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Previous results showed that overexpression of the WTH3 gene in multidrug resistance (MDR) cells reduced MDR1 gene expression
and converted their resistance to sensitivity to various anticancer drugs. The WTH3 gene promoter was found to be differentially
regulated in paired MDR vs non-MDR MCF7 cells owing to epigenetic modifications and transcription factor modulations. To
understand further the mechanisms that govern WTH3’s differential expression, we uncovered a p53-binding site in its promoter,
which indicated that WTH3 could be regulated by the p53 gene. This hypothesis was then tested by different strategies. The resulting
data revealed that (1) the WTH3 promoter was upregulated by the p53 transgene in diverse host cells; (2) there was a correlation
between WTH3 expression levels and p53 gene status in a cell line panel; (3) a WTH3 promoter region was directly targeted by the
p53 protein in vitro and in vivo. In addition, overexpression of the WTH3 gene promoted the apoptotic phenotype in host cells.
On the basis of these findings, we believe that the negative role played by the WTH3 gene in MDR development is through its
proapoptotic potential that is regulated by multiple mechanisms at the transcription level, and one of these mechanisms is linked to
the p53 gene.
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Multidrug resistance (MDR) is a fatal event encountered during
cancer chemotherapy (Chen et al, 1986; Gros et al, 1986a, b; Cole
et al, 1992; Robinson et al, 1997; Smyth et al, 1998; Johnstone et al,
1999). To understand better MDR development, we employed the
methylation sensitive-representational difference analysis techni-
que (Yuan et al, 1999; Shan et al, 2000, 2002a) to study DNA
hypermethylation events in a human MDR breast cancer cell line,
MCF7/AdrR, as compared to its parental line, MCF7/WT. As a
result, the WTH3 gene was discovered. The gene product is
homologous to the Rab6 and Rab6c genes that belong to the ras
super family and encode small G proteins (Zahraoui et al, 1989;
Goud et al, 1990; Echard et al, 1998, 2000; Shan et al, 2000, 2002a).
Similar to the Rab6s, WTH3 is a housekeeping gene and its product
is capable of binding to GTP molecules (Tian et al, 2005b).
However, unlike the Rab6s that reside in the Golgi network, most
of WTH3 locates in the cytoplasm and to a less degree in the
nuclei. This disparity could be due to WTH3’s lack of a cysteine
at its C terminus for geranyl–geranylation, a necessary post-
translational modification for membrane attachment (Barbacid,
1987). Previous studies found that the WTH3 gene was down-
regulated in MDR cell lines, MCF7/AdrR and MES-SA/Dx5 (a
human uterine sarcoma cell line), and by introducing it back into
those lines caused downregulation of MDR1 gene expression and

reversed their MDR phenotypes to various anticancer drugs (Shan
et al, 2002a; Tian et al, 2005b). In addition, our research also
revealed that hypermethylation (an epigenetic modification event
in mammals) of the WTH3 promoter and transcription factor
modulation were involved in its differential expression in MCF7/
AdrR vs MCF7/WT cells (Tian et al, 2005b). Furthermore, the
hypermethylation event was also observed in primary drug-
resistant breast cancer cells (Tian et al, 2005a). Taken together,
our data supported the notion that WTH3 could play an important
role in MDR development.

To understand further the mechanisms involved in WTH3’s
differential expression in MDR cells, the Patch Search Program was
utilised to look for consensus sequences in the gene promoter for
existing transcription factors. As a result, several candidate motifs
were implicated, one of which was a p53-binding domain, although
it contained five mismatched base pairs (bp) as compared to the
typical p53-binding consensus sequence (50-RRRCWWGYYY
(N¼ 0– 13)RRRCWWGYYY-30) (Lowe, 1995). Consequently, we
named it p53M. The p53 gene product is a transcription factor
that functions as a tumour suppressor and plays a pivotal role in
apoptosis and cell cycle arrest (Lowe, 1995; Aas et al, 1996; Righetti
et al, 1996). Various mutations of p53 are associated with human
cancers and the onset of MDR in a broad field of solid and
haematological malignancies (Ogretmen and Safa, 1997; Schmitt
and Lowe, 1999; Smith et al, 2003; Norbury and Zhivotovsky, 2004;
Pommier et al, 2004; Kim, 2005; Steele and Lane, 2005).
Identification of a potential p53-binding motif in the WTH3
promoter suggested that its activity could be regulated by p53. To
test this hypothesis, WTH3 gene promoter function under the
influence of the p53 transgene was evaluated by luciferase assays.
In addition, the correlation between WTH3 expression levels in 11
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cell lines with defined p53 status was examined. Owing to the
mismatches in p53M, instead of using the targeted-deletion
strategy, we generated serial deletion mutants to determine the
p53-response region in the WTH3 promoter. Next, the physical
interaction between the defined response region and the p53
protein was examined by the electrophoretic mobility shift assay
(EMSA) and chromatin immunoprecipitation (ChIP) approach.
The resulting data suggested that the WTH3 gene was a direct
target of the p53 protein. This information led us to evaluate the
possible participation of WTH3 in promoting apoptosis.

