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Abstract: Elevated resistance of pulmonary circulation after chronic hypoxia exposure leads to
pulmonary hypertension. Contributing to this pathological process is enhanced pulmonary
vasoconstriction through both calcium-dependent and calcium sensitization mechanisms. Reactive oxygen
species (ROS), as a result of increased enzymatic production and/or decreased scavenging, participate in
augmentation of pulmonary arterial constriction by potentiating calcium influx as well as activation
of myofilament sensitization, therefore mediating the development of pulmonary hypertension.
Here, we review the effects of chronic hypoxia on sources of ROS within the pulmonary vasculature
including NADPH oxidases, mitochondria, uncoupled endothelial nitric oxide synthase, xanthine oxidase,
monoamine oxidases and dysfunctional superoxide dismutases. We also summarize the ROS-induced
functional alterations of various Ca2+ and K+ channels involved in regulating Ca2+ influx, and of Rho
kinase that is responsible for myofilament Ca2+ sensitivity. A variety of antioxidants have been shown
to have beneficial therapeutic effects in animal models of pulmonary hypertension, supporting the role
of ROS in the development of pulmonary hypertension. A better understanding of the mechanisms
by which ROS enhance vasoconstriction will be useful in evaluating the efficacy of antioxidants for the
treatment of pulmonary hypertension.

Keywords: reactive oxygen species; pulmonary vasoconstriction; calcium influx; calcium sensitization;
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1. Introduction

The pulmonary circulation is normally a low resistance and low-pressure system with a mean
pulmonary arterial pressure (mPAP) less than 20 mmHg [1]. Pulmonary hypertension (PH) is diagnosed
by resting mPAP greater than 20 mmHg accompanied by pulmonary vascular resistance ≥ 3 Wood Units in
pre-capillary PH, and classified as either idiopathic (pulmonary arterial hypertension, PAH, WHO Group 1)
or secondary to left heart diseases (WHO Group 2), chronic hypoxic lung diseases (WHO Group 3),
thrombosis (WHO Group 4), or of unclear reasons (WHO Group 5) [1].

PH is typically not diagnosed at early stages until the appearance of heart failure symptoms [2]
such as dyspnea, palpitation and lower-extremity edema, which can ultimately lead to morbidity
and mortality. This review will address many forms of PH with a focus on chronic hypoxia
(CH)-induced PH, which occurs in patients with chronic obstructive pulmonary diseases (COPD),
restrictive lung diseases, sleep apnea and in residents at high altitude.

Narrowing of pulmonary arteries (PAs) as a result of both structural (pulmonary arterial remodeling)
and functional changes (vasoconstriction) contributes to increased vascular resistance that is pivotal
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to the pathogenesis of PH. Although pulmonary arterial wall thickening is observed in CH-induced
PH [3–5], augmented vasoconstriction, manifested as both resting pulmonary arterial tone and reactivity
to endogenous vasoconstrictors, plays an indispensable role in this disease [6–10]. Enhanced pulmonary
arterial vasoconstriction results from pulmonary arterial smooth muscle cell (PASMC) hyperreactivity
mediated by cytosolic Ca2+-dependent and Ca2+-sensitization mechanisms [11–22] as well as pulmonary
arterial endothelial cell (PAEC) dysfunction via unbalanced production of vasoconstrictors over
vasodilators [23]. Increased reactive oxygen species (ROS) have been widely reported to mediate
augmented pulmonary arterial constriction [3,12,18–20,22,24–28] (Figure 1), and antioxidation strategies
provide therapeutic efficacy in animal models of PH [3,29–37].
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ROS are a group of oxygen-derived molecules with one or more unpaired electrons in their outer 
orbit. Superoxide anions (O2.−) are formed when molecular oxygen (O2) receives an electron, and is 
derived from various sources including NADPH oxidases (NOXs), mitochondria, endothelial nitric 
oxide synthase (eNOS), xanthine oxidase (XO) and monoamine oxidases (MAOs). The other two 
forms of ROS, peroxynitrite ion (ONOO−) and hydrogen peroxide (H2O2), are derivatives of O2.−. 
Specifically, the combination of O2.− and nitric oxide (NO) produces ONOO− and partial reduction of 
O2.− by superoxide dismutase (SOD) generates H2O2. There are three known SOD isoforms found in 
mammals including SOD1 (Cu-Zn SOD), located in the cytoplasm and intermembrane space of 
mitochondria, SOD2 (Mn SOD), located in the mitochondrial matrix, and SOD3 (Cu-Zn SOD), located 
extracellularly [38]. H2O2 is fully reduced to water (H2O) by catalase or glutathione peroxidase (Figure 
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Figure 1. Enhanced vasoconstriction resulting from chronic hypoxia-induced functional alterations of
endothelial and smooth muscle cells contributes to pulmonary hypertension. PAEC, pulmonary arterial
endothelial cell; PASMC, pulmonary arterial smooth muscle cell; ROS, reactive oxygen species;
MLCK, myosin light chain kinase; MLCP, myosin light chain phosphatase; MLC, myosin light chain.

