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Abstract: The acidic pH of the tumor microenvironment plays a critical role in driving cancer
development toward a more aggressive phenotype, but the underlying mechanisms are unclear.
To this end, phenotypic and genotypic changes induced by adaptation of cancer cells to chronic
acidosis have been studied. However, the generality of acid adaptation patterns across cell models
and their correlation to the molecular phenotypes and aggressiveness of human cancers are essentially
unknown. Here, we define an acid adaptation expression response shared across three cancer cell
models, dominated by metabolic rewiring, extracellular matrix remodeling, and altered cell cycle
regulation and DNA damage response. We find that many genes which are upregulated by acid
adaptation are significantly correlated to patient survival, and more generally, that there are clear
correlations between acid adaptation expression response and gene expression change between
normal and tumor tissues, for a large subset of cancer patients. Our data support the notion that
tumor microenvironment acidity is one of the key factors driving the selection of aggressive cancer
cells in human patient tumors, yet it also induces a growth-limiting genotype that likely limits cancer
cell growth until the cells are released from acidosis, for instance during invasion.

Keywords: RNA sequencing; tumor microenvironment; chronic acidosis; survival analysis;
acid adaptation; medical transcriptomics

1. Introduction

Invasive cancers, regardless of their origin, acquire characteristic phenotypic traits during their
development, including self-sufficiency with respect to growth signals, apoptosis evasion, profound
metabolic changes, chemotherapy resistance, and the ability to invade and spread to secondary
niches [1]. These changes are the result of a clonal evolution process, in which the combination of
somatic mutations and evolutionary selection pressure leads to the preferential expansion of clones of
cells that are particularly fit for survival and expansion in the harsh tumor microenvironment [2–4].

The microenvironmental conditions in solid tumors are a result of rapid cancer cell proliferation
and growth which, in combination with insufficient vascularization, leads to hypoxia, glucose depletion,
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accumulation of lactate and other metabolites, and profound acidosis. While serum pH is around 7.4,
corresponding to a H+ concentration ([H+]) of ~40 nM, the extracellular pH (pHe) in tumors can reach
6.2–6.8, i.e., [H+] ~630–160 nM [5–9]. A plethora of studies have investigated the impact of hypoxia on
cancer development and the therapeutic potential of targeting hypoxia-inducible factors (reviewed in,
e.g., [10]). In contrast, the role of extracellular acidosis in this process remains incompletely understood.
Recent studies, mostly employing the acid adaptation of cultured cancer cells, have supported the
hypothesis that extracellular acidosis is a driver of cancer aggressiveness. Thus, adaptation to
acidosis was shown to favor epithelial-to-mesenchymal transition (EMT) [11,12], invasiveness and
metastasis in cell culture and xenograft models of melanoma, cervical cancer, and breast and colon
cancer [13–16]. Accordingly, studies of mouse breast tumors in vivo showed that acidosis (detected
by pH (low) insertion peptide (pHLIP) labeling), carbonic anhydrase (CA9) expression and plasma
membrane-localized LAMP2 correlated with invasive features such as the absence of laminin and the
expression of matrix metalloproteinase (MMP)-9 and -14 [17]. Other phenotypic changes induced by
the adaptation of cancer cells to acidosis include a shift from glycolytic metabolism toward increased
glutaminolysis, fatty acids uptake and β-oxidation [9,15,18–20]. Cancer cell proliferation and growth
are, however, generally reduced, or unaltered, as long as acidic pHe is maintained [12,13].

The molecular mechanisms through which growth under chronic extracellular acidosis leads to this
profound rewiring of cancer cells are poorly understood. While several studies have examined global
changes in gene expression upon acidosis or lactic acidosis [15,21,22], the overlap between the changes
induced by acidosis and those found in patient tumors, and the correlation of acidosis-responsive
gene expression to overall patient survival, have to our knowledge never been comprehensively
examined. Because acidic growth seems to drive at least some phenotypes akin to those found
in highly aggressive cancers, an important question is whether there is a generic response to acid
adaptation that is shared between cancer cells, and whether this response reflects the expression
changes observed between tumors and normal tissues in patient samples. Such correlations may
indicate that an acidic microenvironment can increase cancer aggressiveness, which in turn should be
correlated to patient survival.

In the present study, by applying RNA-seq to three acid-adapted cancer cell lines we identify a
shared acid adaptation response gene signature, which we compare with rich expression data from
human tumors and normal tissue across many cancers, and overall survival data from the same
patients. Our results reveal significant overlaps between gene signatures of acid-adapted cells and
tumor tissues for subsets of patients, and we identify sets of shared genes from these signatures that
correlate significantly—positively as wel as negatively—with patient survival.

2. Results

2.1. Gene Expression Changes Induced by Chronic Adaptation of Cancer Cells to Acidosis

To understand the changes in gene expression profile induced by changes in environmental pH (pHe)
across multiple cancer cell types, rather than in a single cancer cell type, we adapted three different cancer
cell lines to growth at either pH 7.6 or 6.5 by adjusting the HCO3

− concentration of the medium [23],
followed by culturing at the respective pH for at least 1 month at 5% CO2. Cells were lysed, and RNA
was isolated and subjected to global RNA-seq in triplicates (Figure 1A, top). Principal component (PC)
analysis of gene expression estimates from RNA-seq libraries showed that PC1 and PC2 separated the
three cell lines, while PC3 and PC4 separated acid-adapted cells from control cells, indicating a shared
acid adaptation response across the three cell lines (Figure 1B). Given this, we set out to analyze the shared
acid adaptation response, and compared it to tumor-specific expression profiles and patient survival using
a strategy outlined in Figure 1A.
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Figure 1. Overview of study procedures and analyses. (A) Overview of the experimental design, and 
individual and integrative analyses performed. Three cancer cell lines in triplicates (MDA-MB-231, 
MCF7 and PANC-1) were acid-adapted to pH 6.5 and 7.6 over a period of 1 month and subjected to 
RNA-sequencing analysis (RNA-seq). Below this, an overview of computational analyses performed 
is shown. Briefly, we used two strategies to define a shared acid adaptation gene expression profile: 
by defining sets of statistically significant genes, or by ranking genes by their expression fold change 
(pH 6.5 vs. 7.6; Figure 2). These lists were then subject to over-representation analyses (Figure 2), 
survival analysis in multiple cancers (Figure 3), and comparison to tumor-control tissue (ctrl.) RNA-
seq experiments from patient samples (Figures 4 and 5), to identify a final list of genes that are up-
/downregulated in acid adaptation as well as in tumor vs. ctrl. experiments, and whose in vivo 
expression is associated with overall patient survival (Figure 6). (B) Principle component analysis 
(PCA) based on gene expression. The x- and y-axes show principle components (PCs) 1 and 2 in left 
panel, 3 and 4 in right panel. Percentage explained variance is shown at each axis. Each dot 
corresponds to one RNA-seq library. Symbol shapes correspond to cell lines and color corresponds to 
pH treatment. In the left panel, dashed circles show three groups corresponding to cell lines. In the 
right panel, the dashed line divides samples by pH treatment. 