MATERIALS AND METHODS

Cell lines and doxorubicin (DOX) treatment

MCF7/AdrR (p53 del 126–132), MCF7/WT (WT p53) (Ramljak
et al, 2005), MES-SA/Dx5 and its parental cell line, MES-SA
(ATCC.), were grown under the conditions as described (Shan
et al, 2002a). Hs578T (p53 V157F), MDA-MB-231 (p53 R280K),
MDA-MB-435 (p53 G266E), MDA-MB-436 (mutated p53), MDA-
MB-468 (p53 R273H), T47D (p53 L194F) and SKBr3 (p53 R175H)
(Camps et al, 1990; Elstner et al, 1995; Nieves-Neira and Pommier,
1999) (gifts from Dr Moll M Ute, Department of Pathology; and
Dr Cao Jian Division of Hematology, SUNYSB), were grown at
371C with 5% CO2 in Dulbecco’s modified Eagle’s medium medium
with 10% foetal calf serum (FCS), 100 mg/ml streptomycin and
100 U/ml penicillin. HEK293 (Human primary embryonic kidney
cells, ATCC), and Hela cells were grown at 371C with 5% CO2 in
Roswell Park Memorial Institute 1640 culture medium with 10%
FCS, 100mg/ml streptomycin and 100 U/ml penicillin. To induce p53
expression, MCF7/WT cells were treated with 1mM of DOX for 20 h.

Construction of recombinant DNA

Detailed information about generating the pcDNA3.1/WTH3 and
pGL/WTH3P constructs containing the coding region and WTH3
promoter, respectively, were described previously (Shan et al,
2002a; Tian et al, 2005b). Six deletion mutants of the WTH3
promoter were created by polymerase chain reaction (PCR)
amplification using pGL/WTH3P as the template. Sense primers
for deletion 1 (�540 to �1), 2 (�453 to �1), 3 (�396 to �1), 4
(�289 to �1), 5 (�194 to �1) and 6 (�116 to �1) were 50-AGAG
GTACCCACCGCACCATTGTTTTTAGTAC-30, 50-AGAGGTACCCG
CACTCAGCAGGTTGGGC-3, 50-AGAGGTACCTGAGAGATCCCGG
ATACATCTGC-30, 50-AGAGGTACCCAAAGCACACCCCTGGCTC-3,
50-AGAGGTACCGGCGG CTGCCAGTCTGTG-30 and 50-AGAGG
TACCGGGGCGCAGAGAGCTCGG-3, respectively. The anti-sense
primer for all the mutants was 50-GAAGATCTTCGTGGAACTA
GAGGAGCTGTCGCC-30. Each primer pair contained KpnI and
BamHI restriction enzyme sites for cloning the PCR fragment into
the pGL3 vector to create pGL/WTH3P-d1, -d2, -d3, -d4, -d5 and
-d6. The correct sequence of each construct was verified by
sequencing (Genewiz Inc., South Plainfield, NJ, USA). Wild-type
p53 in pcDNA/P53 and the mutated p53 gene in pcDNA/P53R249S,
which did not contain trans-element activity, were gifts from
Dr Moll M Ute.