2. ROS in the Pathogenesis of PH

ROS are a group of oxygen-derived molecules with one or more unpaired electrons in their
outer orbit. Superoxide anions (O2

.−) are formed when molecular oxygen (O2) receives an electron,
and is derived from various sources including NADPH oxidases (NOXs), mitochondria, endothelial
nitric oxide synthase (eNOS), xanthine oxidase (XO) and monoamine oxidases (MAOs). The other
two forms of ROS, peroxynitrite ion (ONOO−) and hydrogen peroxide (H2O2), are derivatives of O2

.−.
Specifically, the combination of O2

.− and nitric oxide (NO) produces ONOO− and partial reduction
of O2

.− by superoxide dismutase (SOD) generates H2O2. There are three known SOD isoforms
found in mammals including SOD1 (Cu-Zn SOD), located in the cytoplasm and intermembrane space
of mitochondria, SOD2 (Mn SOD), located in the mitochondrial matrix, and SOD3 (Cu-Zn SOD),
located extracellularly [38]. H2O2 is fully reduced to water (H2O) by catalase or glutathione peroxidase
(Figure 2).
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diminishes HPV in CH animals [55]. In addition, oxidation of protein kinase G Iα by oxidants (H2O2, 
glutathione disulfide, and protein-bound persulfides) following CH counteracts enhanced PA 
constriction and is protective during PH development [56], suggesting that under certain conditions 
ROS can play a protective role. However, H2O2 has also been reported to be detrimental in PH 
[29,57,58]. This contradictory effect of H2O2 in the pulmonary circulation may be due to a variety of 
conditions, including the concentration of H2O2, experimental setup, cell type affected and 
intracellular signaling mechanism involved. Other forms of ROS involved in the pathogenesis of PH 
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posttranslational modifications to ion channels, protein kinases and other signaling molecules [68–
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alterations to relevant Ca2+ channels, K+ channels and other proteins that contribute to enhanced PA 
constriction in PH. Despite the observed effects of ROS, current knowledge about the exact chemical 
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3), including S-glutathionylation (e.g., L-type voltage-gated Ca2+ channels [71,72] and STIM1 [73]), 

Figure 2. O2
.− is generated from various enzymatic sources and converted to other forms of ROS,

including H2O2 and ONOO−. H2O2 can also be produced from NOX4 and MAOs. PAEC, pulmonary
arterial endothelial cell; PASMC, pulmonary arterial smooth muscle cell; ROS, reactive oxygen species;
O2

.−, superoxide; H2O2, hydrogen peroxide; ONOO−, peroxynitrite; H2O, water; NOX, NADPH
oxidase; eNOS, endothelial nitric oxide synthase; XO, xanthine oxidase; MAO, monoamine oxidase;
SOD, superoxide dismutase.

