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Abstract: By using a self-designed pressure-jump apparatus, we investigated the melt solidification
behavior in the rapid compression process for poly-ethylene-terephthalate (PET), polyether-
ether-ketone (PEEK), isotactic polypropylene (iPP), high-density polyethylene (HDPE), and the
living polymer sulfur. The experimental results clearly show that crystallization could be inhibited,
and some melts were solidified to the full amorphous state for PET, PEEK, and sulfur. Full amorphous
PEEK that was 24 mm in diameter and 12 mm in height was prepared, which exceeded the size
obtained by the melt quenching method. The bulk amorphous sulfur thus obtained exhibited
extraordinarily high thermal stability, and an abnormal exothermic transition to liquid sulfur was
observed at around 396 K. Since the solidification of melt is realized by changing pressure instead
of temperature and is not essentially limited by thermal conductivity, it is a promising way to
prepare fully amorphous polymers. In addition, novel properties are also expected in these polymers
solidified by the pressure-jump within milliseconds.

Keywords: pressure jump; pressure-induced solidification; polymer; amorphous phase;
mesomorphic phase

1. Introduction

Alongside temperature and composition, pressure is another independent parameter that
determines the structure, state, and properties of materials. Fully exploiting the pressure variable
promises to add a new dimension to the scientific exploration of a broad range of fields, including
the polymer materials field [1]. The structure and properties of polymer materials are significantly
affected by pressure [2]. The crystallization, isothermal annealing, and melt quenching under high
pressure has been studied intensively in polyolefin, polyester, and polyamide [3–5]. Most polymer
materials are semicrystalline polymers composed of crystalline and amorphous phases. Figure 1
shows two routes to prepare full amorphous polymers. Cooling is the most widespread process
for the solidification of melts. It could undergo a melt-to-crystal transition or a melt-to-metastable
phase (e.g., amorphous) transition under different cooling rates, which means the rate dependence of
solidification [6,7]. Molecular dynamics simulations predict that any melt can be solidified to be a fully
amorphous solid state under a cooling rate of 1012 K/s [8]. The cooling rates of common quenching
methods are around 103–107 K/s [9]. Compression also leads to the solidification of the melts. This
process is thermodynamically symmetrical to the cooling process. As shown in Figure 1, for those
polymers whose melting temperature increases with increasing pressure, compression should lead to
the solidification of their melts. Furthermore, if the increase of pressure is sufficiently high and rapid,
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the melt should be frozen to an amorphous solid through this non-equilibrium process [10]. To obtain
a full amorphous phase, sufficiently deep supercooling and a rapid compressing rate are necessary.
That is to say that the pressure of melt should jump to a high value within a very short time. In this
process, the solidification of melt is realized by changing the pressure instead of the temperature,
so the preparation of the amorphous phase should not be limited by the thermal conductivity. In this
work, we reviewed our studies on the pressure-induced solidification of polymer melts, including
the poly-ethylene-terephthalate (PET), polyether-ether-ketone (PEEK), isotactic polypropylene (iPP),
high-density polyethylene (HDPE), and the living polymer sulfur.
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2. Experimental Apparatus and Details

Rapid compression experiments were conducted on a self-designed apparatus, which was
described in detail by Hong et al. [10]. Figure 2b is a typical run of pressure-jump, which shows
that the oil pressure in ram rises from 1 MPa to 26.5 MPa in about 20 milliseconds. The high-pressure
mold used in the pressure-jump experiments is the piston–cylinder of tungsten carbide [11]. The sample
assemblies are shown in Figure 2c. In Figure 2c, the sample was filled in an aluminum container.
The sizes of the samples are shown in Table 1. Two diameter-sized piston–cylinder molds, i.e., 20 mm
and 26 mm, were used. The pressure was estimated by the diameter of the piston and loaded forces,
with the frictions being ignored. The pressure was expected to be independent of the sample size, which
was sealed in an aluminum container. A resistance coil heater was used to produce a high temperature.
The temperature was measured by a NiCr–NiSi thermocouple. The gradient of temperature between
the sample and the detected point has been calibrated. The route of preparing amorphous materials
consisted of four steps. Firstly, sample assembly was pre-pressed to eliminate gaps, and then the
sample was heated to be molten. Secondly, the melt was rapidly compressed to high pressure through
the above mentioned pressure-jump. Thirdly, the pressure was maintained, and the sample was cooled
down to room temperature. Finally, the sample was decompressed to ambient pressure.