2.2. Identification of A Shared Acid Adaptation Gene Response Profile 

The Limma method was used to identify genes with a significant and shared expression 
response to acid adaptation using a linear model (See Materials and Methods). Out of the 12,750 
expressed genes, 478 were significantly upregulated, and 255 were downregulated across all three 
cell lines (abs (log2 fold change, log2FC) >0.5, False Discovery Rate (FDR) < 0.05). Figure 2A shows a 
shared log2FC-ranked list of all expressed genes, colored by significance, while Figure 2B shows the 

Figure 1. Overview of study procedures and analyses. (A) Overview of the experimental design,
and individual and integrative analyses performed. Three cancer cell lines in triplicates (MDA-MB-231,
MCF7 and PANC-1) were acid-adapted to pH 6.5 and 7.6 over a period of 1 month and subjected to
RNA-sequencing analysis (RNA-seq). Below this, an overview of computational analyses performed
is shown. Briefly, we used two strategies to define a shared acid adaptation gene expression profile:
by defining sets of statistically significant genes, or by ranking genes by their expression fold change
(pH 6.5 vs. 7.6; Figure 2). These lists were then subject to over-representation analyses (Figure 2), survival
analysis in multiple cancers (Figure 3), and comparison to tumor-control tissue (ctrl.) RNA-seq experiments
from patient samples (Figures 4 and 5), to identify a final list of genes that are up-/downregulated in acid
adaptation as wel as in tumor vs. ctrl. experiments, and whose in vivo expression is associated with
overall patient survival (Figure 6). (B) Principle component analysis (PCA) based on gene expression.
The x- and y-axes show principle components (PCs) 1 and 2 in left panel, 3 and 4 in right panel. Percentage
explained variance is shown at each axis. Each dot corresponds to one RNA-seq library. Symbol shapes
correspond to cell lines and color corresponds to pH treatment. In the left panel, dashed circles show three
groups corresponding to cell lines. In the right panel, the dashed line divides samples by pH treatment.
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Figure 2. Identification of a shared acid adaptation expression response. (A) Fold change-based ranking of
all genes differentially expressed in chronically acid-adapted cancer cells. The x-axis corresponds to the rank
assigned to each gene from 1 to N based on gene expression fold change (pH 6.5 vs. pH 7.6) in log2 scale
(y-axis), also illustrated by blue–red gradient below. Bar color intensity indicates differential expression
significance, expressed as false discovery rate (FDR). Genes with the largest absolute fold change are labelled
on the plot. (B) Heatmap visualization of differential expression change in chronically acid-adapted cells.
Rows correspond to significantly differentially expressed genes (480 upregulated and 256 downregulated),
and columns correspond to three cancer cell lines (MDA-MB-231, PANC-1 and MCF7). Color indicates
average log2 fold change of gene expression (pH 6.5 vs. pH 7.6) across three replicates per condition.
(C) Gene Ontology (GO) term analysis of differentially expressed genes in chronically acid-adapted cells.
The x-axis shows GO term enrichment FDR values in−log10 scale for differentially expressed genes defined
above. The y-axis shows the top 5 GO terms from three categories (BP—Biological process, MF—Molecular
function, CC—Cellular Component) and pathways from the KEGG (Kyoto Encyclopedia of Genes and
Genomes) database, ordered by FDR. Bar colors correspond to up- or downregulated gene sets as in
(B,D) Gene set enrichment analyses (GSEA) based on acid adaptation-ranked gene list from A to gene lists
in the SigDB database. A subset of comparisons is shown as GSEA plots: the SigDB gene list identifier
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is shown on top of each plot. The y-axis in subplot shows the enrichment score, reflecting how much the
chosen gene set is over-represented at the top or bottom of the ranked acid adaptation gene list. In the
x-axis, red indicates upregulation at pH 6.5, and blue downregulation, as in Figure 2A. Vertical lines in the
lower part of the plot show where in the ranked acid adaptation gene list the genes in the selected SigDB
gene list occurred.
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Figure 3. Correlation of genes differentially regulated in chronically acid adaptation cancer cells with 
patients’ overall survival. (A) Summary of patient overall survival (OS) analysis based on acid 
adaptation-upregulated genes. Bars show the number of genes significantly associated with overall 
survival (x-axis), stratified by whether high patient gene expression correlates with poorer or better 
OS (indicated by bar color). The y-axis shows cancer type, where N is the number of patients analyzed. 
PAAD—pancreatic cancer, BRCA—breast cancer (luminal B), LUAD—lung cancer (adenocarcinoma), 
GBM—glioblastoma, COAD—colon cancer, OV—ovarian cancer, THCA—thyroid cancer, STAD—
stomach cancer. (B) Summary of patient OS analysis based on acid adaptation-downregulated genes. 
Arranged as in (A,C) Survival analysis based on SMAD9 expression levels. Kaplan–Meier overall 
survival analysis in pancreatic cancer, lung adenocarcinoma, glioblastoma and colon cancer patients, 
respectively, based on SMAD9 expression levels (GDC TCGA datasets). The y-axis shows survival 

Figure 3. Correlation of genes differentially regulated in chronically acid adaptation cancer cells with
patients’ overall survival. (A) Summary of patient overall survival (OS) analysis based on acid
adaptation-upregulated genes. Bars show the number of genes significantly associated with overall
survival (x-axis), stratified by whether high patient gene expression correlates with poorer or better OS
(indicated by bar color). The y-axis shows cancer type, where N is the number of patients analyzed.
PAAD—pancreatic cancer, BRCA—breast cancer (luminal B), LUAD—lung cancer (adenocarcinoma),
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GBM—glioblastoma, COAD—colon cancer, OV—ovarian cancer, THCA—thyroid cancer, STAD—stomach
cancer. (B) Summary of patient OS analysis based on acid adaptation-downregulated genes. Arranged as
in (A,C) Survival analysis based on SMAD9 expression levels. Kaplan–Meier overall survival analysis in
pancreatic cancer, lung adenocarcinoma, glioblastoma and colon cancer patients, respectively, based on
SMAD9 expression levels (GDC TCGA datasets). The y-axis shows survival probability, the x-axis shows
time in days. Red line: patient group with high expression of the analyzed gene. Blue line: patient group
with low expression of the analyzed gene. Survival analysis p-value is shown. (D) Survival analysis based
on ZNF557 expression levels. Kaplan–Meier overall survival analysis in pancreatic cancer, breast cancer
(luminal B), lung adenocarcinoma, glioblastoma and stomach cancer patients respectively, based on
ZNF557 expression levels, arranged as in (C).
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GBM—glioblastoma, COAD—colon cancer, OV—ovarian cancer, THCA—thyroid cancer, STAD—stomach
cancer. (B) Summary of patient OS analysis based on acid adaptation-downregulated genes. Arranged as
in (A,C) Survival analysis based on SMAD9 expression levels. Kaplan–Meier overall survival analysis in
pancreatic cancer, lung adenocarcinoma, glioblastoma and colon cancer patients, respectively, based on
SMAD9 expression levels (GDC TCGA datasets). The y-axis shows survival probability, the x-axis shows
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with low expression of the analyzed gene. Survival analysis p-value is shown. (D) Survival analysis based
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Figure 4. Rank–rank analysis of acid adaptation and patient tumor–ctrl. ranked gene lists. (A) 
Conceptual overview of rank–rank hypergeometric overlap (RRHO) analysis. Genes are ranked by 
their log2 fold expression change based on either tumor–ctrl. comparison for a given patient (left) or 
by acid adaptation response (pH 6.5 vs. 7.6). These ranked gene lists are compared in the rank–rank 
heat map below (exemplified by the comparison of data from the TCGA patient TCGA-EL-A3ZS and 
the acid adaptation gene list), identifying windows of genes with correlated ranks in respective gene 
lists and the significance of such correlated ranks, as indicated by color (based on ln(hypergeometric 
p-values) as shown). (B) Heat maps resulting from patient tumor–ctrl. vs. acid adaption gene list
RRHO analyses showing high gene rank similarity. Each heat map corresponds to patient tumor–ctrl. 
vs. acid adaptation gene list analysis as in A, where the acid adaptation gene list is always at the x-
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expression change based on either tumor–ctrl. comparison for a given patient (left) or by acid adaptation