Transient transfection and luciferase assays

To determine whether the WTH3 promoter was regulated by p53,
pGL/WTH3P was cotransfected with pcDNA/P53, pcDNA/
P53R249S (negative control) or pcDNA/3.1 (negative control) into
MCF7/WT and HEK293 cells. In brief, 0.2 mg of each construct
were transfected along with 0.1 mg of pCMV/b-galactosidase when
the cells (seeded onto 24-well plates) reached 50–70% confluence.
After 24 h, luciferase and b-galactosidase activity was measured
using the Luciferase Assay System and Beta-Glot Assay System
(Promega, Madison, WI, USA) according to the manufacturer’s

instruction. Luciferase activities of transfectants were compared
after normalising their b-galactosidase activities and protein
concentrations. To determine p53s influence on endogenous
WTH3 gene expression, pcDNA/P53 or the empty vector was
transiently transfected into Hela and MCF7/AdrR cells. After 24 h,
RNAs were isolated from the cells for semi-quantitative reverse
transcriptase (SQRT)-PCR analyses.

SQRT-PCR and Western blot

Total RNAs were isolated from cell lines, transfectants and the
corresponding negative controls by the High Pure RNA Isolation
Kit (Roche, Indianapolis, IN, USA). Semi-quantitative reverse
transcriptase-polymerase chain reaction was performed using the
Titan One Tube RT-PCR system based on the manufacturer’s
protocol (Roche). The sense and anti-sense primers for WTH3 and
GAPDH were described previously (Shan et al, 2002a). The PCR
and quantification of PCR products were performed as described
(Shan et al, 2000, 2002a; Tian et al, 2005a, b). To evaluate WTH3
protein levels in the cell lines, the protein concentrations of cell
lysates were determined by absorbance measured at 280 nm and
the bicinchoninic acid protein assay reagent kit (BCA Kit, Pierce,
Rockford, IL, USA). A total of 100mg of each cell lysate was loaded
onto triplicate 12% sodium dodecyl sulphate polyacrylamide gel
electrophoresis (SDS-PAGE) gels for Western analyses as de-
scribed previously (Shan et al, 2002b) using the antibodies for
WTH3 (1 : 200 dilution) (Research Genetics, Huntsville, AL, USA),
Rab6 (1 : 2000 dilution) and MDR1 (1 : 30) (Santa Cruz, Santa Cruz,
CA, USA).

EMSA and super-EMSA

Electrophoretic mobility shift assay were performed using the
purified p53 protein (Santa Cruz) or and probe (P49) that covered
the region from �282 to �330 in the WTH3 promoter
(gagccgggtgcggaaggagggaacg[gCCctagcct/TggGaagccA]aagc-30) and
contained the putative p53-response element, p53M (bracketed).
The five mismatches in it, comparing to the typical p53-binding
site, were capitalised and underlined. Another probe representing
the sequence in the albumin gene served as the negative control,
which was amplified from genome DNA by PCR using the forward
and reverse primers, 50-GCTGTCATCTCTTGTGGGCTGT-30 and
50-ACTCATGGGAGCTGCTGGTTC-30. The probes were generated
by annealing the forward and reverse oligonucleotides, followed
by end labelling using T4 polynucleotide kinase in the presence
of [g-32P]dATP. To perform EMSA, extracts were prepared from
MCF7/AdrR and MCF7/WT cells as described (Tian et al, 2005a, b).
A total of 10mg nuclear extract and 50 ng of p53 protein were
applied to perform EMSAs. The detailed procedure for carrying
out EMSAs was described previously (Tian et al, 2005b). Super-
EMSA experiments were performed in the presence or absence
of 1 mg of monoclonal p53 antibody (p53-(DO)-1, Santa Cruz) for
30 min at room temperature and analysed on a 4% non-
denaturing-PAGE gel. The experiments were repeated three times.