We performed the rapid compression experiments for PET, PEEK, iPP, HDPE, and sulfur melts.
Table 1 shows the pressure and temperature synthesis conditions of different substances [11–15].
The characterizations of the recovered samples were carried out by X-ray diffraction (XRD, X’Pert.
PRO. MPD. Philips, using Cu Kα radiation) and differential scanning calorimetry (DSC, Netzsch
DSC204 Phoenix or STA449C Jupiter, 10 K/min heating rate) [11–15].
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Table 1. The sizes and pressure and temperature synthesis conditions of poly-ethylene-terephthalate
(PET), polyether-ether-ketone (PEEK), isotactic polypropylene (iPP), high-density polyethylene (HDPE),
and sulfur. The glass transition temperature Tg and crystallization temperature Tx of the recovered
samples are also shown.

Sample Size
(Diameter, Height)

Temperature
of Melt

Terminal Pressure
of Pressure-Jump

Compression
Rate Tg/K Tx/K

PET [12] 22 mm, 4 mm 563 K 2 GPa 100 GPa/s - 371
PEEK [13] 24 mm, 12 mm 633 K 2 GPa 100 GPa/s 413.6 449.1
Sulfur [11] 20 mm, 3 mm 423 K 2 GPa 100 GPa/s 262 [14] -

iPP [15] 18 mm, 3 mm 473 K 2.3 GPa 115 GPa/s - -
HDPE 20 mm 1.8 mm 457 K 2 GPa 100 GPa/s - -

3. Results and Discussion

3.1. Solidification of Full Amorphous Phase in PET, PEEK, and Sulfur

3.1.1. PET

PET is a semicrystalline polymer composed of crystalline and amorphous structures.
The high-pressure crystallization behavior of PET has been studied intensively [16,17]. It is generally
believed that static high pressure could promote the crystallization of PET. The melting point Tm and
crystallization point Tc of PET increase sharply with increasing pressure; dTm/dP and dTc/dP are about
0.5 K/MPa [18]. This character is propitious for a deep supercooling under high pressure. The rapid
compression experiment of PET melt obtained the full amorphous PET sample. In Figure 3a, the XRD
pattern of the PET sample demonstrated that the crystalline lines almost disappear, and a smooth
diffraction band exists remarkably from 15 to 35 degrees in 2 theta [12]. The smooth diffraction band
can be resolved as two components that have peak positions at 25.578 degrees and 20.765 degrees,
respectively. The DSC trace of the PET sample in Figure 3c displayed a clear exothermic crystallization
at around 371 K and an endothermic melting at 534 K [12]. The final crystallinity is estimated to
be 48.84%, of which about 18.70% is contributed from the crystallization of the amorphous phase
at 371 K [12]. The latter proportion, 18.70%, is calculated through the enthalpy of the transition in
the exothermic valley. In order to study the structure of the crystallization product, the PET sample
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was heated at 403 K at ambient pressure for 30 min, and then detected by XRD again (Figure 3b).
The results showed that after the heat treatment, one amorphous peak remained in the sample, which
had the peak position of 24.449 degrees and another amorphous component disappeared along with
the increase in the crystalline component. On the basis of these results, it was speculated that there are
two kinds of amorphous phases that solidified after the rapid compression process. The amorphous
phase residual after heat treatment is relatively stable, which exists in a wide temperature range,
even over the melting temperature of the coexisting crystalline. Another is a metastable amorphous
phase, which can transform to the crystalline phase at a temperature of about 371 K. This metastable
amorphous phase was formed by freezing the parent PET liquid during the rapid compression.
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annealing at 403 K for 30 min. (c) Differential scanning calorimetry (DSC) curve of the PET sample [12].