Under normal conditions, ROS are essential signaling molecules that are tightly regulated to maintain
physiological homeostasis, regulate cellular proliferation, and host defense. Within the vasculature,
ROS contribute to basal endothelial cell proliferation/migration [39,40], as well as smooth
muscle cell differentiation [41]. ROS can also participate in vasomotor responses such as
autoregulation [42], endothelium-dependent vasodilation [43,44], flow-mediated vasodilation [45],
hypoxic pulmonary vasoconstriction (HPV) [46,47] and hyperoxia-induced vasoconstriction [48–50].
At physiological concentrations, H2O2 elicits vasodilation in the pulmonary circulation [51–54] and
diminishes HPV in CH animals [55]. In addition, oxidation of protein kinase G Iα by oxidants
(H2O2, glutathione disulfide, and protein-bound persulfides) following CH counteracts enhanced PA
constriction and is protective during PH development [56], suggesting that under certain conditions
ROS can play a protective role. However, H2O2 has also been reported to be detrimental in
PH [29,57,58]. This contradictory effect of H2O2 in the pulmonary circulation may be due to a
variety of conditions, including the concentration of H2O2, experimental setup, cell type affected and
intracellular signaling mechanism involved. Other forms of ROS involved in the pathogenesis of PH
include O2

.− [3,12,26,29,59,60] and ONOO− [61–63]. Although physiological levels of ROS are indispensable
in maintaining vascular homeostasis, excess production leads to disease development [64–67] as detailed
in the following sections.

O2
.− is considered to be highly reactive and can mediate cell signaling either directly or through

its derivatives, H2O2 and ONOO−. These ROS participate in signaling transduction by making
posttranslational modifications to ion channels, protein kinases and other signaling molecules [68–70].
Such protein modifications include oxidation of tyrosine, tryptophan, histidine, lysine, methionine and
cysteine residues [70]. In this review, we discuss the ROS-induced functional alterations to relevant
Ca2+ channels, K+ channels and other proteins that contribute to enhanced PA constriction in PH.
Despite the observed effects of ROS, current knowledge about the exact chemical reactions, amino acid
residues affected, and resulting protein structural changes is still limited. The most widely documented
modifications in this setting are cysteine oxidative modifications (Figure 3), including S-glutathionylation
(e.g., L-type voltage-gated Ca2+ channels [71,72] and STIM1 [73]), disulfide formation (e.g., ASIC1 [74],
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voltage-gated K+ channels [75,76] and RhoA [77]), and sulfenic acid formation (e.g., voltage-gated K+

channel [78]).
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2.1. Increased ROS Production in PH

2.1.1. NADPH Oxidase Family

The NOX family consists of a group of enzymes that transfer an electron from NADPH to O2,
therefore generating O2

.−. NOX-derived ROS were first identified as effectors from phagocytes
responsible for host defense [79] and later as mediators in various cellular processes. All enzymes
within this family contain one of the seven ROS-generating catalytic homologs including NOX1, NOX2,
NOX3, NOX4, NOX5, DUOX1 and DUOX2 [79]. Some of them are reported to be expressed within the
pulmonary vasculature, as summarized in Table 1. NOX enzymes are comprised of several subunits,
both catalytic and regulatory, that are located both intracellularly and extracellularly. This fact makes it
possible for enzyme function to be regulated by its associated regulatory subunits as well as various
intra- and extracellular signals [79,80].

Table 1. Expression of NOX isoforms in the pulmonary vasculature.

NOX Isoform Expression in PAEC Expression in PASMC ROS Generated

NOX1 Human [81–83], rat [84] Human [85], rat [86,87], mouse [85,88] O2
.− [83,85–88]

NOX2 Human [81,82,89,90], rat [84], mouse [89,91] Rat [92] O2
.− [81,89]

NOX3 Human [82] N/A O2
.− [93]

NOX4 Human [81,82,94], rat [84], mouse [95] Human [90,96], rat [86,92], mouse [90] O2
.− [82,97], H2O2 [82,95,96]

NOX1 expression is greater in PAs from PAH patients compared to vessels from control patients [83]
and contributes to the proliferation of both PAEC [83] and PASMC [86]. In monocrotaline-induced
PAH model, NOX1 expression is increased in PASMCs [87]. Moreover, N-acetylcysteine, which suppresses
NOX1 expression, is protective against monocrotaline-induced PAH [86]. In addition to PAH, NOX1 has
also been shown to participate in PH elicited by CH as evidence by effects of genetic global deletion of
NOX1 to abolish the CH-induced elevation in right ventricular systolic pressure (RVSP), right ventricle
(RV) hypertrophy and PA remodeling in mice [98].