Figure 4. Rank–rank analysis of acid adaptation and patient tumor–ctrl. ranked gene lists. (A) Conceptual
overview of rank–rank hypergeometric overlap (RRHO) analysis. Genes are ranked by their log2 fold
expression change based on either tumor–ctrl. comparison for a given patient (left) or by acid adaptation
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response (pH 6.5 vs. 7.6). These ranked gene lists are compared in the rank–rank heat map below
(exemplified by the comparison of data from the TCGA patient TCGA-EL-A3ZS and the acid adaptation
gene list), identifying windows of genes with correlated ranks in respective gene lists and the significance
of such correlated ranks, as indicated by color (based on ln(hypergeometric p-values) as shown). (B) Heat
maps resulting from patient tumor–ctrl. vs. acid adaption gene list RRHO analyses showing high
gene rank similarity. Each heat map corresponds to patient tumor–ctrl. vs. acid adaptation gene list
analysis as in (A), where the acid adaptation gene list is always at the x-axis and the color scale is as in
(A). Cancer types are indicated on top of heat maps: consecutive heat maps to the right have the same cancer
type unless otherwise indicated (BRCA—breast cancer (luminal B), BLCA—bladder urothelial carcinoma,
ESCA—esophageal carcinoma, STAD—stomach cancer, CHOL—cholangiocarcinoma, UCEC—uterine
corpus endometrial carcinoma, PCPG—pheochromocytoma and paraganglioma, PAAD—pancreatic
cancer, COAD—colon cancer, SARC—sarcoma, READ—renal adenocarcinoma, HNSC—head and neck
squamous cell carcinoma, LIHC—liver hepatocellular carcinoma, LUAD—lung cancer (adenocarcinoma),
PRAD—prostate adenocarcinoma, KICH—kidney chromophobe, KIRP—kidney renal papillary cell
carcinoma, KIRC—kidney renal clear cell carcinoma, THCA—thyroid cancer). (C) Distribution of RRHO
similarity scores across TCGA patients. The y-axis shows the number of patients with a given RRHO
similarity score (x-axis) calculated as the fraction of windows with a p < 0.05 in rank–rank heat maps (out
of a total of 100 windows). Analyses resulting in >20 windows with p < 0.05 (highlighted in yellow) were
considered “high acid adaptation similarity”. The number of analyzed patients and the number of analyses
resulting in high acid adaptation similarity scores are shown as an insert table. (D) Relation between
high acid adaptation similarity score and patient metadata. Subpanel i shows the distribution of age of
diagnosis split by whether patients are in the “high acid adaptation similarity” group, visualized as box
plots. p-value is from two-sided t test. Subpanel ii–iv shows fraction of patients classified by TNM staging
system. T: size of the primary tumor. T1, T2, T3, T4—size and/or extension of the primary tumor. N: degree
of spread to regional lymph nodes. N0—no regional lymph nodes metastasis; N1—regional lymph node
metastasis present (at some sites, tumor spread to closest or small number of regional lymph nodes);
N2 —tumor spreads to an extent between N1 and N3; N3—tumor spread to more distant or numerous
regional lymph nodes. M: presence of distant metastasis. M0—no distant metastasis; M1—metastasis to
distant organs (beyond regional lymph nodes). Bars are split by whether patients are in the “high acid
adaptation similarity” group. p-values from Fisher exact tests are shown, testing the decrease in T1 and
increase in T2 in the “high acid adaptation similarity” group vs. remaining patients. Numbers on bars
show patient counts.
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Figure 5. Analysis of overlapping genes between pH ranks and tumor–ctrl. ranks with high similarity. 
(A) Gene ontology (GO) and KEGG pathway analysis of genes upregulated in acid adaptation and 
correlated in gene expression rank in tumor–ctrl. comparisons in ≥50 patients. The upper bar plot 
shows the number of tumor–ctrl. vs. acid adaptation RRHO analyses in which the gene was identified 
as significant. Bar color indicates log2 expression FC in the acid adaptation experiment (pH 6.5 vs. 7.6). 
Gene identifiers are shown below. Rows in the bottom panel correspond to selected GO terms with 
high significance from three sources (BP—Biological process, MF—Molecular function, CC—Cellular 

Figure 5. Analysis of overlapping genes between pH ranks and tumor–ctrl. ranks with high similarity.
(A) Gene ontology (GO) and KEGG pathway analysis of genes upregulated in acid adaptation and
correlated in gene expression rank in tumor–ctrl. comparisons in ≥50 patients. The upper bar plot shows
the number of tumor–ctrl. vs. acid adaptation RRHO analyses in which the gene was identified as
significant. Bar color indicates log2 expression FC in the acid adaptation experiment (pH 6.5 vs. 7.6).
Gene identifiers are shown below. Rows in the bottom panel correspond to selected GO terms with
high significance from three sources (BP—Biological process, MF—Molecular function, CC—Cellular
Component) and pathways from the KEGG database. Columns are genes as indicated above. Grey cells
indicate that a given gene is labelled with a given GO term or pathway. (B) Gene ontology (GO) analysis
of genes downregulated in acid adaptation correlated in gene expression rank in tumor–ctrl. comparisons
in ≥50 patients, arranged as in (A). (C) STRING database analysis of genes from panel (A). Nodes are
genes. Connections indicate STRING database evidence of protein interaction. Fully unconnected genes
are not shown. (D) STRING database analysis of genes from panel (B), arranged as in (C).
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Acidosis is one of the key characteristics of the microenvironment of solid tumors [3,9,20,54]. 
Agreeing with the idea that cancer is largely an evolutionary disease driven by selection pressure, it 
has been proposed that chronic acidosis selects for changes in cancer cell genotype and phenotype 
that increase their “fitness”, and hence aggressiveness [3,55,56]. Such adaptations would potentially 
render the cells resistant not only to sustained acidosis, but also to other stress stimuli, such as 
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Figure 6. Integrative analysis. (A) Overlaps between upregulated genes, OS and RRHO analyses. Venn
diagrams show overlaps between acid adaptation-upregulated genes (from Figure 2B), of genes significant
in overall survival (OS) analysis in at least two types of cancer (based on TCGA data, Figure 4), and genes
identified as having significant rank correlations between acid adaptation and tumor-control gene rank
lists (RRHO analysis, Figures 4 and 5). (B) Overlaps between downregulated genes, OS and RRHO
analyses Venn diagrams arranged as in (A) but focused on acid adaptation-downregulated genes.

2.2. Identification of a Shared Acid Adaptation Gene Response Profile

The Limma method was used to identify genes with a significant and shared expression response
to acid adaptation using a linear model (See Materials and Methods). Out of the 12,750 expressed genes,
478 were significantly upregulated, and 255 were downregulated across all three cell lines (abs (log2 fold
change, log2FC) > 0.5, False Discovery Rate (FDR) < 0.05). Figure 2A shows a shared log2FC-ranked
list of all expressed genes, colored by significance, while Figure 2B shows the mean log2FC in each
cell line across triplicates for differentially expressed genes. Tables S1 and S2 list all significantly up-
and downregulated genes, respectively. The response to pH was overall highly similar between the
three cancer cell lines, although the magnitude of change in the expressions of specific genes differed
between cell lines (Figure 2B). Among the top 10 upregulated genes was thioredoxin-interacting
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protein (TXNIP, also known as Vitamin D3-upregulated protein 1, VDUP1), previously reported to be
upregulated in response to extracellular acidosis [22,24] (Figure 2A). The TXNIP protein has several
important physiological roles: it is a potent negative regulator of glycolysis, and involved in redox
homeostasis, differentiation and growth. TXNIP is generally downregulated in cancers, at least in part
because it is negatively regulated by oncogenes such as Myc and ErbB2, and low TXNIP expression is
associated with poor prognosis [25–27]. Confirming the relevance of this pathway, the TXNIP paralogs
ARRDC2 and ARRDC4 were also among the significantly upregulated genes (Table S1).

Interestingly, several cation channels previously implicated in cancer development were
significantly upregulated. For example, the α subunit of the epithelial sodium channel ENaC
(SCNN1A) and the γ4 subunit of the voltage-dependent calcium channel (CACNG4) (Figure 2A) were
among the 10 most upregulated genes. The genes encoding the acid-stimulated ion channel-1 (ASIC1),
and the β1 subunit of the voltage-gated sodium channel (SCN1B), were also significantly upregulated
in acid-adapted cells (Table S1). In accordance with our findings, ASIC1 and ASIC2 are upregulated in
colorectal cancer cells subjected to acidosis [28]. ASICs and ENaC belong to the same channel family,
and both ASIC1 [29] and ENaC [30] are acutely activated by acidic pH, and both channels are implicated
in cancer development [11,31]. Similarly, both CACNG4 [32] and SCN1B [33] are upregulated in cancer
tissue and their gene products have been assigned a role in cancer progression.