3.1.2. PEEK

PEEK is a semicrystalline polymer composed of crystalline and an amorphous phase. Due to its
low thermal conductivity, bulk amorphous PEEK has seldom been reported, although the amorphous
coating with a thickness of less than 1 mm has been prepared by thermal spray techniques. The rapid
compression experiment of PEEK melt obtained fully amorphous PEEK bulk that was 24 mm in
diameter and 12 mm in thickness. Figure 4a shows the micro-XRD analysis on the cut surface of the
PEEK sample [13]. By comparison, the quenched PEEK sample was prepared by rapidly injecting the
melt to ice water, and its micro-XRD analysis is shown in Figure 4b [13]. The three measurement spots
are on the surface layer, in the middle area, and at the very center, respectively, as shown in the inset
figure. In Figure 4a, the XRD patterns exhibit amorphous character at the three measurement spots,
suggesting that fully amorphous phases were formed in the compressed PEEK sample. By contrast,
the amorphous phase exists only on the surface layer with a thickness of less than 1 mm in the quenched
PEEK sample. It is clear that the size of the amorphous PEEK is as large as 12 mm, which remarkably
exceeds the critical size in the quenching process, and is ascribed to the different solidification routes.
In the rapidly quenching method, the cooling rate of the sample inner was lower than its surface
because of the limit of thermal conductivity. So, only the surface layer solidified to a full amorphous
state, and its inner part crystallized. In the rapid compression method, the solidification of melt is
realized by changing the pressure instead of the temperature, and the pressure is homogeneously
loaded in the whole sample, so the volume of the amorphous phase thus obtained is not limited by the
thermal conductivity.
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Figure 4. The XRD patterns of PEEK samples along longitudinal section, prepared by (a) Rapid
compression; and (b) Rapid quenching of melt [13].

3.1.3. Sulfur

Sulfur is known as a living polymer. Liquid sulfur displays a reversible polymerization transition
at around 432 K, which has been interpreted as a kinetically controlled equilibrium reaction between
small cyclic monomer molecules and polymeric sulfur molecules [19]. The rapid compression
experiment of sulfur melt obtained bulk amorphous sulfur (a-S). This a-S possesses a much higher
content of polymeric chains than its parent liquid [20]. Figure 5a shows the Raman pattern of the
a-S at 273 K, which was obtained by compressing liquid sulfur at around 453 K. The Raman peaks
located at 461 cm−1 and 472 cm−1 are assigned to the bond-stretching modes of the polymeric chains’
Sµ and S8 rings, respectively [20]. Their area ratio, A461/A472, provides a reasonable fingerprint on the
content of the rings and chains [20]. The polymeric chains’ content was about 73 wt%; the majority
content is polymeric chains in the a-S [20]. This value is obviously higher than that in the parent liquid,
which was about 30 wt% at 453 K in Figure 5a [20]. This value is also obviously higher than that in the
quenched a-S, which was formed via a rapid cooling method e.g., injecting into liquid nitrogen [21].
The quenched a-S has almost the same polymer fraction as its parent liquid, since minimal structural
changes occur during the quenching process [21]. The difference in the polymer fraction causes an
obvious divergence of thermal stability between them, which will be discussed in Section 3.2.2.
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Figure 5. (a) Raman spectra of a-S at 273 K and after melting at 423 K and 453 K [20]; (b) XRD
patterns of amorphous sulfur, which is taken at room temperature with a time interval of 10 min [22];
(c) Differential scanning calorimetry (DSC) trace of a-S under 10 K/min heating rate, the inset heat flow
curve is the DSC curve in the range of 210–280 K, and the inset photo is the picture of a-S at 291 K [20];
(d) Coordination numbers evolution in the first nearest-neighbor shell of a-S during heating, the inset
figure is the polymeric chain cluster model in a-S, and the S-S bond lengths are given in Å [20].