ChIP assays

MCF7/WT cells were treated with 1 mM DOX for 20 h to induce p53
expression. Chromatin immunoprecipitation assays were carried
out as described previously (Adachi et al, 2004). Briefly, genomic
DNA and proteins were crosslinked by the addition of 1% final
concentration of formaldehyde directly into the culture medium
and incubated for 30 min at 371C. Cells were lysed and sonicated to
300– 1000 bp DNA fragments. After centrifugation, the supernatant
was diluted 10 times with the ChIP buffer and incubated with
the agarose conjugated with anti-p53 (p53-AC) or -HA (negative
control) antibodies (Santa Cruz) at 41C overnight. Immune
complexes were precipitated and washed. The DNA– protein
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complexes were decrosslinked by heating at 651C for 5 h with high
concentration salt and DNA was purified and resuspended in 50 ml
of TE buffer. The input DNA was diluted 100 times before PCR.
The bound and input DNAs were analysed by PCR (35 cycles).
Specific primers for the p53 response element in the WTH3
promoter were 50-GCCCTAGCCTTGGGAAGCCAAAG-30 (forward)
and 50-CGGCAGAGTAGCCGAGCACG-30 (reverse). The sense and
anti-sense primers for p21 (positive control) and albumin
(negative control) promoters were 50-GTGGCTCTGATTGGCTTTC
TG-30 and 50-CTGAAAACAGGCAGCCCAAG-30 as well as 50-
GCTGTCATCTCTTGTGGGCTGT-30 and 50-ACTCATGGGAGCTG
CTGGTTC-30.

40,6-Diamidino-2-phenylindole (DAPI) staining assays

Hela cells were seeded onto glass cover slips placed in 6-well plates.
When the cells reached 50% confluence, they were transfected with
pcDNA3.1/WTH3 or pcDNA3.1 in parallel using Lipofectaminet
2000 (Invitrogen, Carlsbad, CA, USA) as described previously
(Shan et al, 2000, 2002a) following the manufacturer’s instructions.
Nuclear staining with DAPI was performed as described (Kim et al,
2002). After 24 h of transfection, cells were washed with
1� phosphate-buffered saline (PBS), fixed with 70% ethanol and
washed again with PBS. The cells then were treated with DAPI
(1mg/ml) (Sigma) for 12 min, washed with PBS for 5 min, and
treated with VectaShield (Vector Laboratories, Burlingame, CA,
USA). Stained nuclei were visualised under a fluorescent micro-
scope. Apoptotic cells were morphologically defined by cyto-
plasmic and nuclear shrinkage and chromatin condensation. The
experiments were repeated three times.

Terminal deoxynucleotidyl transferase biotin-dUTP nick
end labelling (TUNEL) assays

Hela and HEK293 cells were seeded in 6-well plates. When the cells
reached 50% confluence, they were transfected with pcDNA3.1/
WTH3 or pcDNA3.1. After 18 (Hela) and 30 (HEK293) hours of
transfection, cells were trypsinised and washed with 2� PBS and
transferred onto a glass slide and air dried. The cells were fixed in
3% paraformaldehyde for 30 min and washed in PBS. Terminal
deoxynucleotidyl transferase biotin-dUTP nick end labelling
assays were performed using the FragELt DNA Fragmentation
Detection Kit (Calbiochem, San Diego, CA, USA) following the
manufacturer’s protocol. The apoptotic cells, which exhibited a
brown stain, were visualised under a microscope. The experiments
were repeated three times.

Flow cytometry

Approximately 5� 105 cells/well of HEK293 were transfected with
zero or equal mole ratio of pcDNA/WTH3 or pcDNA3.1. The
pCMV/b-galactosidase was also transfected in parallel as a
transfection efficiency control. After 24 h of transfection, the cells
were harvested by trypsinisation, washed in PBS, and the DNA was
stained with propidium iodide (PI, 50 mg/ml) containing 250 mg/ml
of ribonuclease A, followed by flow cytometry analysis as
described previously (Shan et al, 2002a). The experiments were
repeated three times.

RESULTS

The WTH3 promoter was positively regulated by p53

Since results generated by the Patch Search indicated that the p53M

sequence in the WTH3 promoter could be a potential binding site
for p53, we speculated that the p53 gene could regulate the WTH3
promoter. To test this hypothesis, pGL/WTH3P or the empty
vector, pGL3, was cotransfected with pcDNA3.1, pcDNA/P53 or