Other highly upregulated genes included interferon-induced transmembrane protein 1 (IFITM1),
which, together with other interferon-regulated genes, are highly upregulated in several cancers
and assigned key roles in driving aggressiveness and chemotherapy resistance [34,35]. In addition,
the genes encoding Sushi-containing Domain-3 (SUSD3), an estrogen-regulated membrane-localized
protein previously found to be upregulated by chronic acidosis [15] and to play a key role in breast
cancer cell migration [36], and LARGE2, a bifunctional glycosyltransferase involved in proteoglycan
modification and hence in cell–extracellular matrix (ECM) interaction [37], were among the 10 most
upregulated genes (Figure 2A).

The 10 most downregulated genes across all three acid-adapted cell lines included, firstly, the gene
encoding the multidomain scaffold protein A-kinase anchoring protein-5 (AKAP5, a.k.a. AKAP79/150).
AKAP5 is a key regulator of cellular cAMP and Ca2+ signaling and, downstream from this, a plethora
of physiological processes, including glucose metabolism [38]. AKAP5 is not widely linked to
cancer in the literature, yet low AKAP5 expression was correlated with poor prognosis in some
stomach adenocarcinomas [39]. NIBAN1, a.k.a. FAM129A, which was also downregulated by acidic
growth, is frequently upregulated in cancers, favoring cell motility yet decreasing autophagy [40,41].
Furthermore, mucolipin-3 (MCOLN3) was strongly downregulated upon acidosis-induced selection.
Interestingly, MCOLN3 codes for a predominantly endosomal Ca2+ channel of the TRP channel family,
which is inhibited by acidic pH and plays important roles in endosomal Ca2+ and pH homeostasis [42].
Other genes strongly downregulated across all three cell lines included those coding for the tight junction
protein cingulin (CGN), the E3 ubiquitin ligase TRIM36, and SYNE1 (a.k.a. Nesprin-1), a nuclear
envelope protein.

Gene Ontology (GO) terms associated to ECM composition and remodeling, and lipid and
carboxylic acid metabolism, were over-represented in the upregulated genes, while GO terms
associated with cell proliferation, replication fork function and DNA repair were over-represented in
the downregulated genes (Figure 2C). Furthermore, the upregulation of cation channels (Figure 2A
and above) was reflected in GO term analysis (Table S3, while Table S4 shows the GO terms for
downregulated genes). KEGG pathway analysis showed an over-representation of cytochrome
P450-drug and xenobiotic metabolism, chemical carcinogenesis, propanoate metabolism and
glutaminergic synapse pathways in the upregulated genes, while downregulated genes were
over-represented in the cell cycle, DNA replication, homologous recombination, glutathione metabolism
and Fanconi anemia pathways. Notably, a downregulated glutathione metabolism was previously
reported in acid-adapted cells, and shown to reflect a shift from glutathione production towards
utilization of glutamine as a metabolic fuel [18]. The ranked acid adaptation gene set from Figure 2A was
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used to complement the above GO analysis with gene set enrichment analysis (GSEA) using the SigDb
database of gene sets (Figure 2D). This revealed a clear gene rank enrichment of several oncological gene
sets: acid adaptation-upregulated genes were enriched for gene sets associated with increased migration
and invasiveness, gene sets upregulated after expression of CyclinD1 (CCND1) (a key regulator of
G1-S phase transition), and genes downregulated after mTOR inhibition (Figure 2D). The link to mTOR
signaling is notable, given the key role of mTOR in metabolic control. The pH sensitivity of mTOR
signaling has previously been assigned a role in the impact of acidosis on metabolism, albeit in a
short-term study (i.e., not long enough for acid-induced selection) where cytoplasmic acidosis was
found to inhibit mTOR signaling [43,44]. Acid adaptation-downregulated genes were, correspondingly,
enriched in gene sets upregulated by mTOR inhibition, or by overexpression of the transcription factor
E2F1, a key player in the control of cell cycle progression.

Taken together, these analyses show that across multiple cancer cell types, chronic acidosis is
associated with gene expression changes expected to reflect a profound metabolic shift, including the
downregulation of fermentative glycolysis and upregulation of glutamine- and lipid-based metabolism,
and the downregulation of cell division and DNA repair, as wel as changes in ECM remodeling and
ion channel activity.

2.3. In Vivo Expression of Genes Reacting to Chronic Acidosis Is Predictive of Cancer Patient Survival

The above analysis indicated that there was an overlap between cancer-regulated and acid
adaptation-regulated gene sets, motivating a global investigation into whether the expression of acid
adaptation-induced genes in patient tumors is correlated to patient overall survival (OS). To do this,
RNA-seq data for multiple cancer types from the TCGA database were used. For each gene differentially
expressed in all cell lines in the acid adaptation experiment above, patients were classified based
on their mRNA expression of the specific genes into a high and low expression group, respectively,
using the median expression of genes as the cut-off value.

Kaplan–Meier analysis showed that 267 genes upregulated by chronic acidosis and 138 genes
downregulated by chronic acidosis were significantly associated with OS. Specifically, expression of
114 genes upregulated by chronic acidosis in all cell lines was significantly correlated with OS of
pancreatic cancer patients. In luminal B breast cancer, 56 acid adaptation-upregulated genes correlated
significantly with OS, followed by lung cancer (adenocarcinoma), glioblastoma, colon cancer, ovarian
cancer, thyroid cancer and stomach cancer (44, 36, 35, 32, 30 and 29 genes, respectively; Figure 3A).
In pancreatic, lung and thyroid cancer, a high expression of the majority of acid adaptation-upregulated
genes correlated with better OS. Breast, glioblastoma, colon, ovarian and stomach cancer cohorts shared
the reverse pattern: for the majority of acid adaptation-upregulated genes, high expression correlated with
poor OS outcome (Figure 3A). Additionally, we found 70 acid adaptation-downregulated genes whose
expression correlated with OS of lung adenocarcinoma patients. The counts in descending order for other
types of cancer were: Pancreatic cancer—59, stomach cancer—24, ovarian cancer—23, luminal B breast
cancer—21, thyroid cancer—17, colon cancer—15 and glioblastoma—11 (Figure 3B). High expressions
of the majority of acid adaptation-downregulated genes in lung adenocarcinoma, pancreatic cancer,
breast cancer and glioblastoma correlated with poor OS. On the contrary, high expressions of the majority
of acid adaptation-downregulated genes in stomach, ovarian, thyroid and colon cancers were associated
with better OS (Figure 3B).

The data in Figure 3A,B are collectively consistent with the hypothesis that in stomach, ovarian
and colon cancers, acidosis-related changes in gene expression may be more likely to be linked to worse
OS, whereas in pancreatic and lung cancer, they are more likely to be linked to better OS. A necessary
caveat is that these analyses are only correlative (see also Discussion), and the statistical power of the
OS analysis is limited by the number of patient datasets available.

Two genes stood out in terms of their high correlation with OS in multiple cancers. Among the acid
adaptation-upregulated genes, high expression of the gene encoding the transcription regulator SMAD9
(a.k.a. SMAD8) showed correlation with good OS in four types of cancer (pancreatic, lung, colon and
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glioblastoma; Figure 3C, Table 1). SMAD9, a receptor-SMAD activated by Bone Morphogenetic Protein
(BMP) receptors, was also upregulated by acidosis in colon cancer cells [45]. Although the link of
high expression to better OS makes SMAD9 upregulation an unlikely driver of acidosis-induced
pro-tumorigenic effects, activating SMAD9 mutations were linked to some gastric cancers [46]. We also
identified 5 genes (LGR4, RARG, PNISR, PCOLCE2, RALGDS) that shared the same patterns across
three types of cancer, and 39 genes with two overlaps across eight cancer types (Table 1). As high
expression of LGR4, RARG and PCOLCE2 correlated with poor OS, these are interesting candidates
for genes selected for in acidosis and linked to poor OS. The most common gene classes (based on
the UniProt database) among genes with significant OS analysis results in at least two types of cancer
were transcription regulators (9 genes), followed by genes involved in transport processes (8 genes),
differentiation/morphogenesis (5 genes) and metabolism (4 genes) (Table 1).

