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A commentary on

Cortical and thalamic excitation mediate the multiphasic responses of striatal cholinergic

interneurons to motivationally salient stimuli

by Doig, N. M., Magill, P. J., Apicella, P., Bolam, J. P., and Sharott, A. (2014). J. Neurosci. 34,
3101–3117. doi: 10.1523/JNEUROSCI.4627-13.2014

Each time there is an interaction with the environment, we select one among many, equally possi-
ble, actions. How is it done? In the classical view, to access motor resources, many cortical action
plans compete in the basal ganglia: a set of subcortical neuron populations, whose output constantly
inhibits specific thalamic targets. In the basal ganglia, one cortical plan is selected, the correspond-
ing thalamic inhibition is disabled, finally producing the action (Albin et al., 1989). The classical
view of action selection is now extended, including thalamic afferents. And, in the current view,
a key role as modulators of action selection has been assigned to cholinergic interneurons of the
striatum, the largest basal ganglia structure (Ding et al., 2010).

Striatum is divided in two major populations of GABAergic medium spiny neurons (MSNs)
according to different expression of D1 and D2 dopamine receptors. These two populations and
their downstream pathways are respectively addressed as direct and indirect, for their connec-
tions with output basal structures (Tepper and Bolam, 2004). More than 90% of striatal neurons
are MSNs while the remaining 5–10% are two types of interneurons, cholinergic, and GABAer-
gic. These are providing the lateral inhibition that can actually implement the competition among
cortical plans and therefore are a key to understand action selection.

Cholinergic interneurons are known as tonically active neurons (TANs) for their spontaneous
activity (>4Hz). They receive glutamatergic afferents from cortex and thalamus, forming more
synapses with thalamic than cortical terminals (Doig et al., 2014), and dopaminergic afferents from
substantia nigra pars compacta. Locally, they branch dendritic arborization up to a millimeter in
diameter, and they innervate GABAergic interneurons, other TANs andMSNs (Tepper and Bolam,
2004).

Under resting conditions, MSNs are hyperpolarized by TANs spontaneous tonic firing (Tep-
per and Bolam, 2004). Morris et al. (2004) showed that increased cortical activity makes TANs
respond with a brief burst, an afterhyperpolarization pause in their firing, and a rebound burst.
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In addition, Ding et al. (2010) have shown, in vitro,
that also thalamic stimuli elicit TAN burst-pause pattern
response.

The work of Doig et al. (2014) aims at functionally distinguish
thalamic and cortical contributions to action selection. Using dif-
ferent stimuli (single-, paired-pulse, and pulse trains) selectively
delivered in the cortex and thalamus of rats, they were able to
identify two temporal TAN response patterns. As in Morris et al.
(2004), they used peri-stimulus time histogram (PSTH) analysis
to identify the three main phases in TAN response: burst, pause
and rebound. Applying pulse trains, which mimic the timing of
motivationally salient stimuli (Ding et al., 2010), they were able to
discriminate cortical and thalamic stimuli, predicting the whole
TAN response based only on the initial phase. In fact, the num-
ber of spikes in the burst correlated positively with pause length
and negatively with the magnitude of rebound: thalamic source
was identified by high initial phase, long pause and low rebound,
while cortical source was marked by lower initial phase, short
pause, and higher rebound (Figure 1A).

To explore the contribution to action selection of these
two different TANs responses, Doig et al. (2014) performed
experiment in primates. The authors referred to the effect on
striatum of salient stimuli, which are known to shift attention and

FIGURE 1 | Basal ganglia play a selecting role in motor activity. To

perform a certain movement, it is necessary to let motor thalamic neurons

(Th) excite the cortex (Cx). But globus pallidus (pars interna, GPi) constantly

inhibits them. The striatum (Str) is thought to encode action sequences

whose occurrence could be facilitated or suppressed through direct and

indirect pathways. Activation of the direct pathway, mediated by D1

receptors, as well as suppression of the indirect pathway, mediated by D2

receptors, (through globus pallidus pars externa, GPe, and sub-thalamic

nucleus, STN) are therefore required to interrupt tonic pallidal inhibition and

disinhibit the thalamic neurons, resulting in excitation of the cortex and the

movement. Recently, an important role in modulation of basal ganglia

responses has been attributed to striatal cholinergic TANs (in blue). They

have different firing patterns depending on their inputs in (A): a high initial

burst, a long pause, and a low rebound burst when excited by thalamus

(solid line), and a low initial burst, a shorter pause, and a higher rebound

when excited by cortex (dashed line). These three phases have different

impacts on action selection and reinforcement learning. (B) During burst

induced by thalamic input (thick solid green), TANs reduce cortical input

(dashed green) releasing ACh acting pre-synaptically on muscarinic

receptors M2 (fast kinetic). (C) During the pause, muscarinic receptor M1 on

D2 MSNs are slowly activated by ACh binding. This enhances

responsiveness to corticostriatal input, actively braking any ongoing activity

(thick solid red). (D) Still during the pause and the following rebound, a

cortical plan is eventually selected and inhibits GPi through D1 pathway (thick

solid red), unleashing an action. And if the action is rewarded, signaled by

dopamine (DA) from substantia nigra pars compacta (SNc, thick brown), it

creates ideal conditions for long-term modification of corticostriatal

synapses, which is thought to underlie reinforcement motor learning.

suppress ongoing motor activity by engaging thalamostriatal-
evoked pause in TANs (Desimone and Duncan, 1995). A reward-
conditioning task was performed with macaque monkeys. Two
conditions were used: reward-predicting visual stimulus, fol-
lowed by juice delivery, and reward-only, in which juice was
delivered randomly without any predictive stimulus. Although
in these experiments the authors could not determine the (cor-
tical or thalamic) origin of inputs, using their PSTH characteriza-
tion, they found in monkeys a correlation similar to that seen in
rats for thalamic-induced pattern and, more importantly, it was

present only after reward-predicting stimuli and weak or absent
after reward-only.