pcDNA/P53R249S, as well as pCMV/b-galactosidase into MCF7/
WT and HEK293 cells. The enzyme activities driven by the WTH3
promoter under the influence of wild-type and mutated p53 were
measured with justification of protein concentrations and
transcription efficiency (Figure 1A and B). We found that the
wild-type p53, but not its mutant, increased WTH3 promoter
activity approximately 2.5–3 times in both hosts. As the TSP50
gene, which was negatively regulated by p53, was available in our
lab, we cotransfected pGL/TSP50P (pGL containing the TSP50
promoter) with pcDNA/P53, in parallel, into MCF7/WT and
HEK293 cells. The results clearly showed that p53 downregulated
the TSP50 promoter (Xu et al, 2007), whereas it upregulated the
WTH3 promoter. Similar results were obtained when MCF7/AdrR
and Hela cells were used as hosts (data not shown), which
suggested that WTH3 was upregulated by the p53 gene in a cell-
type independent manner. This information provided us with a
plausible explanation that WTH3’s low expression observed in
MCF7/AdrR could be the result of p53 dysfunction owing to the
mini deletion in its DNA-binding domain, whereas MCF7/WT,
which contains the wild-type p53 gene, expressed a relatively high
level of WTH3 (Norbury and Zhivotovsky, 2004). To examine
further the correlations between these two genes, we measured
WTH3 gene expression levels in a cell line panel with defined p53
gene status.

There was a correlation between WTH3 expression levels
and p53 gene status

WTH3 expression levels in nine breast carcinoma cell lines,
Hs578T, MCF7/AdrR, MCF7/WT, MDA-MB-231, MDA-MB-435,
MDA-MB-436, MDA-MB-468, T47D and SKBr3, as well as in Hela
and HEK293 were examined by SQRT-PCR. The results showed
that MCF7/WT and HEK293, which contained the wild-type p53
gene, produced the highest WTH3 RNA as compared to the
remaining cell lines whose p53 gene was either mutated, as in
Hs578 T, MCF7/AdrR, MDA-MB-231, �435, �436, �468, T47D
and SKBr3, or attenuated, as in Hela cells by the papillomavirus
E6 protein that targets p53 for degradation (Li et al, 2004)
(Figure 2A). Although each cell line contains its own unique,
complicated biological characteristics, the results showed a trend
that the cell lines possessing mutated p53 expressed relatively low
WTH3 RNA as compared to those containing its wild type.
However, we will further confirm this correlation via other
approaches in the future. In addition, reduced WTH3 transcripts
were also reflected at the protein level when antibodies for WTH3
and Rab6 were used to measure the WTH3 protein in MCF7/AdrR
vs MCF/WT and MES-SA/D� 5 vs MES-SA cells. Densitometer
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Figure 1 Results obtained from luciferase assays where pGL3 or pGL/
WTH3P was cotransfected with pcDNA3.1, pcDNA/P53 or pcDNA/
P53R249S into (A) MCF7/WT and (B) HEK293 cells. Relative luciferase
activities driven by the WTH3 promoter under the influence of the empty
vector, wild-type and mutated p53 were compared.
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analysis showed that the protein amount detected by the WTH3
antibody was significantly higher in MCF7/WT and MES-SA as
compared to their MDR counterparts (Figure 2B). Rab6 antibody,
which recognised both Rab6c (a housekeeping gene, served as the
quantitative control) and WTH3 protein, generated similar results.
This was consistent with previous data that found WTH3 transcript
levels in MCF7/WT and MES-SA were much higher than those in
MCF7/AdrR and MES-SA/Dx5 (Shan et al, 2002a). Since both MDR
cell lines expressed extremely high levels of the MDR1 gene relative
to their corresponding parental cell line, the MDR1 antibody was
also used to detect MDR1 protein levels in those cells, which served
as another control.

The p53 transgene elevated endogenous WTH3 gene
expression

Both Hela and MCF7/AdrR cells were used as the hosts for p53
gene transfection. Briefly, pcDNA/P53 or pcDNA3.1 and pCMV/b-
galactosidase were introduced into the cells. After 24 h, total RNA
was isolated from the transfectants and SQRT-PCR was performed
to evaluate the amount of WTH3 transcripts. As expected, cells
expressing the p53 transgene generated approximately 2.5 times
higher WTH3 transcripts than the control cells (Figure 3A and B).
Taken together, the data gathered from performing different
experiments suggested that WTH3 could be a target of the p53
gene. To gain detailed information on how p53 controlled WTH3
gene expression, we next wanted to identify the p53-response
element in the gene promoter by creating serial deletion mutants.