Another gene with multiple cancer OS associations was the transcription factor ZNF557, which was
downregulated by acid adaptation. Its low expression was associated with a worse OS outcome in
five types of cancer (pancreatic, breast luminal B, lung adenocarcinoma, stomach and glioblastoma)
(Figure 3D, Table 2). This supports that upregulation of ZNF557, an essentially unstudied member of
the KRAB-ZNF family of zinc finger transcription factors and a transcriptional target of STAT3 [47],
may be particularly relevant to the pro-tumorigenic effects of the acidic microenvironment, a possibility
to be addressed in future studies. We furthermore discovered 5 genes (MDGA1, VEGFC, MCM10,
CTBP1-DT, CHMP4A) with three OS correlations, and 22 genes with two OS correlations, across eight
cancer types (Table 2). Of these, low expressions of CTBP1-DT and CHMP4A correlated with poor
OS, making them possible candidates for acidosis-stimulated cancer aggressiveness. Among the acid
adaptation-downregulated genes significant in OS analysis in at least two types of cancer, we found
17 genes associated with DNA replication/repair/cell cycle, 5 involved in transcription regulation and
4 playing key roles in differentiation and morphogenesis (Table 2).

All 182 acid adaptation-upregulated, and 84 acid adaptation-downregulated, genes that were
significant in OS analysis in only one type of cancer are listed in Tables S5 and S6, respectively. Genes that
showed contradictory OS results across cancer types (i.e., high and low expression was significantly
associated with poor OS in different cancers) are listed in Table S7 (acid adaptation-upregulated) and
Table S8 (acid adaptation-downregulated). Figures S1–S16 show plots for all genes with statistically
significant OS results.

Taken together, these results show that a large fraction of acid adaptation-responsive genes
correlate with patient survival across multiple cancers. Importantly, these genes fall into four major
groups: acid adaptation-upregulated genes correlating with either good or poor OS, and acid
adaptation-downregulated genes correlating with either better or worse OS across several types of cancers.
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Table 1. Acid adaptation-upregulated genes significant in OS analysis in at least two types of cancers.

Types of Cancer

Gene Name Log2FC FDR Correlation with
Poor OS PAAD BRCA LUAD GBM COAD OV THCA STAD Molecular Function/Biological Process

(UniProt)

4 OVERLAPS

SMAD9 1.1723 0.0091 Low expression DNA-binding, transcription regulation

3 OVERLAPS

LGR4 0.7849 0.0127 High expression Differentiation, immunity

RARG 0.6840 0.0117 High expression DNA-binding, transcription regulation

PNISR 0.5890 0.0258 Low expression RNA-binding

PCOLCE2 0.5538 0.0408 High expression Collagen biosynthesis

RALGDS 0.5128 0.0249 Low expression GTPase regulator, signal transduction

2 OVERLAPS

SCNN1A 2.0490 0.0100 High expression Ion transport

PLA2R1 1.6361 0.0249 High expression Endocytosis

PDK4 1.6088 0.0351 High expression Ser/Thr protein kinase, metabolism

SNED1 1.5574 0.0302 High expression Cell-matrix adhesion

ADAMTSL4 1.5083 0.0176 High expression Peptidase, apoptosis

RAMP1 1.4724 0.0169 High expression Transport, angiogenesis

MFAP2 1.3770 0.0154 High expression Embryonic morphogenesis

HSPG2 1.2833 0.0073 High expression Angiogenesis, morphogenesis,

GNG7 1.2239 0.0142 Low expression GTPase activity

HOXA11 1.1569 0.0346 High expression DNA-binding, transcription regulation

ALDH3B1 1.1061 0.0081 High expression Oxidoreductase, metabolism

CORO2A 1.0708 0.0321 High expression Actin-binding, signal transduction

LRP1 1.0403 0.0380 High expression Endocytosis

TMEM8B 0.9897 0.0045 Low expression Cell adhesion, growth regulation
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Table 1. Cont.

Types of Cancer

Gene Name Log2FC FDR Correlation with
Poor OS PAAD BRCA LUAD GBM COAD OV THCA STAD Molecular Function/Biological Process

(UniProt)

ZNF710-AS1 0.9413 0.0330 Low expression lncRNA

PYGL 0.8856 0.0251 High expression Transferase, metabolism

TMED7-TICAM2 0.8634 0.0325 High expression Golgi organization, protein transport

NPEPL1 0.8764 0.0117 Low expression Aminopeptidase

SMARCD3 0.8743 0.0058 Low expression Chromatin regulator, neurogenesis

RHOBTB1 0.8684 0.0234 Low expression GTPase activity, actin organization

UNC13D 0.8587 0.0368 High expression Exocytosis

DBP 0.8034 0.0249 Low expression DNA-binding, transcription regulation

PDCD4 0.7330 0.0077 Low expression RNA-binding, apoptosis

MTMR7 0.7273 0.0329 Low expression Phosphatase

OTX1 0.6797 0.0091 High expression DNA-binding, morphogenesis

TXNRD3 0.6584 0.0125 High expression Differentiation, electron transport

PPOX 0.6399 0.0279 Low expression Oxidoreductase, heme biosynthesis

SPAG4 0.6392 0.0404 High expression Differentiation, spermatogenesis

ANO7 0.6260 0.0329 Low expression Lipid transport

FAHD2B 0.6164 0.0069 High expression Hydrolase

ORAI3 0.6063 0.0224 Low expression Calcium channel

NOP53 0.5938 0.0156 High expression Host-virus interaction, ribosome
biogenesis

C17orf49 0.5910 0.0081 Low expression Chromatin regulator, DNA-binding

VAMP2 0.5901 0.0073 Low expression Exocytosis, protein transport

ZNF487 0.5872 0.0377 Low expression DNA-binding, transcription regulation
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Table 1. Cont.

Types of Cancer

Gene Name Log2FC FDR Correlation with
Poor OS PAAD BRCA LUAD GBM COAD OV THCA STAD Molecular Function/Biological Process

(UniProt)

TDRD3 0.5832 0.0058 Low expression Chromatin regulator, RNA-binding

FRG1HP 0.5302 0.0376 Low expression Pseudogene

PLD2 0.5226 0.0306 High expression Hydrolase, lipid metabolism, motility

MLLT6 0.5118 0.0038 Low expression Histone-binding, metal ion-binding

PAAD—pancreatic cancer (dark blue), BRCA—breast cancer–luminal B (pink), LUAD—lung cancer–adenocarcinoma (turquoise), GBM—glioblastoma (orange), COAD—colon cancer
(red), OV—ovarian cancer (purple), THCA—thyroid cancer (grey), STAD—stomach cancer (green). Molecular function and/or biological processes according to UniProt database [48].

Table 2. Acid adaptation-upregulated genes significant in OS analysis in at least two types of cancers.

Types of Cancer

Gene Name Log2FC FDR Correlation with
Poor OS PAAD BRCA LUAD GBM COAD OV THCA STAD Molecular Function/Biological Process

(UniProt)

5 OVERLAPS

ZNF557 −0.5999 0.0069 Low expression DNA-binding, transcription factor, metal
on binding

3 OVERLAPS

MDGA1 −1.2003 0.0153 High expression Differentiation, neurogenesis

VEGFC −0.8963 0.0345 High expression Growth factor, angiogenesis,
differentiation

MCM10 −0.8486 0.0249 High expression DNA-binding, DNA replication, DNA
damage

CTBP1-DT −0.5490 0.0098 Low expression Oxidoreductase, differentiation,
transcription

CHMP4A −0.5182 0.0247 Low expression Protein transport

2 OVERLAPS

CGN −1.5661 0.0112 High expression Tight junction regulation
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Table 2. Cont.

