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Abstract

The importance of the hippocampal system for rapid learning and memory is well recognized, but 

its contributions to a cardinal feature of children's cognitive development – the transition from 

procedure-based to memory-based problem solving strategies – are unknown. Here we show that 

the hippocampal system is pivotal to this strategic transition. Longitudinal fMRI in children, ages 

7 to 9, revealed that the transition from use of counting to memory-based retrieval parallels 

increased hippocampal and decreased prefrontal-parietal engagement during arithmetic problem 

solving. Critically, longitudinal improvements in retrieval strategy use were predicted by increased 

hippocampal-neocortical functional connectivity. Beyond childhood, retrieval strategy use 

continued to improve through adolescence into adulthood, and was associated with decreased 

activation but more stable inter-problem representations in the hippocampus. Our findings provide 

novel insights into the dynamic role of the hippocampus in the maturation of memory-based 

problem solving, and establish a critical link between hippocampal-neocortical reorganization and 

children's cognitive development.
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Children's cognitive development is analogous to “overlapping waves”1, whereby advances 

are not characterized by broad and abrupt shifts from one stage of thinking to another, but 

rather by changes in the distributions of strategies children use for problem solving. At any 

given time, children have multiple approaches available to them: They may solve one 

addition problem by counting on their fingers and retrieve the answer to the next. The 

maturation of problem solving skills is characterized by a gradual decrease in the use of 

inefficient procedures such as counting and an increase in the use of memory-based 

strategies1-4. It has been thought that this transition occurs because the use of embodied 

procedures can facilitate the development of more advanced and efficient memory-based 

approaches, a key feature of expertise especially at early phase of knowledge acquisition1, 3. 

This pattern of strategy shifts has been found in children's arithmetic, spelling, reasoning, 

and social problem solving, among others5, 6, but our understanding of the underlying 

neurodevelopmental processes is still in its infancy. At a behavioral level, the strategy shifts 

have been especially well characterized for numerical problem solving1, 5, 7, making this 

domain an ideal model for studying the brain systems that underlie the general pattern of 

strategy shifts that characterizes children's cognitive development.

Early elementary school represents a critical period for the acquisition and mastery of 

arithmetic fact knowledge. Two decades of behavioral studies in children have demonstrated 

that a shift to memory-based problem solving is a hallmark of children's cognitive 

development in arithmetic as well as other domains1, 3, 4. Use of memory-based approaches 

to solve addition problems predicts children's later achievement in mathematics and children 

with dyscalculia do not fully transition to use of memory-based strategies8-10. Even children 

without dyscalculia show substantial variation in their transition to memory-based problem 

solving7, but nothing is known about the neural mechanisms that support more rapid gains 

in some children and slower gains in others. Importantly, arithmetic problem solving 

engages multiple neurocognitive systems, but the extent to which one region or another is 

engaged within these systems varies with children's degree of competence in the 

domain1, 9, 10. Thus, longitudinal designs spanning the shift from procedure-based to 

memory-based strategies are critical for advancing our understanding of the brain systems 

pivotal to this transition9, 10.

The brain systems that contribute to numerical competence include numerical and quantity 

representation systems anchored in core parietal circuits2, 11, 12, and working memory 

systems in fronto-parietal cortices for active maintenance and manipulation of discrete 

quantities7, 13, 14. Notably, recent studies in children have begun to emphasize 

neurodevelopmental models that go beyond parietal circuits foundational to numerical 

processing in adults. In particular, the hippocampal system appears to be critical for 

children's mathematics learning in ways that are not evident in adults who have mastered 

basic skills15, 16. But there have been no investigations into the mechanisms by which the 

functional reorganization and refinement of neural activity patterns in the hippocampus, and 

its associated cortical circuits, contribute to the development of memory-based problem 

solving skills.

Although the hippocampus is known to play a central role in memory for individual stimuli 

such as words and pictures 17, its role in the early phase of knowledge acquisition in 
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academic domains such as mathematics and language remains unknown. Influential models 

of memory formation posit that the hippocampal system fosters the gradual establishment of 

long-lasting knowledge represented in the neocortex, through its role in rapid learning and 

integration of new information into existing knowledge schema18-20. In this view, the 

hippocampus plays a critical, but time-limited, role in the early phase of knowledge 

acquisition, and this hippocampal dependence is reduced following reconfiguration of 

neocortical connections and stabilization of newly acquired knowledge – a process referred 

to as consolidation18, 21. Evidence for this model is primarily based on animal studies19, and 

how such mechanisms operate in humans, in particular during children's early learning, is 

unknown. Notably, no studies have investigated how the hippocampus supports the 

longitudinal shift from counting to memory-based problem solving in each child and 

whether its involvement is limited to the early phase of skill acquisition. Based on the 

“overlapping waves” model of cognitive development, we hypothesized that the emergence 

of memory-based problem solving would be associated with functional reorganization of the 

hippocampalneocortical system.

An important open question in developmental cognitive neuroscience is how newly acquired 

labile skills and knowledge are transformed into more stable representations5, 18. 

Localization of brain activation has been the mainstay of approaches for examining 

functional reorganization with learning. This approach has provided useful information 

about the engagement of specific brain areas during problem solving, but it offers limited 

insights into the stability of the underlying neural representations. To mitigate this limitation 

we use novel trial-by-trial multivoxel pattern stability analyses22, 23 to investigate how 

neural representations of individual problems get refined with shifts to memory-based 

problem solving. We hypothesized that the hippocampal system would show more stable 

inter-problem representations with the continued development of memory-based problem 

solving during adolescence and adulthood.