The region (�396 to �289) in the WTH3 promoter
contained the p53-response element

Since p53M contained five mismatches, we were not sure if it was
the real p53-binding site. Instead of generating a targeted deletion
mutant, we created six serial deletions (each was B100 bp shorter

than the adjacent one) by PCR amplification using pGL/WTH3P as
the template. The resulting PCR products were constructed into
pGL3 to obtain pGL/WTH3P-d1 to -d6 constructs. Each of the
plasmids was then cotransfected with pcDNA/P53 or pcDNA/3.1
along with pCMV/b-galactosidase. After 24 h, the luciferase activity
driven by the wild-type and mutated promoters under the
influence of p53 was determined. We found that pGL/WTH3P-d4
no longer responded to the p53 transgene as its enzymatic activity
was similar to that in the control cells that were transfected with
pGL3 and pcDNA/P53. This finding suggested that the deleted
region (from �396 to �289) could contain the p53-response site
(Figure 4). As the p53M sequence resided in this region, we
believed it could be a direct target of the p53 protein. To test this
possibility, EMSA and super-EMSA assays were performed.

The p53 protein bound to the WTH3 promoter in the
region from �330 to �282

A 49 bp probe (from �330 to �282), P49, which contained the
p53M sequence, and an albumin genomic DNA sequence (negative
control) were utilised to perform EMSA assays. After isotope
labelling, the probes were first incubated with purified p53 protein.
The DNA/protein complex was realised on a nondenaturing-PAGE
gel. We found that the P49 probe, but not the control probe (data
not shown), interacted with the p53 protein. This interaction was
specific as the p53 antibody shifted the P49/protein complex into a
much higher position and excessive amounts of the cold P49 probe
competed away p53 from the complex (Figure 5A). In addition, the
same strategy was applied where P49 and nuclear extracts prepared
from paired MCF7 cells were used. The results showed that the P49
probe interacted with the p53 proteins generated from MCF7/WT,
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Figure 2 (A) Results obtained from SQRT-PCR to estimate endogen-
ous WTH3 gene expressions in 11 cell lines with defined p53-gene status.
(B) Western blot analysis of WTH3 proteins in MCF7/AdrR vs MCF7/WT
and MES-SA/D� 5 vs MES-SA using WTH3 (1 : 200 dilution) and Rab6
(1 : 2000 dilution) antibodies. In addition, MDR1 detected by the MDR1
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WTH3

Hela

A

B

pcDNA3.1

pcDNA/
P53

Hela MCF7/AdrR

W
T

H
3-

ex
pr

es
si

on
 le

ve
l

3.5

3

2.5

2

1.5

1

0.5

0

MCF7/AdrR

pc
DNA3.

1

pc
DNA/P

53

pc
DNA/P

53

pc
DNA3.

1

�-Actin

Figure 3 Results obtained from SQRT-PCR to estimate endogenous
WTH3 gene expressions in Hela and MCF7/AdrR cells, which were
influenced by the p53 transgene. (A) The two cell lines were either
transfected with pcDNA3.1 or pcDNA/P53, where b-actin served as the
quantitative control. (B) Quantitative comparison of the results presented
in (A). The empty and black columns represent WTH3 expression levels
under the influence of the empty vector or the p53 transgene, respectively.

WTH3, a p53 Target

K Tian et al

1582

British Journal of Cancer (2007) 96(10), 1579 – 1586 & 2007 Cancer Research UK

G
e
n

e
tic

s
a
n

d
G

e
n

o
m

ic
s



but not the mutated ones in MCF7/AdrR cells (Figure 5B).
However, no forms of the p53 proteins bound to the negative
control probe (data not shown) (Figure 5B). Proteins of both
sources did not bind to the negative control probe (data not
shown). To confirm further that the p53 protein was indeed
involved, supershift EMSA was performed utilising p53 antibody.
We found that the p53 antibody only shifted the P49-MCF7/
WT-protein complex into a much higher position (Figure 5B). To
understand further if p53M was the direct target of the p53 protein,
three probes were generated, which represented 28 bp of the right
(P49R, containing p53M), 36 bp of the left (P49L) and 31 bp of the
centre (P49C, from 10 to 40) of the P49 sequence, respectively. The
EMSA results showed that the p53 protein did not bind to any
of them (data not shown), which suggested that the whole P49
sequence was essential for interacting with p53. To verify further
that WTH3 was a direct target of the p53 gene, ChIP assays were
carried out.