Types of Cancer

Gene Name Log2FC FDR Correlation with
Poor OS PAAD BRCA LUAD GBM COAD OV THCA STAD Molecular Function/Biological Process

(UniProt)

AKAP5 −1.4671 0.0408 Low expression Calmodulin-binding

HIST1H4H −1.3143 0.0276 High expression DNA-binding

STYK1 −1.0844 0.0290 High expression Protein tyrosine kinase

CDC25A −1.0023 0.0182 Low expression Protein phosphatase, cell cycle, cell
division

RRM2 −0.9925 0.0325 High expression Oxidoreductase, DNA replication

VDR −0.9901 0.0131 High expression Vitamin D3 receptor, DNA-binding,
transcription

CDC6 −0.8805 0.0110 High expression Cell cycle, cell division, DNA replication

GINS4 −0.8574 0.0376 High expression DNA replication

AC019069.1 −0.8118 0.0467 High expression lncRNA

TCF19 −0.7835 0.0296 High expression DNA-binding, transcription factor

GINS2 −0.7784 0.0182 Low expression DNA replication

SOWAHC −0.7653 0.0201 High expression Ankyrin repeat domain-containing
protein

BRCA2 −0.7332 0.0375 High expression DNA-binding, DNA recombination, DNA
damage

AC092279.1 −0.6853 0.0203 Low expression lncRNA

CDCA5 −0.6652 0.0425 High expression Cell cycle, cell division

TUBB2A −0.6559 0.0360 High expression GTP-binding, microtubule cytoskeleton
organization

OAS3 −0.6518 0.0117 High expression RNA-binding, antiviral defense,
immunity

SFN −0.6382 0.0158 High expression DNA damage response

MTHFD1 −0.6333 0.0107 High expression Embryonic morphogenesis

ZNF562 −0.6041 0.0069 Low expression DNA-binding, transcription factor, metal
ion binding
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Table 2. Cont.

Types of Cancer

Gene Name Log2FC FDR Correlation with
Poor OS PAAD BRCA LUAD GBM COAD OV THCA STAD Molecular Function/Biological Process

(UniProt)

MASTL −0.6008 0.0482 High expression Ser/Thr protein kinase, cell division

CDCA4 −0.5907 0.0236 High expression Cell division

MMS22L −0.5725 0.0418 Low expression DNA repair

RMI1 −0.5661 0.0443 Low expression DNA replication

C1orf112 −0.5581 0.0415 High expression Uncharacterized protein C1orf112

MIR4435-2HG −0.5537 0.0105 High expression lncRNA

MCM4 −0.5328 0.0482 High expression DNA-binding, cell cycle, DNA replication

DSCC1 −0.5268 0.0492 High expression DNA-binding, cell cycle, DNA replication

USP1 −0.5192 0.0330 Low expression Protease, DNA repair

MCM3 −0.5129 0.0471 Low expression Transferase, mRNA transport, immunity

EIF6 −0.5008 0.0100 High expression Ribosome biogenesis, protein synthesis

PAAD—pancreatic cancer (dark blue), BRCA—breast cancer–luminal B (pink), LUAD—lung cancer–adenocarcinoma (turquoise), GBM—glioblastoma (orange), COAD—colon cancer
(red), OV—ovarian cancer (purple), THCA—thyroid cancer (grey), STAD—stomach cancer (green). Molecular function and/or biological processes according to UniProt database [48].
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2.4. RRHO Analysis Identifies Substantial Overlap between Genes Upregulated in Acid Adapted Cells and
Patient Tumor Tissue

Given that the expression level in vivo of a substantial number of acidosis-induced genes was
correlated with overall patient survival, we reasoned that it would be informative to directly compare
the acid adaptation gene expression response and the gene expression change between tumor and ctrl.
tissue. This requires paired normal and tumor tissue data from the same patient, and we therefore
downloaded TCGA RNA-seq data for 642 patients for which such paired data was available. For each
patient, we ranked genes according to the tumor vs. ctrl. tissue RNA-seq log2FC. We will refer to
such lists as “tumor–ctrl. ranked gene lists”. Each such ranked list was compared to a ranked gene
list based on the pH 6.5 vs. 7.6, log2FC, as shown in Figure 2A, referred to as the “acid adaptation
ranked gene list”. Using the rank–rank hypergeometric test method (RRHO) (Figure 4A), we sought to
identify patients whose tumor–ctrl. ranked gene lists had a significantly similar gene order to that
of the acid adaptation ranked gene list, and the set of genes that had similar orders in many such
pairwise comparisons. In brief, RRHO analysis identifies windows of the two rank gene lists which
have higher rank similarities than expected, and assigns p-values for each such window based on
hypergeometric tests, which can be visualized as a heat map. For example, the heat map in Figure 4A
shows an RRHO comparison between the patient TCGA-EL-A3ZS tumor–ctrl. ranked gene list (y-axis)
vs. the acid adaptation ranked gene list (x-axis), where color intensity in the heat map indicates the
gene rank similarity significance in a given window across respective ranked lists. In this example,
we observed a high overlap in the upregulated genes between the tumor–ctrl. ranked gene list of the
TCGA-EL-A3ZS patient and the acid adaptation ranked gene list (red areas), and a less strong but still
substantial rank similarity between modestly downregulated genes in both sets (yellow–green areas).
To identify clear cases of substantial rank similarity between patient tumor–ctrl. ranked lists and the
acid adaptation ranked lists, we counted the fraction of windows in the heat map matrix which had a
p-value < 0.05, and defined this number as the “acid adaptation similarity”. If >20% of windows had
p < 0.05, we considered the patient tumor–ctrl. rank gene list to be highly similar to the acid adaptation
ranked gene list. The group of 128/642 (~20%) tumor–ctrl. ranked gene lists satisfying this criterion
were defined as the ‘high acid adaptation similarity group” (Figure 4C).

Within this group, in most cases, the genes with highest rank similarity were upregulated in pH 6.5
vs. 7.4 and upregulated in tumor vs. ctrl. Figure 4B shows all heat maps from patients in the high acid
adaptation similarity group, while Figure 4C shows the distribution of patient ranked gene lists having
a given fraction of windows with p < 0.05. Interestingly, some cancer types had particularly high
proportions of patients within the high acid adaptation similarity group; for example, 34/51 (~63%) of
thyroid cancer patients (TCGA-THCA), 34/69 (~49%) of kidney renal clear cell carcinoma (TCGA-KIRC)
patients, and 3/4 (75%) of pancreatic adenocarcinoma (TCGA-PAAD) patients exhibited this pattern.
The insert in Figure 4C shows the numbers of patients in each cancer type in the high acid adaptation
similarity group. Notably, for some cancer types only small paired tumor–ctrl. sample sets were
available; hence, for these cancers, the calculated fractions are less certain.

Next, we investigated if patients in the high acid similarity group had specific clinical characteristics.
We observed that patients in the high acid adaptation similarity group had a weakly significant average
lower age than remaining patients (two-sided t-test, p = 0.043, means 58.99 and 62.15) (Figure 4D(i)).
To investigate metastasis status, we obtained tumor–normal–metastasis (TNM) staging system data
from the TCGA database and filtered for M0–M1 stages (presence or not of distant metastasis,
417 patients), N0–N3 stages (degree of spread to regional lymph nodes, 517 patients), and T1–T4
stages (size of the primary tumor, 619 patients) (Figure 4D(ii–iv)). We found no significant relation
between acid adaptation similarity groups and metastasis or node status, but patients in the high
acid adaptation similarity group were less likely to be classified as T2 (two-sided Fisher’s exact test,
p = 0.0007, odds ratio = 0.48), and more likely to be classified as T3 (two-sided Fisher’s exact test,
p = 0.0015, odds ratio = 1.95). This is in congruence with the notion that an acidic gene signature is
more likely to correlate with a more advanced primary tumor stage than with earlier stages.
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Overall, the RRHO analysis strongly indicates high similarity in acid adaptation response and
tumor–ctrl. expression profiles for a subset of patients spread across many cancers, in particular for the
upregulated genes. To investigate the overlap on a gene, rather than patient, basis for each tumor–ctrl.
and acid adaptation RRHO analysis, we extracted the set of genes that had significant rank similarities.
We then sorted these genes via how many times they were identified in the overlap sets among all
128 comparisons. Figure 5A,B show significant GO term and KEGG pathway annotation of such
genes occurring in ≥50 comparisons. STRING [49] protein–protein interaction plots for the up- and
downregulated genes with occurrence ≥50 are shown in Figure 5D,E. The GO/KEGG analyses show
that the upregulated overlapping genes were significantly associated with ECM remodeling and cell
migration and invasion, whereas the downregulated overlapping genes were generally associated with
metabolic processes. STRING analysis confirmed this pattern, with upregulated overlapping genes
showing a predominant clustering of genes related to ECM components and remodeling (Figure 5C).
Downregulated overlapping genes were less clearly clustered, but a cluster of metabolism-related
genes including ME1, PCK2, PGD, GK, IDNK and KHK was evident (Figure 5D).