Here we test these hypotheses by integrating longitudinal and cross-sectional fMRI and 

behavioral strategy assessment of arithmetical problem solving in 28 typically-developing 

children (ages 7–9) at two time points over a 1.2-year period, 20 adolescents (ages 14–17), 

and 20 adults (ages 19–22) (Fig. 1a-b; Table S1). We focused on arithmetic problem 

solving, because, as noted, strategy transitions in this domain are well understood and occur 

prominently within the age ranges we assessed in the longitudinal component. Participants’ 

problem solving was assessed using a well-validated trial-by-trial measure which classified 

strategies based on self-report and experimenter observation24, 25 (Online Methods). We 

conducted two fMRI experiments: one involving a block design to maximize efficiency and 

sensitivity26 for examining overall task-related brain activation and connectivity associated 

with the transitions to memory-based strategies, and second, an event-related design to 

capture multivoxel activation patterns between arithmetic problems using innovative trial-

by-trial stability analysis22, 27. The two-fMRI tasks provided complementary information 

about the maturation of brain response, connectivity and stable inter-problem 

representations. Consistent with our hypotheses, children's use of memory-based strategies 

increased and use of counting strategies decreased over the 1.2-year interval, a pattern that 

continued into adolescence and adulthood. In parallel, we observed significant functional 
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reorganization of the MTL-neocortical system, characterized by changes in hippocampal 

activation, functional connectivity and inter-problem representation stability. Our findings 

provide the first evidence for the emergence of fine-tuned hippocampal-neocortical circuits 

and stable brain representations leading to adult-like memory-based problem solving skills, 

and establish a novel link between hippocampal-neocortical systems and a cardinal feature 

of children's cognitive development.

Results

Longitudinal changes in strategy use during childhood, and further development through 
adolescence into adulthood

Longitudinal changes in children's problem solving between ages 7–9 involved increased 

use of memory-based strategies (t(27)=2.43, P=0.02) and decreased use of counting 

strategies (t(27)=– 2.16, P=0.04). Cross-sectional comparisons between children at Time 2, 

adolescents, and adults revealed that the transition to memory-based problem solving 

continued into adolescence and adulthood (F(2, 65)>3.78, Ps<0.028) (Fig. 1c). Post-hoc 

comparisons revealed greater memory-based strategy use in adolescents and adults than in 

children (Scheffe's Ps<0.03). These results indicate that children's arithmetic skill 

development is characterized by gradual changes in the distributions of strategies from 

childhood through adolescence into adulthood, with use of counting strategies decreasing in 

frequency and use of memory-based strategies (i.e. “retrieval fluency”) increasing in 

frequency.

Longitudinal changes in fMRI task performance during childhood

We then examined longitudinal changes in accuracy and reaction times (RTs) from the block 

and event-related fMRI experiments in children. Separate repeated analyses of variance 

(ANOVAs) for accuracy and RTs in the block fMRI task (Fig. 1d), with Task (Addition vs. 

Control) and Time (Time-1 vs. Time-2) as within-subject factors, revealed a main effect of 

Task for accuracy and RTs (F(1,27)>13.04, Ps<0.001), and a main effect of Time for RTs 

(F(1,27)=14.82, P<0.001). Follow-up tests revealed that children had lower accuracy and 

slower response in solving Addition than Control problems (t(27)<–4.64, Ps<0.001) and that 

children became faster (t(27)>2.65, Ps<0.013) over time (Fig. S1a-b).

Longitudinal changes in the event-related fMRI task showed the same pattern; Task effects 

for accuracy and RTs (F(1,19)=46.24, Ps<0.001), and a main effect of Time for RTs 

(F(1,19)=28.43, P<0.001), with significant gains in RTs from Time-1 to Time-2 (t(19)=6.87, 

Ps<0.001). Notably, we observed Task-by-Time interactions for both accuracy and RTs 

(F(1,19)>4.97, Ps<0.04) (Fig. S1c-d), with larger improvements in solving Addition 

(accuracy: t(19)=2.50, P=0.022; RTs: t(19)=5.63, P<0.001) than Control (accuracy: 

t(19)=0.68, P=0.50; RTs: t(19)=4.34, P<0.001) problems. Detailed results are provided in 

Supplemental Materials. In sum, convergent results from the behavioral, block and event-

related fMRI tasks provide robust evidence that children's problem solving skills improved 

significantly over the 1.2-year interval.
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Developmental changes in fMRI task performance from childhood through adolescence 
into adulthood

Analysis of cross-sectional behavioral data revealed main effects of Group for both accuracy 

and RTs in the block and event-related fMRI tasks (F(2,65)>12.28, Ps<0.001) (Fig. 1d, Fig. 

S1a-d), with higher accuracy and faster RTs in adolescents and adults compared to children 

(F(2, 65)>46.79, Ps<0.001). Critically, we observed significant Task-by-Group interactions 

for both accuracy and RTs (F(2, 65)>6.26, Ps<0.003), with larger developmental 

improvements for Addition (Ps<0.001) than Control (Ps<0.01) problems (Fig. S1a-b). The 

same pattern of results was found in the event-related fMRI task (Fig. S1b,d). Detailed 

results are provided in Supplemental Materials. These results provide robust evidence for 

improvements in problem solving skills from childhood through adolescence into adulthood.

Longitudinal changes in hippocampal and prefrontal-parietal engagement during 
childhood

Next, we examined longitudinal changes in children's brain response during addition 

problem solving from Time-1 to Time-2. Collapsing data across the two time points, we 

found a widely-distributed network of brain regions involved in solving addition problems, 

including the prefrontal cortex, parietal cortex, MTL, as well as the striatum and cerebellum 

(Table S2, Fig. S2). Compared to Time-1, children at Time-2 showed significantly higher 

activation in the bilateral hippocampus (peak at [28,–20,–18] and [–26,–22,–16], MNI 

coordinates thereafter) (Fig. 2a). In contrast, they showed reduced activation in the bilateral 

dorsolateral prefrontal cortex (DLPFC), left superior parietal lobule and right posterior 

parietal-occipital cortex (Fig. S3 and Table S3), brain areas implicated in working memory, 

executive control, and use of effortful counting strategies12, 13.

A follow-up region of interest (ROI) analysis of each child's longitudinal trajectory revealed 

that 23 of 28 children showed an increase in hippocampal activation over the 1.2-year period 

(Fig. 2b). Analysis of a priori anatomically-defined ROIs (Fig. 2c) spanning the entire long 

axis of the hippocampus also revealed a significant increase in hippocampal engagement 

(left: t(27)=2.39, P=0.02; right: (t(27)=3.26, P<0.01) (Fig. 2d). These results point to a 

robust longitudinal increase in hippocampal engagement and decrease in prefrontal-parietal 

engagement during problem solving, which parallel the shift from effortful counting to 

efficient memory-based strategies.