The p53 protein bound to the WTH3 promoter in vivo

Usually, under normal condition, p53 gene expression is relatively
low in cells. However, when responding to DNA-damaging
reagents, p53 transcripts are significantly increased. The elevated
gene product either functions as a transcription factor for its
targeted genes or directly performs its cellular roles, such as
promoting apoptosis. Here, we tested whether p53 could directly
target the WTH3 promoter in MCF7/WT cells. To this end, the cells
were treated with DOX over different time courses to induce
endogenous p53 gene expression. Western blot analysis deter-
mined that during 8 –24 h treatment period, similar amounts of
p53 expression, elevating to approximately 10 times the original
level, were exhibited (data not shown). Next, the p53– DNA
complexes were immunoprecipitated with anti-p53 or anti-HA
antibodies. To see if the WTH3 promoter containing the p53-
response site was in the enriched DNA fragments, PCR was
performed. The upstream sequences of the p21 and albumin
promoters, which were with or without a p53-response element,
were also amplified and served as the positive and negative
control, respectively. The results showed that both WTH3 and p21,
but not albumin, promoter regions were enriched by the p53
antibodies. In addition, none of the promoter regions were
enriched by the HA antibodies (Figure 5C). These findings
suggested that WTH3 was a direct target of the p53 gene. As past
research demonstrated that confirmed p53 target genes either are
p53 functional mediators, such as p21, Bax and PUMA, or p53

functional regulators, such as MDM2, COP1 and PML (Liu and
Chen, 2006), we then examined if WTH3 and p53 shared some
biological functions. To date, several approaches were employed to
test if WTH3 played a role in promoting apoptosis.

Overexpression of WTH3 induced apoptotic nuclear
condensation

To test whether WTH3 could cause cell death, pcDNA/WTH3 was
transiently introduced into Hela cells. After 24 h, the transfectants
containing the exogenous WTH3 gene or empty vector were
treated with DAPI, a fluorescent DNA-binding dye. The cells’
nuclear morphology was examined under a fluorescent micro-
scope. The typical morphological features of apoptotic cells were
observed in the population of cells transfected with pcDNA/WTH3,
but not in the control cells transfected with the empty vector
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(Figure 6A and B). These findings indicated that the WTH3 gene-
induced apoptosis in Hela cells.

Overexpression of WTH3-induced cell death

To confirm further WTH3’s apoptotic potential, TUNEL assays
were carried out using both HEK293 and Hela cells as hosts. After
receiving pcDNA/WTH3 or pcDNA3.1, TUNEL staining was
performed. We found that both host cells transfected with the
WTH3 transgene displayed brown colour staining that indicated a
typical apoptotic condition, whereas the corresponding controls
were stained with blue colour (Figure 6C–F). These findings were
consistent with the results of the DAPI staining assays. Thus,
WTH3-induced apoptosis in the two cell lines tested.

Overexpression of WTH3 increased sub-G1 cell population

HEK293 cells, which exhibited the highest transfection efficiency,
were transfected with pcDNA/WTH3 or pcDNA3.1 to perform flow
cytometry assays. By measuring the cells with sub-G1 DNA
content, which is believed to represent apoptotic cells, we found
that after 24 h, 23.4% of the cell population had under gone
apoptosis after receiving the pcDNA/WTH3 construct. However,
only 11.5 and 9.1% of the cell population underwent apoptosis
after receiving the pcDNA3.1 vector and vehicle control, respec-
tively (Po0.01) (Figure 6G– I). These results further suggested that
the WTH3 gene stimulated apoptosis.

DISCUSSION

The WTH3 gene was discovered owing to its hypermethylation in
MCF7/AdrR cells. Earlier studies suggested that it was a negative
regulator for MDR development (Shan et al, 2002a; Tian et al,
2005a, b), which made it extremely interesting as most MDR-
related genes discovered so far exert a positive effect. To
understand the mechanisms involved in its downregulation in
MDR cells the gene’s promoter was identified and analysed (Tian
et al, 2005b). We found that it was differentially regulated in
MCF7/AdrR and MCF7/WT cells. Several mechanisms could be
involved in this differential regulation, which included drug-
induced epigenetic modifications and alteration of trans-elements,
we believe this is the situation as the WTH3 promoter was found to
be hypermethylated in cultured and primary drug resistant cells,
and a region targeted by DNA methylation and a repeat sequence
in the promoter interacted with diverse transcription complexes
prepared from MCF7/AdrR vs MCF7/WT (Tian et al, 2005a, b).

