Wang et al., 2013;
Milberg et al., 2019), breast cancer (Bates et al., 2006; Bianca and
Pennisi, 2012), colorectal (Kather et al., 2017), and non-small cell
lung cancer (Jafarnejad et al., 2019).

Future work should focus on increasing the scale of the
current workflow. In this study, cells expressing CD8/FoxP3 are
considered as cytotoxic/regulatory T cells. Such loose criterion
serves the need to test the functionality of the workflow
using preliminary computational results from pathology images.
However, a comprehensive biomarker panel is required to
account for the complexity in cell lineage definition and
further to characterize the components in TME. Such materials
will be obtained in subsequent studies applied to multiplex
labeled specimens. Improving the performance of image
processing is another critical issue. We recognize the power of
artificial intelligence in digital pathology and such techniques
could be incorporated in an extension of the workflow.
For example, traditional segmentation algorithms may not
adequately distinguish cell boundaries due to staining issues.
A possibility is to introduce convolutional neural network (CNN)
trained on well-defined ground-truth (Khosravi et al., 2018).
In this study, immune markers are stained on consecutive slices
of tumor resections, therefore artifacts may be introduced such
as distortions. Registration reduces uncertainty introduced by
these artifacts, but cannot fully compensate for the location
mismatch, and errors may be introduced in derived point

patterns and subsequent analysis. Such problems can be alleviated
by harvesting data from multiplex images in the first place by
labeling different cells and molecules on the same slide; in this
case artificial location shifts, sample folds and z-axis differences
are essentially eliminated. In the tissue type characterization
step, we identified the IF by averaging annotations provided
by expert pathologist. To pinpoint IF, deep learning methods
can be applied for automated tissue segmentation. In point
pattern analysis stage, we extract copious intra- and inter-tumoral
heterogeneity information from collective slides; when correlated
with treatment outcomes, these results can provide more useful
information for pathologists and immuno-oncologists.
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