Longitudinal changes in hippocampal-neocortical connectivity predict improved memory-
based problem solving

We then investigated how changes in hippocampal engagement and its connectivity with the 

neocortex contribute to children's transition to memory-based problem solving. Despite 

significant longitudinal increases in hippocampal engagement, changes in hippocampal 

activation were not predictive of individual improvements in children's retrieval fluency, 

accuracy, or RTs. Rather, increases in children's retrieval strategy use were predicted by the 

degree of hippocampal connectivity with other brain areas (Fig. 3a-c). Specifically, we 

examined longitudinal changes in hippocampal connectivity with every voxel in the brain28 

(Online Methods). We observed significant increases in hippocampal functional 

connectivity with dorsolateral, ventrolateral and ventromedial prefrontal cortex, and anterior 

Qin et al. Page 5

Nat Neurosci. Author manuscript; available in PMC 2015 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



temporal cortex over time (Fig. S4ac; Table S4). Critically, individual improvements in fact 

retrieval fluency were significantly correlated with the strength of hippocampal connectivity 

with multiple prefrontal and parietal cortex areas, including left and right DLPFC and left 

intra-parietal sulcus regions (Fig. 3d-f; Table S4) widely implicated in arithmetic problem 

solving4, 11, 12, 29, 30. Using machine learning algorithms with cross-validation16, 31 (Online 

Methods), we confirmed that individual improvements in children's retrieval fluency from 

Time-1 to Time-2 could be reliably predicted by longitudinal changes in functional coupling 

of the hippocampus with the left DLPFC (r(predicted, observed) = 0.53) and right DLPFC 

(r(predicted, observed) = 0.71) and left intra-parietal sulcus (r(predicted, observed) = 0.51) (Table 

S5). These results demonstrate that changes in hippocampal-neocortical functional circuits, 

rather than hippocampal activation levels, underlie individual gains in use of memory-based 

problem solving.

Developmental changes in hippocampal engagement from childhood through adolescence 
into adulthood

To characterize how hippocampal engagement during arithmetic problem solving unfolds 

with longer-term development, we examined cross-sectional fMRI data from children 

(Time-2), adolescents and adults at the whole brain level (Fig. S5; Table S6). This analysis 

identified a cluster in the right hippocampus (peak at [32,–16,–18]) that showed a significant 

omnibus Group effect (Fig. 4a-b; Table S7). A follow-up ROI analysis confirmed a main 

effect of group (F(2,65)=8.61, P<0.001), with larger hippocampal engagement for children 

at Time-2 compared to adolescents and adults (Scheffe's Ps<0.009). There were no 

differences between adolescents and adults (P=0.87), nor between them and children at 

Time-1 (t(46)<1).

Additional analyses using anatomically-defined hippocampal ROIs again revealed a main 

effect of Group in the left (F(2,65)=3.35, P=0.04) and right (F(2,65)=3.91, P=0.025) 

hippocampus (Fig. 4c). The strongest engagement was observed in children at Time-2 

(Scheffe's Ps<0.05), with no differences between adolescents and adults (P=0.68). These 

developmental changes were independent of general performance improvements (Fig. S6). 

Together with longitudinal fMRI data, these results demonstrate that hippocampal 

engagement during problem solving increases initially during middle childhood and 

subsequently decreases reaching adult-like levels by adolescence.

Maturation of neural representational stability from childhood through adolescence into 
adulthood

To further investigate the maturation and stabilization of neural representations underlying 

arithmetic problem solving, we analyzed event-related fMRI data acquired from a subgroup 

of 20 children, as well as the entire group of adolescents and adults (Fig. 5a). We 

implemented an innovative multivariate pattern analysis which provides a measure of the 

stability of neural representations, by examining trial-by-trial similarity of multivoxel 

activation patterns (Fig. 5c) associated with each correctly solved problem. This approach 

has superior sensitivity and reliability for capturing fine-grained spatially distributed 

activation patterns associated with learning and memory22, 23, 27. We first performed a 

whole-brain analysis using a searchlight algorithm27, 32 to determine which brain areas 

Qin et al. Page 6

Nat Neurosci. Author manuscript; available in PMC 2015 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



exhibited developmental changes in inter-problem stability. This analysis revealed that the 

left and right hippocampus (peak at [–24,–12,–14], [–22,– 32,–4]; [22,–14,–14]) showed 

significant increases in inter-problem multivoxel pattern stability from childhood through 

adolescence into adulthood. Increased inter-problem stability was also observed in multiple 

prefrontal and temporal regions (Fig. S7 and Table S8).

Additional analyses using anatomically-defined hippocampal ROIs again revealed 

significant developmental changes in inter-problem representation stability in the left and 

right hippocampus in children (Time-1 or Time-2), adolescents, and adults (F(2,57)>3.35, 

Ps<0.04) (Fig. 5b-e). Follow-up analyses revealed no differences between children at 

Time-1 and Time-2, but higher inter-problem stability in the left and right hippocampus in 

adolescents and adults compared to children (Scheffe's Ps<0.05). We observed similar 

results even after equating the number of correct problems across groups (Fig. S7a-d, Table 

S9). In sum, converging results from the whole-brain and ROI analyses indicate that inter-

problem multivoxel patterns in the hippocampus become significantly more stable with 

development, reaching adult-like levels during adolescence.

Discussion

By integrating unique longitudinal and cross-sectional brain imaging data with behavioral 

strategy assessments, we examined the functional maturation of brain systems underlying 

the transition from counting to memory-based problem solving. Consistent with the 

“overlapping waves” model, children's use of memory-based strategies increased and use of 

counting strategies decreased over time. The MTL-neocortical system emerged as a key 

locus supporting this transition, characterized by increased hippocampal engagement, 

decreased prefrontal-parietal engagement, and increased functional connectivity between the 

hippocampus and multiple cortical regions. Crucially, increased hippocampal connectivity 

with prefrontal-parietal circuits predicted longitudinal gains in retrieval fluency. Beyond 

childhood, overall hippocampal engagement decreased through adolescence into adulthood. 