Collectively, these analyses show that there is a substantial overlap between gene sets
up/downregulated by acid adaptation and genes up/downregulated in tumor vs. matched normal
tissue, respectively. Furthermore, they indicate that the upregulated overlapping gene sets are
strongly dominated by genes involved in cell motility, invasiveness and ECM remodeling, consistent
with the notion that these are key processes through which microenvironmental acidosis favors
cancer development.

2.5. Integration of Survival Data and Rank–Rank Analysis

Above, we have shown that (i) the in vivo expression of many genes selected for during acid
adaptation is correlated to overall survival, and (ii) for around 20% of cancer patients investigated, there is
a clear correlation in ranked gene expression (tumor–ctrl. vs. acid adaptation response). Seeking to
identify a set of genes that both correlated in ranked gene expression between adapted cells and tumors,
and was linked to survival, we plotted the overlap of acid adaptation-up- and downregulated genes
identified in the respective analyses as Venn diagrams (Figure 6). For survival-related genes, we chose a
conservative approach where only genes that were significantly related to survival in at least two cancer
types were included. Remarkably, the large majority of such genes overlapped with genes identified by
the RRHO analysis, resulting in two consensus gene lists of 36 and 34 genes, respectively (Figure 6A,B),
which could be further split based on whether their in vivo expression correlated with higher or lower
patient survival.

As expected, the acid adaptation and tumor-upregulated genes that were associated
with poor prognosis (Figure 6A, top list) included multiple genes related to ECM and cell
motility in various cancers, such as those encoding sperm-associated antigen-4 (SPAG4) [50],
microfibril-associated protein-2 (MFAP2) [51], the ADAM protease ADAMTSL4 [52], and ECM
components heparan-sulfate proteoglycan-2 (HSPG2) and Procollagen C-Endopeptidase Enhancer
2 (PCOLCE2). Thioredoxin reductase-3 (TXNRD3), likely important for alleviating oxidative stress,
the transcription factors HOXA11 and OTX1, as wel as the ENaC subunit SCNN1A, discussed above,
were also found in this gene set. The upregulated genes for which high expression correlated with good
prognosis in the cancers studied (Figure 6A, lower list) included SMAD9, discussed above, as wel as
genes coding for two transport proteins, the Ca2+ channel ORAI3 and the TMEM16 family member
ANO7, which is a lipid transporter and/or ion channel. It should, however, be noted that although
ANO7 upregulation is associated with good prognosis in breast and colon cancer (Table 1), it is in fact
associated with poor prognosis in prostate cancer [53].

The acid adaptation-downregulated genes overlapping with genes downregulated in patient
cancers, and for which high expression was associated with good prognosis (i.e., potential candidates
for pro-tumorigenic effects of acid adaptation, Figure 6B, lower list) included AKAP5 and ZNF557,
described above, as wel as several DNA replication- and repair-related genes, including the genes
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encoding the DNA repair protein MMS22L, the DNA replication licensing factor MCM3, and the
replication fork complex protein GINS2. Conversely, the downregulated genes for which high
expression correlates with poor prognosis (Figure 6B, top list) were dominated by other genes involved
in DNA replication, repair and cell cycle control, such as BRCA2, CDC6, CDCA4, CDCA5 and EIF6.

Collectively, these results reveal that genes regulated similarly in acid-adapted cells and in tumor
tissue can be linked to both poor and good prognosis, consistent with the notion that tumor acidosis
may be both a driver and a repressor of cancer progression. This indicates that while acidosis is likely
to favor cancer progression through the upregulation of ECM/motility related genes, it limits it through
the downregulation of DNA replication pathways.

3. Discussion

Acidosis is one of the key characteristics of the microenvironment of solid tumors [3,9,20,54].
Agreeing with the idea that cancer is largely an evolutionary disease driven by selection pressure,
it has been proposed that chronic acidosis selects for changes in cancer cell genotype and phenotype
that increase their “fitness”, and hence aggressiveness [3,55,56]. Such adaptations would potentially
render the cells resistant not only to sustained acidosis, but also to other stress stimuli, such as nutrient
limitations, hypoxia and chemotherapy, as wel as to anti-tumor immunity [9,57,58]. Although individual
genes and pathways have previously been compared between acid-adapted cells and patient tumors
(e.g., [15,24,59]), a comprehensive integrative analysis comparing genes upregulated by acidosis,
genes upregulated in patient tumors and their relation to patient survival is lacking. This was the aim
of the work presented here.

Our analyses show that hundreds of genes are similarly regulated by chronic acidosis, in three
cancer cell lines from human breast and pancreatic cancers, allowing for the identification of a
characteristic gene set shared between cancer cells selected for growth in an acidic microenvironment.
Both the up- and downregulated genes show significant overlaps with genes up- and downregulated
in patient tumor tissue, compared to normal tissue, for subsets of patients across multiple cancers.
Finally, numerous acid-regulated genes correlate with overall patient survival in at least one cancer
type, and many in two or more cancers, pointing to a possible functional role. Importantly, survival
correlations were both positive and negative, i.e., some genes selected for by acidosis and in patient
tissue correlate with increased, and some with decreased, overall survival; furthermore, the effect on
survival is often cancer-specific.

It is important to note that although the overlap between acid adaptation and tumor-specific
expression was strong, the overall causality is unclear. Extracellular acidosis within tumors may
causally lead to cancer aggression in vivo or potentiate an existing aggressive tumor behavior, or the
correlations we observe may be caused by an unobserved factor. To detangle these questions and
understand their true relevance to tumor growth and metastasis, it will be necessary to measure and
manipulate extracellular acidity in tumors in vivo or in advanced in vitro models, that can mimic not
only acidosis but other physicochemical, as wel as cellular, components of the tumor microenvironment.

A limitation of this work is that a given gene may favor the development of one cancer type and
counteract another (Tables S7 and S8), and hence correlations demonstrated here will not apply to all
cancers. This notwithstanding, clear patterns were observed.

A number of specific observations deserve special attention with respect to their relation to
cancer biology. Firstly, our findings are fully in line with the existing studies proposing that tumor
acidosis can promote cancer invasiveness. This includes the prominent pattern of upregulation by
acidosis of genes involved in ECM remodeling and invasiveness, as wel as the striking extent of
upregulation of ASIC1, the ENAC α subunit, and other cation channel genes, many of which have been
assigned important roles in cell–cell adhesion and invasion [60,61]. Second, our analyses also support
several existing studies that clearly show that adaptation to acidosis is not associated with increased
growth of the cancer cells [13,15]. The strong upregulation of TXNIP and its paralogs ARRD2 and
ARRD4 by chronic acidosis is consistent with previous reports of the effect of acidosis [18,24] and lactic
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acidosis [22] on this family of proteins, which are key negative regulators of glycolytic metabolism.
In previous work, TXNIP upregulation in acidosis has been shown to involve MondoA [22,24].
The metabolic signature induced by chronic acidosis in this and previous reports is characterized by
the downregulation of fermentative glycolysis and the upregulation of glutamine- and lipid-based
metabolism [18,62]. In contrast to this, cancer cells are often highly glycolytic, and accordingly,
frequently exhibit TXNIP downregulation [25–27]. Interestingly, combined inhibition of mTOR and
histone deacetylases strongly upregulated TXNIP, triggering oxidative stress-induced cell death in
KRAS-driven tumors [63]. This makes it tempting to speculate that TXNIP could be responsible not
only for the metabolic shift away from fermentative glycolysis, but also for oxidative stress and growth
restriction in acid-adapted cells.