To gain more detailed information regarding the WTH3 gene’s
differential regulation, we performed the Patch Search, which led
to the discovery of a p53-binding motif, p53M. The p53 gene is an
important tumour suppressor and is involved in apoptosis and cell
cycle arrest, whereas mutations of p53 is associated with human
cancers and the onset of MDR in a broad range of malignancies
(Schmitt and Lowe, 1999; Norbury and Zhivotovsky, 2004;
Pommier et al, 2004; Kim, 2005). Discovery of a putative p53-
binding site in the WTH3 promoter led us to explore whether p53-
regulated WTH3 expression. By performing luciferase assays we
found that the p53 transgene significantly elevated promoter
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activity in all the host cell lines tested. In addition, evaluating
WTH3’s expression levels in 11 cancer cell lines with defined p53
status supported this positive influence as the cell lines with wild-
type p53 produced much higher levels of WTH3 transcript than
those containing mutated or attenuated p53. We also noticed that
the observed correlation between these two genes in breast cancer
cell lines was not related to their oestrogen receptor positive or
negative condition. However, whether WTH3 gene activity
coincides with the degree of malignancy remains to be determined.
Further observations revealed that the p53 transgene was able to
considerably increase endogenous WTH3 gene expression in both
Hela and MCF7/AdrR cells, which supported the possibility that
WTH3 could be a target of p53. This hypothesis turned out to be
true as EMSA and super EMSA assays demonstrated that the P49
probe containing p53M in the WTH3 promoter was specifically
targeted by endogenous and purified p53. However, p53 with mini
deletion in MCF7/AdrR cells, which lost its DNA-binding
capability, did not bind to the probe. In addition, ChIP assays
confirmed that the p53 protein physically interacted with the
WTH3 promoter region that contained the P49 sequence. In
addition, it is worth to mention that EMSA results showed that the
p53 protein was not able to bind to the probe that only included
the GC rich region, the p53M site, or the sequence containing part
of the GC and p53M regions, which suggested that both GC rich
and p53M sequences were required for p53 gene targeting. We
also noticed that the GC rich region included three CpG sites that
were differentially methylated in MDR vs non-MDR cells (Tian
et al, 2005a, b). The DNA methylation is one of the epigenetic
modifications that is symbolised by reversing traits of gene
expression without DNA sequence change (Doerfler, 1983; Bird,
1986; Antequera and Bird, 1993a, 1993b; Kass et al, 1997; Siegfried
and Cedar, 1997). At present, little is known about how the
epigenetic network interacts with other transcriptional machi-

neries to regulate gene expression in mammalian cells. In the past,
p53-binding motifs with GC rich features were observed in several
gene promoters including EGFR, Killer/DR4, RB and TGF-a (Qian
et al, 2002). However, there are fundamental questions that need to
be answered. For example, are those GC-rich regions epigenetically
modified? If they are, do they exert a negative impact on p53-
transactivity? As the p53-response element in the WTH3 gene
promoter was involved in differential methylation, we have been
provided with a unique working model system that can possibly
answer those questions. Currently, we are designing experiments
to explore if there is any interplay between DNA methylation and
the p53 transcription factor in regulating WTH3 gene expression.

Prior research demonstrated that confirmed p53 target genes are
either p53 functional mediators or regulators (Liu and Chen, 2006).
Considering that WTH3 is a target of the p53 gene, we examined
if they shared some biological functions. By employing several
strategies, we found that WTH3 played a role in promoting
apoptosis. It is possible that this proapoptotic potential is the
driving force behind WTH3’s participation in MDR development.
In addition, as WTH3 is a G protein and most likely involved in
cellular signalling transduction, we cannot rule out another
prospect that it also acts as a p53 functional regulator. Testing
this hypothesis is one of the subjects of our future research.
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