3.2. Solidification of Other Polymer Melts

Can all kinds of polymers be solidified to a fully amorphous state? It depends on the
non-equilibrium process i.e., rapid compression and rapidly quenching, since it is a beating
against crystallization. A higher compression rate or cooling rate is more propitious to prohibit
the crystallization. However, for those with a very high tendency of crystallization, it is very difficult
to obtain its fully amorphous state. In this work, under similar compression rates with PET, PEEK, and
sulfur, the following polymers i.e., iPP and HDPE, cannot be solidified to a fully amorphous state.

3.2.1. iPP

Isotactic polypropylene (iPP) is a semicrystalline polymer with a simple chemical structure [23,24].
At ambient pressure, the monoclinic α phase is generally the majority phase observed in the
isothermal crystallization of melt [23,24]. The melting point of iPP increases sharply with an increase
in pressure [18]. This character is propitious for a deep supercooling under high pressure. The rapid
compression experiment of iPP melt obtained mesomorphic phase, which is an intermediate state
between amorphous and crystal. It was also found that the solidified structure of iPP is strongly
dependent on the compression rates. The melt of iPP was solidified by compression at different rates
varying from 0.012 GPa/s to 115 GPa/s [15]. Figure 6a shows the XRD patterns of recovered iPP
samples after rapid compression at 473 K. It was found that the α phase is solidified at a lower
compression rate, and the mesomorphic phase is solidified at a higher compression rate. More
experimental results are shown in Figure 6b. Three samples with the coexisting structures of α and the
mesomorphic phase are obtained in the third group, in which the temperature 453 K is relatively low
and near the melting point at ambient pressure. There exists a very narrow range of compression rates
within which the α and mesomorphic phases coexist; for most of the compression conditions, one of
the phases largely predominates over the other. Nevertheless, the limit of the compression rate for
forming the mesomorphic phase emerges in all of the groups, and so we supposed that there exists a
critical compression rate in the pressure-induced solidification process. The mesomorphic phase could
be observed when the compression rate is faster than it [15].
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Observed (thick solid lines) and fitting (chain lines) curves, the constituents (dotted lines and thin
solid lines) separated by the component analysis are displayed for each profile; (b) Structure of iPP
samples solidified by compressing at different pressures at different times at 453 K, 473 K, and 513 K
from the results of XRD analysis [13]. A full symbol presents the α phase, a void symbol presents the
mesomorphic phase, and a half-full symbol presents the coexisting structures of α and mesomorphic
phases (as shown in the insert XRD pattern). The insert figure displayed the structure of iPP samples
solidified with compression times shorter than 10 s at 473 K.

3.2.2. HDPE

The high-density polyethylene (HDPE) is a typical wondrously crystallized polymer [25].
The rapid compression experiment of HDPE melt was conducted. We compared the XRD and DSC
patterns of the HDPE sample thus obtained with the original HDPE sample (Mw = 130,000, Jinshan
Petrol. Chem. Co., Shanghai, China). As shown in Figure 7a, the HDPE samples display two strong
diffraction peaks at around 2θ = 21.5 degrees and 23.9 degrees, which correspond to (110) and (200)
crystal faces, respectively. The HDPE sample solidified by rapid compression has the same crystalline
structure as the original HDPE sample. We notice that the peak height ratio I(200)/I(110) is 0.37 and 0.15
for the original HDPE and the HDPE sample in this work, respectively. The relatively intensity decline
of the (200) crystal face suggests the reduction of orientation of the molecular chains. In Figure 7b,
the DSC traces show that the HDPE samples melt at around 403 K. The crystallinity is calculated
by using the equation: Xc = ∆Hm/∆Hm