Taking into count these and other results in current litera-

ture, wemight point amechanism linking action selection (1) and

salient stimuli (2) (see also Figure 1). The link is in the interplay
of acetylcholine (ACh) and dopamine (DA) release, induced by
thalamic-mediated salient stimuli.

(1) TANs “thalamic” response pattern prepares the condition for
action selection. In fact, after release, ACh binds to mus-
carinic receptors M2 (fast kinetic) andM1 (slow kinetic). M2
activation transiently reduces glutamate release from cor-
tical terminals during the initial phase (Figure 1B). More

Frontiers in Neural Circuits | www.frontiersin.org 2 April 2015 | Volume 9 | Article 15

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Pelosi and Guarino Multiphasic responses of cholinergic interneurons

effectively, M1 activation on D2 MSNs enhances their
responsiveness to corticostriatal input throughout the pause
(Ding et al., 2010, and Figure 1C). Hence MSNs located in
proximity of pausing TANs will transiently become much
more responsive to cortical input (Pakhotin and Bracci,
2007).

(2) The same “thalamic” response pattern reinforces rewarded
cortical actions. Its longer pause creates a window for a cas-
cade of events: ACh, while suppressing the ongoing actions
exciting D2 MSNs, induces local DA release from dopamin-
ergic axons acting onACh nicotinic receptors (Threlfell et al.,
2012, Figure 1C). In addition, ascending dopamine neurons

activity due to rewarded actions further increases DA levels
(Figure 1D). Increase in DA will thus create ideal condi-
tions for long-term modification of corticostriatal synapses,
which is thought to underlie reinforcement motor learning
(Pakhotin and Bracci, 2007).

In conclusion, Doig et al. (2014) contribute in clarifying the
importance of cholinergic interneurons as modulators of action
selection. With their work in vivo, they support the current
view—hypothesized with in vitro data (Ding et al., 2010; Threlfell
et al., 2012)—that ACh and DA work in synergy to select actions
and reinforce learning.

References

Albin, R. L., Young, A. B., and Penney, J. B. (1989). The functional anatomy

of basal ganglia disorders. Trends Neurosci. 12, 366–375. doi: 10.1016/0166-

2236(89)90074-X

Desimone, R., and Duncan, J. (1995). Neural mechanisms of selec-

tive visual attention. Annu. Rev. Neurosci. 18, 193–222. doi:

10.1146/annurev.ne.18.030195.001205

Ding, J. B., Guzman, J. N., Peterson, J. D., Goldberg, J. A., and Surmeier, D. J.

(2010). Thalamic gating of corticostriatal signaling by cholinergic interneurons.

Neuron 67, 294–307. doi: 10.1146/annurev.ne.18.030195.001205

Doig, N. M., Magill, P. J., Apicella, P., Bolam, J. P., and Sharott, A.

(2014). Cortical and thalamic excitation mediate the multiphasic

responses of striatal cholinergic interneurons to motivationally salient

stimuli. J. Neurosci. 34, 3101–3117. doi: 10.1523/JNEUROSCI.4627-

13.2014

Morris, G., Arkadir, D., Nevet, A., Vaadia, E., and Bergman, H. (2004).

Coincident but distinct messages of midbrain dopamine and striatal ton-

ically active neurons. Neuron 43, 133–143. doi: 10.1016/j.neuron.2004.

06.012

Pakhotin, P., and Bracci, E. (2007). Cholinergic interneurons control the excitatory

input to the striatum. J. Neurosci. 27, 391–400. doi: 10.1523/JNEUROSCI.3709-

06.2007

Tepper, J. M., and Bolam, J. P. (2004). Functional diversity and speci-

ficity of neostriatal interneurons. Curr. Opin. Neurobiol. 14, 685–692. doi:

10.1016/j.conb.2004.10.003

Threlfell, S., Lalic, T., Platt, N. J., Jennings, K. A., Deisseroth, K., and Cragg, S.

J. (2012). Striatal dopamine release is triggered by synchronized activity in

cholinergic interneurons. Neuron 75, 58–64. doi: 10.1016/j.neuron.2012.04.038

Conflict of Interest Statement: The authors declare that the research was con-

ducted in the absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Copyright © 2015 Pelosi and Guarino. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) or licensor are credited and that the original publication in this jour-

nal is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Neural Circuits | www.frontiersin.org 3 April 2015 | Volume 9 | Article 15

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive

	A commentary on: ``Cortical and thalamic excitation mediate the multiphasic responses of striatal cholinergic interneurons to motivationally salient stimuli''
	References