Remarkably, inter-problem multivoxel activation patterns in the hippocampus became more 

stable, reaching adult-like levels by adolescence. Our findings point to a pivotal role of the 

hippocampus and its functional circuits, in both the early emergence of children's memory-

based problem solving and in the fine-tuning and stabilization of local-circuit 

representations in the development of adult-like problem solving by adolescence.

Longitudinal changes in hippocampal-neocortical engagement in the transition to 
memory-based problem solving

A shift from the use of counting to memory-based strategies was observed in children over a 

1.2-year interval, and crucially, was associated with increased hippocampal engagement in 

problem solving. During this period, children showed decreased prefrontal-parietal 

engagement as observed in previous cross-sectional studies33, 34. The greater prefrontal and 

posterior parietal recruitment at Time-1 likely reflects high levels of working memory and 

executive processing needed for implementing counting strategies7, 25, at a stage when 

children are still learning to solve arithmetic problems5, 35, 36. The increased hippocampal 

engagement is consistent with its known role in learning and memory for encoding and 
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retrieval of facts and events17, 18, 21, and matches our observation of greater reliance on 

memory-based retrieval of addition facts from Time-1 to Time-2. Thus, our longitudinal 

findings suggest that the recruitment of hippocampal-dependent memory processes plays an 

important role in the development of children's memory-based problem solving strategies.

Our findings point to a significant shift in the engagement of the hippocampal-dependent 

memory system, and concomitant decrease in the engagement of the prefrontal-parietal 

working memory system, consistent with our behavioral findings of a strategy shift to 

declarative memory-based retrieval during the early stages of arithmetic learning and skill 

acquisition1, 3. Although no such longitudinal studies have yet been performed, a similar 

process may also apply to other academic domains and to language acquisition in young 

children37, 38. Our findings are a significant advancement over previous cross-sectional 

studies17, 18, and provide the first longitudinal evidence for the importance of the 

hippocampal-dependent memory system in children's cognitive development.

The developmental origins of the emergence of hippocampal activity and strategy shifts lie 

in children's educational experiences involving considerable practice with problems of the 

type used in our study39. One possibility, consistent with the known functions of the 

hippocampus17, 18, 40, is that children learn to associate individual problems with the correct 

answers. Repeated problem solving during the early stages of arithmetic skill development 

also contributes to memory re-encoding and consolidation, thus resulting in enhanced 

hippocampal activity and ability to recall basic arithmetic facts4, 16, 35. It is also noteworthy 

that our findings are consistent with theoretical and computational models of early cognitive 

development which posit that children learn and acquire knowledge through experience-

dependent plasticity in the MTL memory system38, 41.

Longitudinal changes in hippocampal-neocortical connectivity predict children's gains in 
memory-based strategy use

Coordinated interactions between the hippocampus and neocortex are known to play an 

important role in memory formation and knowledge acquisition18, 19. In conjunction with 

the longitudinal increase in hippocampal engagement, we observed that increased 

hippocampal functional coupling with prefrontal and parietal cortices was positively 

correlated with individual gains in use of memory-based strategies. Moving beyond standard 

regression approaches, prediction analyses based on machine learning algorithms further 

confirmed that changes in hippocampal functional coupling with prefrontal-parietal systems 

indeed predicted longitudinal gains in fact retrieval fluency. These results suggest that 

hippocampal-neocortical functional reorganization, rather than changes in regional 

activation by themselves, play an important role in children's shift from effortful counting to 

more efficient memory-based problem solving. Consistent with this view, a recent study 

found that increased intrinsic connectivity of the hippocampus with the neocortex predicted 

performance gains after 8 weeks of mathematics tutoring in children ages 7 to 916. More 

broadly, hippocampal-neocortical interactions have been implicated in human episodic 

memory17, 21 and early stage of conceptual learning in adults18, 42, but there has been 

limited evidence for its role in the development of children's memory-based problem solving 

skills. Findings from our longitudinal study in children thus establish a link between 
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hippocampalneocortical functional reorganization and the emergence of memory-based 

problem solving during childhood.

Developmental changes in hippocampal engagement and inter-problem representational 
stability

Beyond childhood, use of memory-based strategies continued to improve, reaching an adult-

like level during adolescence. Following the initial increase in hippocampal engagement 

during middle childhood, this hippocampal dependency decreased during adolescence and 

adulthood despite further improvements in memory-based problem solving. This pattern of 

initial increase and subsequent decrease in activation provides novel support for models of 

long-term memory consolidation which posit that the hippocampus plays a time-limited role 

in the early phase of knowledge acquisition18, 19. Consistent with this pattern of 

developmental change, previous studies of adults have reported no reliable hippocampal 

engagement in basic arithmetic tasks. Together with the above longitudinal results, our 

findings suggest the hippocampal system is critical to children's early learning of arithmetic 

facts15, 35, the retrieval of which is largely dependent on the neocortex in adults12, 33, 43. 

Through further schooling and experience with mathematics, fact retrieval becomes 

increasingly independent of the hippocampal memory system during adolescence and 

adulthood.

Our observed changes in task-related mean activation and connectivity provide insights into 

hippocampal-neocortical functional reorganization underlying the shift to memory-based 

problem solving, but leave unclear the nature of neural processing and stability of 

representations associated with solving of individual problems. Although mean hippocampal 

activation decreased during adolescence, we observed that inter-problem pattern stability in 

the hippocampus, prefrontal and temporal cortices increased with the refinement of 

memory-based problem solving from childhood to adolescence and adulthood. Our findings 

complement univariate analysis of mean activation and connectivity and provide novel 

evidence that hippocampal multivoxel patterns become more stable with skill development.

Critically, our results show for the first time that with development, neural representations of 

basic arithmetic facts become more stable during adolescence and adulthood. At that point, 

although retrieval of arithmetic facts no longer requires the same level of engagement of the 

hippocampus-dependent memory system, the manner in which it is engaged becomes more 

stable across individual problems. This pattern of results is consistent with recent adult 

studies in memory encoding and retrieval tasks that found that greater pattern similarity 

across stimuli in the MTL predicts better behavioral performance, through strengthening of 

discrete information distributed over neocortical regions26, 27, 45. These developmental 

changes likely reflect fine-tuned integration and reconfiguration of local functional circuits 

through experience-dependent plasticity44-46. Our findings provide new insights into the 

mechanisms by which the hippocampus contributes to the maturation of memory-based 

problem solving skills from childhood through adolescence into adulthood and to knowledge 

acquisition in academically relevant domains such as mathematics.