0, where ∆Hm
0 is the equilibrium melting enthalpy, which

is 287 J/g, as suggested by Wunderlich [26]. The melting enthalpy ∆Hm is estimated from the area
of the melting peak, and is 225.4 J/g and 168.3 J/g for the original HDPE and HDPE sample in
this work, respectively. Consequently, the crystallinity of the HDPE samples is 78.5% and 58.6%,
respectively. Although full amorphous HDPE cannot be prepared due to its excellent crystallization
ability, it seems that the pressure affected the molecular chain orientation of the crystals and inhabited
the crystallization during the rapid compression process.
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3.3. Properties of Amorphous PEEK and Amorphous Sulfur

Compared with semicrystalline polymer, full amorphous polymer may possess some unique
properties. In addition, polymers usually become more dense under high pressure. So, it is interesting
to explore the properties and applications of these polymers.

3.3.1. Mechanical Properties of Amorphous PEEK

We tested the friction coefficient and the wear rate of the two PEEK samples i.e., the compressed
PEEK and the quenched PEEK [13]. Figure 8a displayed the friction coefficient curve as a function of
sliding distance. The friction coefficient is taken by the mean value of the friction coefficient recorded in
the last 500-m sliding distance. The profilometry traces of the wear tracks of the two samples generated
during the sliding process are shown in Figure 8b. The bulk amorphous PEEK sample exhibits a
very small friction coefficient and an almost inappreciable wear rate, which suggests that it has good
friction and wear behavior. The good friction and wear properties were ascribed to the compacted and
homogeneous structure with small ordered domains, and also the small average molecular weight [13].
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3.3.2. Thermal Stability of Amorphous Sulfur

Due to its good intermiscibility with natural and synthetic rubbers, the a-S as a vulcanizing agent
plays a critical role in the preparation of rubber goods. Compared with the quenched a-S, the a-S
prepared by rapid compression displays extraordinary thermal stability. The quenched a-S crystallizes
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very soon at room temperature [21]. For the a-S in this work, it takes about 75 min to start crystallization
at room temperature, as shown in Figure 5b [22]. What is interesting is that the a-S in this work displays
an abnormal exothermic transition to liquid sulfur. When using a heating rate of 10 K/min, the a-S
can avoid crystallization and transform to liquid sulfur directly, which corresponds to an abnormal
exothermic peak at around 396 K, as shown in Figure 5c. The glass transition temperature of a-S was
around 262 K, as shown in the inset figure of Figure 5c, so the melting of a-S is essentially a transition
from supercooled liquid to liquid [20]. Raman spectra are taken in the range of 273–473 K to investigate
its possible mechanisms [20]. The polymeric chains remained until melting, and turned into S8 rings
after melting. Figure 5a shows the Raman pattern after melting at 423 K. Synchrotron high-energy
XRD were taken in the range of 302–445 K [20]. The average first-neighbor coordination numbers
showed an abrupt drop from 1.92 to 1.81 during melting, as shown in Figure 5d. The evolution of the
chain length clearly shows that the transition was accompanied by polymeric chains breaking [20].
On the basis of these results, we speculated that the exothermic transition from a-S to liquid sulfur
likely possesses an additional exothermic contribution stemming from the chain–ring transition. Such
an abnormal exothermic phenomenon in a-S can be illustrated as the chain–ring transition coupled
with the supercooled liquid–liquid transition process [20].

4. Conclusions

On the basis of the experimental results, it was made clear that the rapid compression of melt is an
effective method to inhibit crystallization and prepare full amorphous polymers. Since the solidification
process is not limited by thermal conductivity, the size of amorphous polymers thus obtained is
expected to exceed the critical size in the rapidly quenching process. It is also prospective that the
bulk amorphous polymers thus obtained may possess some unique properties, such as exceptional
toughness and high thermal stability. It is a promising way to prepare fully amorphous polymers and
explore their properties and applications. In the future, the pressure-induced solidification of melt will
be studied in more kinds of polymers.
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