Other mechanisms from those discussed in this work are likely to contribute to the effect of
microenvironmental acidosis on cancer aggressiveness. For instance, extracellular acidosis may
impact genomic instability and cause epigenetic changes in cancer cells, in line with the substantial
downregulation of DNA damage response mechanisms observed in this work [9,17]. Numerous studies
have established the strong inhibitory effect of acidosis on cell cycle progression [64]. After several
weeks to a few months of culture in acidic medium, cancer cells attain a growth rate similar to
that of normal cells grown at pH 7.4, yet not higher [13,15]. This is in itself remarkable, given the
acidosis-induced downregulation of pathways associated with cell cycle progression and DNA
replication observed in this study. It is, however, consistent with the notion that the acidic TME is likely
to act as a brake on proliferation, and may be seen as a niche favoring cells with limited growth but high
growth potential [56,65], such as cancer stem cells. Such cells would be growth-limited in an acidic
environment, but could have the capacity for extremely rapid growth when encountering regions of
normal pHe [9]. In this regard, therapeutic strategies targeting pathways selected for by chronic acidosis,
yet functionally limited by these conditions, may be particularly interesting. Similarly, otherwise
highly successful strategies of limiting tumor growth by counteracting acidosis [66,67] could carry
the risk of exacerbating aggressiveness if applied at a stage when pH normalization might unleash
aggressive growth.

4. Materials and Methods

4.1. Cell Culture and Acid Adaptation

Human breast cancer cell lines MDA-MB-231, MCF7 and human pancreatic adenocarcinoma cell
line PANC-1 were cultured in RPMI-1640 Medium (Sigma Aldrich, Catalog No. R1383, Saint Louis,
MO, USA) supplemented with 10% Fetal Bovine Serum (Sigma Aldrich, Cat. No. F9665, Saint Louis,
MO, USA) and 1% Penicillin/Streptomycin (Sigma Aldrich, Cat. No. P0781, Saint Louis, MO, USA).
Medium pH was adapted by adjusting the HCO3

− concentration by adding the appropriate amount
of NaHCO3, ensuring equal osmolarity by adjusting [NaCl]. Cells were adapted to pH 7.6 and 6.5
by adding the appropriately pH-adjusted medium to freshly split cells, and maintaining cells in this
medium, splitting or adding fresh medium twice per week for 1 month, until approximately equal
growth rates were observed.

4.2. RNA Isolation and RNA Sequencing

Cells were grown to 70–90% confluence in 10 cm2 Petri dishes. RNA isolation was performed
using a Nucleospin RNA purification kit (Macherey-Nagel, Cat. # NC0707522, Düren, Germany) and
following the manufacturer’s instructions. RNA library preparation and sequencing were done as
a paid service by BGI (Hongkong), producing 100 bp paired-end non-stranded libraries with ~20 M
reads per library, using the BGI-seq platform. Three replicate libraries were made for each cell type
and condition (in total 18 libraries).
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4.3. Analyses of RNA-Seq Data

RNA-seq reads were pseudoaligned to Gencode transcriptome release 34 and quantified using
Salmon v1.1.0 with flags–validateMappings for selective alignment and −l A for automatic library
type inference [68]; Trimmed Mean of M values (TMM) normalization [69] and pre-filtering for low
counts were performed using calcNormFactors and filterByExpr function in edgeR package [70,71].
Voom transformation [29] was then applied with a design matrix that used pH treatment as coefficient.
To perform differential expression analyses in shared response to pH, inter-subject correlation within
three cell lines was performed by duplicateCorrelation function, and was put into the linear model
fit using Limma R package [72]. Differential expression, given the above settings, was defined as
Benjamini–Hochberg FDR < 0.05 and an absolute log2 FC > 0.5. Validation of key up/downregulated
genes by qPCR and immunoblotting is provided in a manuscript in preparation and confirms the
RNA-seq results.

4.4. GO Enrichment Analysis and Gene Set Enrichment Analysis (GSEA)

Enrichment tests for GO-terms were performed on differentially expressed genes sets as defined
above using gProfiler [73]. The background gene set was set to all expressed genes in the experiment.
Significance threshold was set to Benjamini–Hochberg FDR < 0.05. The Gene Set Enrichment Analysis
(GSEA) pre-ranked function was performed on the fold change ranked acid adaptation gene list using
the Broad Institute GSEA java tool version 4.0.3. C6: Oncogenic signatures database v7.1, gene sets
WU_CELL_MIGRATION (M2001) and ANASTASSIOU_MULTICANCER_INVASIVENESS_SIGNATURE
(M2572) were used and the number of permutations was set to 1000 [74].

4.5. RRHO Analysis

First, using Limma and Voom as above, we ranked all expressed genes from the RNA-seq
experiments by their shared acid adaptation response across cells (log2 fold change pH 6.5 vs. pH 7.4).
We will refer to this ranked gene list as the ‘acid adaptation ranked gene list’. To be able to compare this
to human data, we extracted processed patient RNA-seq data from Cancer Genome Atlas (TCGA) [75]
using the University of California Santa Cruz Xena portal [76]. For every patient and cancer where
expression data from paired tumor and control tissue were available, and for each such case, we ranked
genes according to their log2 fold change (tumor vs. control (ctrl.) tissue). Next, we compared the acid
adaptation ranked list to each ranked patient gene lists in a pairwise fashion, using the Rank–Rank
Hypergeometric Overlap (RRHO) method [77], as implemented in R [78]. For each comparison,
we obtained heat maps showing rank–rank correlations, colored by log-transformed hypergeometric
P-value of local rank overlaps between sets, and the identifiers of genes in each overlap.

4.6. Patient Survival Analysis

TCGA cancer patient data was downloaded from the University of California Santa Cruz Xena
portal [76]. The following datasets containing gene expression RNAseq counts, survival data and
phenotype information were analyzed: GDC TCGA Pancreatic Cancer (PAAD), GDC TCGA Breast
Cancer (BRCA), GDC TCGA Lung Adenocarcinoma (LUAD), GDC TCGA Glioblastoma (GBM),
GDC TCGA Colon Cancer (COAD), GDC TCGA Ovarian Cancer (OV), GDC TCGA Thyroid Cancer
(THCA) and GDC TCGA Stomach Cancer (STAD).

Kaplan–Meier analysis was performed to estimate the overall survival of patients. Patients were
categorized into high and low gene expression groups according to the cut-off value determined by
median gene expression. p-values for significance of difference between the two groups were calculated
using the log-rank test. Statistical analyses were performed using R’s “survival” and “survminer”
packages. p-values < 0.05 were considered statistically significant.
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4.7. Data Availability

RNA-sequencing data from this study has been deposited in GEO database under accession
number GSE152345.

5. Conclusions

We have defined a shared acid adaptation expression response across three cancer cell models,
dominated by ECM remodeling, metabolic rewiring and altered cell cycle regulation. Many genes which
are upregulated by acid adaption are significantly correlated to patient survival, and there are clear
correlations between acid adaptation expression response and expression change between normal and
tumor tissues for a large subset of cancer patients. Importantly, our analyses reveal that genes whose
expressions are changed by acid adaptation are linked both to increased and decreased overall patient
survival. Thus, in conclusion, our data support the notion that adaptation to microenvironmental
acidosis can drive the selection of highly invasive cancer cells and ECM remodeling in human patient
tumors. However, consistent with existing experimental data, they also show that acid adaptation
exerts inherently growth-limiting effects, which could be important for cancer stem cell maintenance
but may per se limit full-blown cancer development, until selected against or otherwise eliminated.
Future studies should address what dictates the balance between these effects, and hence the net effects
of acid adaptation on cancer development in vivo.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/8/2183/s1,
Figures S1–S16: Kaplan–Meier overall survival analysis of cancer patients stratified by acidosis up- and downregulated
gene expression levels, Table S1: Upregulated genes in pH 6.5 vs. pH 7.6, Table S2: Downregulated genes in pH 6.5 vs.
pH 7.6, Table S3: GO and KEGG analysis of upregulated genes in pH 6.5 vs. pH 7.6, Table S4: GO and KEGG analysis
of downregulated genes in pH 6.5 vs. pH 7.6, Table S5: Acidosis-upregulated genes significant in overall survival
analysis in one type of cancer, Table S6: Acidosis-downregulated genes significant in overall survival analysis in one
type of cancer; Table S7: Acidosis-upregulated genes, which showed contradictory survival analysis results across
cancer types, Table S8: Acid adaptation-downregulated genes, which showed contradictory survival analysis results
across cancer types.
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