Finally, it should be noted that while the multivariate approach we used has been 

demonstrated to have superior sensitivity to capture fine-grained activation patterns across 
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spatially distributed voxels22, 27, the precise neuronal mechanisms underlying formation of 

such stable multivoxel patterns remains unknown. Further studies with high-resolution 

imaging and dense neuronal recordings are needed to clarify the neural basis of the 

“representations” detected here.

Conclusion

By characterizing parallel changes in task-related brain activation, functional connectivity as 

well as stability of distributed neural representations with development, our study provides 

new insights into the mechanisms through which hippocampal-neocortical functional 

reorganization promotes the shift from use of effortful procedure-based to more efficient 

memory-based problem solving from childhood through adolescence into adulthood. More 

broadly, our study elucidates key neurobiological mechanisms underlying a cardinal feature 

of children's cognitive development.

Online Methods

Participants

A total of 68 children, adolescents and adults participated in this study. Twenty-eight 

typically developing children participated in a longitudinal fMRI study, and twenty healthy 

adolescents and twenty healthy young adults participated in a cross-sectional fMRI study. 

All participants were right handed, and no history of neurological or psychiatric diseases and 

no current use of any medication. Twenty-eight children (15 boys and 13 girls) were 

scanned twice (once at Time-1 and once at Time-2) separated by an interval of 

approximately 1.2 years. To minimize age-related variability within each group, children 

were selected from narrow age range of 7 to 9 (at the first time point; mean age, 8.26 ± 

0.53), adolescents and adults were selected from narrow age ranges of 14 to 17 (mean age, 

15.61 ± 1.40) and 19 to 22 (mean age, 20.50 ± 1.07), respectively. All participants had 

intelligence quotient (IQ) above 95 and below 135, as measured by the Wechsler 

Abbreviated Scales of Intelligence (WASI). Verbal, performance and full scale IQ scores 

were normalized according to each participant's age. Participants with dyscalculia or poor 

mathematics achievement, as assessed by the Wechsler Individual Achievement Test 

(WIAT-II) and attention deficit hyperactivity disorder (ADHD), as assessed by the Child 

Behavior Checklist (CBCL), were excluded. Participant demographics and statistics, 

including age, IQ and gender, are summarized in Table S1. The study protocol was approved 

by the Stanford University Institutional Review Board. Written informed consent was 

obtained from each participant as well as the child's legal guardian prior to their 

participation. Participants with root mean squared head motion, exceeding a voxel's width 

during MR scanning, were excluded from further analyses.

Children were recruited from elementary schools in the San Francisco Bay Area as part of a 

prospective longitudinal imaging study of cognitive development. Following behavioral and 

cognitive assessments and MRI scanning at Time-1, all potential participants were invited 

back for Time 2 assessments and MRI scanning approximately one year later. We included 

any child who had good quality behavioral and brain imaging data (see details below) at 
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both time points. Adolescents and adults were recruited from high schools and community 

colleges around the Stanford University campus.

General experimental procedures

Each participant performed two single-digit addition problem solving tasks. The first 

involved verbal production of the answer to the problem (e.g. “3 + 8”), during which trial-

by-trial strategy assessments were assessed outside the MRI scanner. The second was an 

arithmetic verification task which was performed during fMRI scanning (Fig. 1a-b). Details 

of the two arithmetic tasks are described below.

Strategy assessment

In the strategy assessment task, each participant's mix of strategies for solving standard 

single-digit addition problems was assessed using a standardized, well-validated trial-by-

trial measurement that classified strategies based on experimenter observation and 

participant's self-report24, 25. In this task, a set of 18 addition problems was carefully 

designed by selecting two addends from 2 to 9 (e.g., “2 + 9 = ?”), and sums ranging from 6 

to 17. Problems with two identical addends (e.g., “5 + 5”) or with addends of 0 and 1 (e.g., 

“8 + 1” or “8 + 0”) were excluded, because they are known to evince less strategy 

variability7, 24, 35. Half of the problems were randomly presented in larger addend plus 

smaller addend format (“9 + 2 = ?”), and the other half were presented in the opposite 

format (“3 + 8 = ?”).

During strategy assessment, 18 problems were centrally presented one by one on the 

computer screen, and there was no repetition within the set. Participants were asked to solve 

each problem without the use of paper and pencil as quickly as possible and to verbally state 

the answer out loud. Note that participants were explicitly instructed to use whatever 

strategy was easiest for them to get the answer. Participants were also asked to report how 

they solved each problem immediately after stating the answer. For each problem, the 

experimenter took detailed notes of overt signs of counting, such as finger usage, lip 

movement, or audible counting, and these were compared against each participant's self-

report of how the problem was solved. Based on each participant's self-reported strategy and 

experimenter's observations, mixed strategies for solving addition problems were classified 

into two major categories of interest – “counting” (such as counting fingers, verbal counting, 

count by numbers, or counting in mind), and “direct retrieval” (such as just know, 

remember, or guess responses). Trials in which the experimenter noted overt signs of 

counting even when the child reported a retrieval strategy were classified as a “counting” 

trial. For each participant, we computed the proportion of trials in which memory-based 

direct retrieval or counting strategies were used, and remaining trials were endorsed into a 

category of no interest. This approach allows us to quantify the frequency of memory-based 

strategy use, i.e. “retrieval fluency”, which provides a reliable assessment of putative 

memory-based strategy use in arithmetic problem solving7, 24.

Block design fMRI task

Participants solved an arithmetic verification task7, 35 during fMRI scanning. We used a 

block design fMRI paradigm to optimize signal detection and task-dependent functional 
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connectivity analysis26. The task consisted of sixteen blocks with four alternating conditions 

- solving standard single-digit addition problems (e.g., ‘5 + 9 = 14’), solving ‘plus 1’ (e.g., 

‘5 + 1 = 6’) as a control addition condition, identifying the number “5” in a string of 

symbols and numbers, and passively viewing fixation. In the standard addition condition, 

equations with two different single-digit addends (e.g., ‘5 + 9 = 14’) were presented on the 

center of screen for 5 seconds, and participants were asked to judge whether the current 

equation was correct or not by a button press. Half of the equations were correct and the 

other half were incorrect. In each equation, one addend varied from 2 to 9 and the other 

varied from 2 to 5. Equations with two identical addends (i.e., tie problems) such as “5 + 5 = 

10” were excluded. To avoid large variations in difficulty for addition equations, incorrect 

answers were restricted to a deviation by ±2 or ±1 from the correct answer, and the range of 

values of the smaller addend was restricted to ≤ 5 to allow children to execute the minimum 

counting strategy within the allotted 5-sec window provided for each problem in the 

scanner15, 35. The control addition task was the same as the addition task except that one 

addend ranged from 2 to 9 whereas the other was always “1” (e.g., 5 + 1 = 7). We used the 

“n + 1” problem as a control task based on our previous studies15, 35, as its format is very 

similar to the standard addition task and requires the same level of response selection. 

Importantly, it is already known that children show less variability in strategy use for 

solving “n + 1” problems, making it an ideal control task for our study4, 35.

In each condition, equations were displayed on the center of the screen for 5 sec with an 

inter-trial interval of 500 msec. There were 18 trials of each task condition, broken up into 

four blocks of four or five trials; thus, each block lasted either 22 or 27.5 sec. The order of 

the blocks was pseudo-randomized across participants with the standard addition and control 

addition blocks always separated by either a number identification or a passive fixation 

block. Orders of addition and non-addition conditions were equally likely. The total length 

of the experimental run was 6 min and 36 sec.

Event-related fMRI task

After the block design fMRI experiment, participants underwent to an event-related fMRI 

while they were performing a similar arithmetic verification task. The event-related fMRI 

experiment was designed to examine changes in trial-by-trial multivoxel pattern 

stability22, 27 with development in terms of the “overlapping waves” model. The task 

consisted of 52 trials in total and half of them are standard single-digit addition problems 

and the other half are ‘plus 1’ problems as control condition. Each trial consists of a two-

digit equation presented at the center of screen for 5.0 seconds and followed by a fixation 

period jittered from 2.5 to 3.5 seconds. Participants were asked to press a button indicating 

whether the answer was correct or not. Half of the equations were correct and the other half 

were incorrect. The order of 52 addition and control trials was pseudo-randomized across 

participants with the standard addition and control addition problems always interleaved by 

a low-level fixation period. The total length of the experimental run was 6 min and 30 sec. 

The other settings were identical with the block design fMRI task. For this event-related 

fMRI experiment, 8 children were excluded from further analyses because of either their 

incompleteness for the two time points or bad quality of fMRI data.
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Behavioral data analysis

Participant demographic data and behavioral performance in strategy assessment and in 

block and event-related fMRI tasks were analyzed using Statistical Product and Service 

Solutions (SPSS, version 20.0, IBM, New York). We conducted 2-by-2 repeated measures 

analysis of variance (ANOVA) with Strategy (Retrieval vs. Counting) and Time (Children at 

Time-1 vs. at Time-2) as within-subject factors to examine longitudinal changes in the mix 

of strategies. We then conducted separate ANOVAs with Strategy as a within-subject factor 

and Group (Children Time-2 vs. Adolescents vs. Adults) as a between-subject factor to 

examine cross-sectional changes in the mix of strategies for addition problem solving from 

childhood, through adolescence into adulthood. Similarly, separate ANOVAs were 

conducted for accuracy and reaction times in the arithmetic verification task in both block 

design and event-related fMRI. Scheffe's procedure was used to correct for multiple 

comparisons in post-hoc tests.

fMRI data acquisition

Whole brain functional images were acquired from a 3T GE Signa scanner (General 

Electric, Milwaukee, WI) using a custom-built head coil with a T2*-sensitive gradient echo 

spiral in-out pulse sequence based on blood oxygenation level-dependent (BOLD) contrast 

(12). Twenty-nine axial slices (4.0 mm thickness, 0.5 mm skip) parallel to the AC–PC line 

and covering the whole brain were imaged with the following parameters: volume repetition 

time (TR) 2.0 sec, echo time (TE) 25 ms, 80° flip angle, matrix size 64 × 64, field of view 

200 × 200 mm, and an in-plane spatial resolution of 3.125 mm. To reduce blurring and 

signal loss arising from field inhomogeneities, an automated high-order shimming method 

based on spiral acquisitions was used before acquiring functional images. A linear shim 

correction was applied separately for each slice during reconstruction using a magnetic field 

map acquired automatically by the pulse sequence at the beginning of the scan.

fMRI data analysis

Preprocessing

Images were preprocessed using Statistical Parametric Mapping (SPM8, http://

wwwfil.ion.ucl.ac.uk/spm). The first eight volumes were discarded for stabilization of the 

MR signal. Remaining functional images were realigned to correct for rigid-body motion. 

Subsequently, images were slice-timing corrected, normalized into a standard stereotactic 

space, and resampled into 2 mm isotropic voxels. Finally, images were spatially smoothed 

by convolving an isotropic 3D-Gaussian kernel (6-mm full width at half maximum).

Univariate general linear model analysis

To assess task-related brain responses in the block design data, the addition and control 

conditions, along with the number identification condition were modeled as separate boxcar 

regressors and convolved with the canonical hemodynamic response function (HRF) 

implemented in SPM8. Additionally, motion parameters from the realignment procedure 

were included to regress out effects of head movement on brain response. We used a high-

pass filtering using a cutoff of 1/128 Hz, global intensity normalization, and corrections for 
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serial correlations in fMRI using a first-order autoregressive model (AR(1)) in the general 

linear model (GLM) framework.

Contrast images for addition vs. control conditions, generated at the individual level fixed-

effects analyses, were submitted to a second-level group analysis treating participants as a 

random factor. A paired t-test was first conducted to examine longitudinal changes in brain 

activity associated with arithmetic problem solving over time (Time-1 vs. Time-2). One-way 

ANOVA were then conducted to examine cross-sectional changes in brain activity across 

children at Time-2, adolescents and adults. Significant clusters were determined using a 

height threshold of P < 0.01 and an extent threshold of P < 0.05 with family-wise-error 

corrections for multiple comparisons based on nonstationary suprathreshold cluster-size 

distributions computed using Monte Carlo simulations47.

To characterize developmental changes in hippocampal engagement in addition problem 

solving, we performed a complementary ROI analysis using the entire hippocampus. 

Separate ROI masks for the hippocampus in left and right hemispheres were anatomically 

defined using the anatomical automatic labeling (AAL) template of the hippocampus. 

Parameter estimates (or β weights) associated with the two conditions of interest were 

extracted from these ROIs at the individual level using MarsBar (http://

marsbar.sourceforge.net) and averaged across voxels within each region. Subsequently, 

extracted data were visualized using bar graphs, and submitted for statistical testing in SPSS 

20.0. In order to create more precise masks of the hippocampus for children, we manually 

drew the left and right hippocampus (Figure S8) based on high-resolution T1-weighted brain 

templates from twelve 8.5-year-old children48, and then transformed in the same stereotaxic 

standardized MNI space. We followed a widely-used protocol described by Pruessner and 

colleagues49, integrated with landmarks included in Duvernoy50 to demarcate the child 

hippocampus. We used the ITK-SNAP (www.itksnap.org) image viewer and segmentation 

tool to view and segment the MRI images. As shown in Figure S8, we found very similar 

pattern of results when using adult AAL masks and hand-drawn hippocampal masks based 

on pediatric brain images.

Task-dependent functional connectivity analysis

Task-dependent functional connectivity was examined using psychophysiological 

interaction (PPI) analysis28. This analysis examined condition-specific modulation of 

connectivity of a specific ROI (the hippocampal seed here) with the rest of the brain, after 

removing potentially confounding influences of overall task activation and common driving 

inputs. The hippocampal seed was defined as a 6-mm sphere centered at the local peak of 

the cluster that showed significant longitudinal changes in brain activation between Time-1 

and Time-2 in children. The mean time series from the seed ROI were then deconvolved so 

as to uncover neuronal activity (i.e., physiological variable) and multiplied with the task 

design vector contrasting the Addition and Control conditions (i.e., a binary psychological 

variable) to form a psychophysiological interaction vector. This interaction vector was 

convolved with a canonical HRF to form the PPI regressor of interest. The psychological 

variable representing the task conditions (Addition vs. Control) as well as the mean-

corrected time series of the seed ROI were also included in the GLM to remove overall task-
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related activation as well as the effects of common driving inputs on brain connectivity. 

Brain regions showing significant PPI effects were determined by testing for a positive slope 

of the PPI regressor.

Contrast images corresponding to PPI effects at the individual-subject level were then 

entered into a group level statistical analysis. Developmental changes in retrieval fluency 

(i.e., the frequency of retrieval strategy use) from Time-1 to Time-2 were included as 

covariates of interest to determine brain areas in which longitudinal changes in retrieval 

fluency were associated with longitudinal changes in effective connectivity of the 

hippocampus. Note that we did not use changes in accuracy and reaction times (RTs) for the 

arithmetic tasks as a measure of strategic transitions, because these two measures are not 

specifically related to use of counting and memory-related strategies during problem 

solving. Similar to the GLM analysis above, significant clusters were determined using a 

height threshold of P < 0.01 and an extent threshold of P < 0.05 with family-wise-error 

corrections for multiple comparisons based on nonstationary suprathreshold cluster-size 

distributions computed using Monte Carlo simulations47. To illustrate the brain-behavior 

relations we extracted data from significant clusters and plotted correlations for visualization 

purposes only.

Prediction analysis

To further confirm the robustness of the relation between longitudinal changes in 

hippocampal connectivity with fronto-parietal cortex and individual changes in retrieval 

fluency between Time-1 and Time-2, we used a machine learning approach with balanced 4-

fold cross-validation16, 31. The prediction analysis was conducted for confirmatory purposes 

because conventional regression models assess correlation coefficients which are sensitive 

to outliers and are correlational with no predictive value16, 31. Longitudinal change in 

retrieval fluency was entered as a dependent variable and hippocampal connectivity was 

entered as an independent variable into a linear regression algorithm. r(predicted, observed), a 

measure of how well the independent variable predicts the dependent variable, was 

estimated using a balanced 4-fold cross-validation procedure. Data for these two variables 

from all children in the longitudinal experiment were divided into 4 folds so that the 

distributions of dependent and independent variables were balanced across folds. A linear 

regression model was built using 3 folds leaving out one fold, and this model was then used 

to predict the data in the left-out fold16, 31. This procedure was repeated 4 times to compute 

a final r(predicted, observed) representing the correlation between the data predicted by the 

regression model and the observed data. Finally, the statistical significance of the model was 

assessed using non-parametric testing approach. The empirical null distribution of 

r(predicted, observed) was estimated by generating 1000 surrogate datasets under the null 

hypothesis that there was no association between changes in retrieval fluency and 

hippocampal activity (or hippocampal functional connectivity). Each surrogate dataset Di of 

size equal to the observed dataset was generated by permuting the labels on the observed 

data points. The r(predicted, observed)i was computed using the actual labels of Di and predicted 

labels using the 4-fold balanced cross validation procedure described above. This procedure 

produced a null distribution of r(predicted, observed) for the regression model. The statistical 

significance (p value) of the model was then determined by counting the number of 
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r(predicted, observed)i greater than r(predicted, observed) and then dividing that count by the 

number of Di datasets (1000 in our case).

Multivoxel pattern stability analysis of event-related fMRI data

Trial-wise estimation of brain responses

To assess task-related brain responses during solving each addition problem, each problem 

was modeled as a separate regressor with a duration of 5.5 seconds and convolved with a 

canonical hemodynamic response function (HRF) implemented in SPM8. This resulted in 

with 26 regressors for standard addition problems and 26 regressors for control problems. 

Contrast images for correct addition problems vs. rest fixation condition, generated at the 

individual level fixed-effects analyses, were submitted to subsequent multivariate pattern 

stability analyses for the hippocampal ROIs as well as for the whole brain.

ROI-based pattern stability analysis

Beta weights representing voxel-wise brain activation for each addition problems was 

extracted from voxels within the entire left and right anatomically-defined hippocampal ROI 

masks separately, and then reshaped into a single dimensional vector. Pairwise correlations 

among correct problems of interest were then computed among distributed voxels of each 

ROI. This ends up with N*(N-1)/2 pairwise correlation coefficients, where N represents the 

number of correctly solved problems. Pairwise correlation coefficients were then averaged 

as a measure of multivoxel pattern stability/similarity cross correctly solved problems. 

Averaged inter-problem pattern stability scores in the left and right hippocampus were 

separately computed for each participant. Note that any differences in overall mean signal of 

individual voxels within a given ROI would not impact the computation of multivoxel 

pattern stability. Separate one-way ANOVAs were conducted to compare differences in 

inter-problem pattern stability in the hippocampus from childhood (either Time-1 or Time-2) 

through adolescence into adulthood.

Whole-brain pattern stability analysis

A newly developed searchlight mapping method27, 32 was implemented to obtain a measure 

of inter-problem pattern stability in the neighborhood surrounding of each voxel within each 

participant's brain. Briefly, a 6-mm spherical region of interest (so-called the “searchlight”) 

centered on each voxel was first selected, and then inter-problem stability scores only for 

correctly solved problems within the sphere were computed using a pairwise correlation 

method. Pairwise correlation maps of two consecutive neighbor trials were excluded in order 

to mitigate potential collinearity because of close proximity in time. The averaged similarity 

scores were assigned to the central voxel and run through every voxel across the whole brain 

to create participant-specific searchlight maps. These searchlight maps were subsequently 

entered into a second-level random effects analysis to determine changes in pattern stability 

among children (at either Time-1 or Time-2), adolescent and adult groups. Significant 

clusters were determined using a height threshold of P < 0.01 and an extent threshold of P < 

0.05 family-wise error correction for multiple comparisons based on Monte Carlo 

simulations47.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Experimental design and behavioral results
(a) For the longitudinal fMRI study, twenty-eight young children participated twice, first at 

Time-1 (T1) and then 1.2 years later at Time-2 (T2). Each child performed two arithmetic 

problem solving tasks involving single-digit addition. The first task involved verbal 

production of the answer, during which problem solving strategies were assessed, on a trial-

by-trial basis (online Methods), outside the scanner. Based on the child's self-report and 

experimenter observations, the use of strategies for solving each problem was classified into 

counting or retrieval. The second task involved verification of whether an answer presented 

with an arithmetic problem was correct or not and was performed during fMRI scanning. 

The control task involved “n + 1” problems that are generally solved using a classic rule-

based strategy with minimal changes in strategy shifts with development. (b) For the cross-

sectional fMRI study, the same strategy assessment and fMRI tasks were performed by an 

additional group of 20 adolescents and 20 adults. (c) Developmental changes in the mix of 

strategies used for solving arithmetic problems, showing a gradual increase in memory-

based retrieval and decrease in use of counting strategies. Solid lines represent data at T1 

and T2 in children, and dotted lines represent data from adolescents and adults. (d) 

Developmental changes in task performance during fMRI from childhood through 

adolescence into adulthood. Notes: *P<0.05; ** P<0.01; ***P<0.001. Error bars represent 

standard error of mean throughout the whole manuscript.
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Fig. 2. Longitudinal changes in hippocampal engagement during childhood
(a) Left and right hippocampus clusters which showed increased engagement during 

addition problem solving between Time-1 (T1) and Time-2 (T2). (b) Each line represents 

individual developmental trajectories of hippocampal engagement over time. Bold red lines 

represent group means at T1 and T2. (c) Sagittal view of anatomically defined region of 

interest (ROI) encompassing the entire right hippocampus (coded in red) and significant 

functional clusters from 2A (coded in hot orange). (d) Each line represents individual 

trajectories of hippocampal engagement over time within an anatomically defined ROIs. 

Bold red lines represent group means at T1 and T2. Notes: *P<0.05; ** P<0.01; L, left; R, 

right.
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Fig. 3. Longitudinal changes in hippocampal-neocortical functional coupling in relation to 
individual improvements in children's retrieval fluency
(a) Right hippocampus seed region used in task-related functional connectivity (i.e., 

psychophysiological interaction) analysis. (b, c) Left and right dorsolateral prefrontal cortex 

(DLPFC) and the left intraparietal sulcus (IPS) regions that showed increased functional 

connectivity with the hippocampus, as a function of longitudinal improvements in retrieval 

fluency from Time-1 (T1) to Time-2 (T2). (d-f) Scatter plots depict the relation between 

longitudinal changes in retrieval fluency (x-axes) and changes in functional connectivity 

strength from T1 to T2 (y-axes). The correlates are plotted for visualization purposes only. 

Notes: L, left; R, right.
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Fig. 4. Longitudinal changes in hippocampal engagement during childhood, and further 
development through adolescence into adulthood
(a) Right hippocampus showing main effect of Group across children, adolescents, and 

adults (omnibus F-contrast). (b) Bar graphs depict developmental changes in the 

functionally defined hippocampus cluster. (c) Bar graphs show developmental changes in 

the engagement of anatomically defined hippocampal regions of interest (ROI) (ROI mask is 

shown in Fig. 2C). Notes: * P<0.05; **, P<0.01; ***, P<0.001; L, left; R, right.
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Fig. 5. Inter-problem multivoxel pattern stability in the hippocampus in children at Time-1 (T1) 
and Time-2 (T2), adolescents, and adults
(a) Event-related fMRI design of arithmetic problem solving task. (b) Sagittal slice of 

predefined region of interest (ROI) in the hippocampus used for the inter-problem pattern 

stability analysis. (c) 26 × 26 correlation matrix representing trial-by-trial brain activation 

pattern stability in the hippocampus during addition problem solving. (d-e) Inter-problem 

pattern stability in the left and right hippocampus for problems correctly solved by children 

at T1 and T2, adolescents, and adults. (f-g) Results of whole-brain analysis showing 

hippocampal regions that showed significant increases in inter-problem multivoxel pattern 

stability from childhood through adolescence into adulthood. Note that only correctly 

performed trials (problems) from each participant's event-related fMRI data were used in the 

analysis. Notes: a.u., arbitrary units; * P<0.05; **, P<0.01; L, left; R, right.
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