NOX2 expression is upregulated in response to prolonged [29] in vitro hypoxia. Using PAs
isolated from wild type and gp91phox deficient mice, Liu et al. [24] discovered that NOX2-derived
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O2
.− production in PAs is higher after CH exposure. Additionally, augmented PA contraction to ET-1

following CH is NOX2 dependent [24]. Evidence from our group also supports that NOX2-derived
ROS contribute to enhanced PA constriction following CH [18,22].

NOX4 is unique among the NOX family since it is intrinsically active once expressed [99–101].
Although biochemical evidence suggests H2O2 is the major product of NOX4 [99–101], NOX4-dependent
generation of both O2

.− [82,97] and H2O2 [82,95,96] has been observed in the pulmonary vasculature.
NOX4 expression in PAs from COPD patients [102] and CH mice [90] is higher than those from controls.
NOX4 promotes proliferation of human PASMCs [90] and correlates with the severity of PA remodeling
in COPD patients [102], suggesting a pathological role for NOX4 in CH-induced PH. In comparison
to wild-type (WT) mice, Hood et al. [98] demonstrated that RVSP is diminished in NOX4 knockout
(KO) mice following CH (10% O2 for 15 days). However, these NOX4 KO mice develop a similar
degree of RV hypertrophy and PA remodeling as WT mice. In contrast, Veith et al. [103] reported
that both global and inducible NOX4 KO mice exhibit similar elevations in RVSP after CH exposure
(10% O2 for 21 days) as WT mice. The reason for these discrepant results is not clear, but may be
due to differences in the duration of CH exposure or animal sex, as Hood et al. [98] studied only
female mice. Since NOX4 does not account for monocrotaline-induced PAH [87], it appears that
involvement of NOX4 in PH may differ depending on the model employed. In addition to evidence
against a detrimental role of NOX4 in PH, a recent study demonstrates that increased disulfide protein
kinase G Iα during CH, likely caused by NOX4-derived H2O2, opposes the pathogenesis of PH [56].
This possible beneficial effect of NOX4 in CH-induced PH is consistent with previous investigations
showing the protective role of NOX4 in cardiovascular diseases. For example, endothelial NOX4
alleviates both angiotensin II-induced hypertension [104] and hemodynamic overload-induced cardiac
remodeling [105].

2.1.2. Mitochondria

Mitochondria are double-membrane organelles responsible for efficient energy generation from the
electron transport chain (ETC), which is located in the inner membrane. Electrons from NADH and FADH2,
extracted by complex I (NADH dehydrogenase) and complex II (succinate dehydrogenase) respectively,
flow through the ETC and are received by O2 at complex IV to generate H2O. A small amount of
ROS are inevitably produced during this process because of “electron leak” [106]. A mitochondrial
antioxidation system scavenges mitochondria-derived ROS (mitoROS) so that normal cell function
can be maintained. This antioxidant system is comprised of SOD2 in the matrix and SOD1 in the
intermembrane space, both of which convert O2

.− into H2O2 [107,108]. H2O2 in the mitochondrial matrix
is further detoxified by glutathione peroxidase 1(GPX1) [109,110] or catalase [29,110,111]. It is mainly
reported that mitoROS are generated from complex I and III with O2

.− as the primary product [112].
The role of mitoROS in CH-induced PH has been studied by several groups. Human PAECs
exposed to prolonged hypoxia (72 h) have greater mitoROS levels versus normoxic controls [29].
MitoROS within PAEC participate in Ca2+ homeostasis as supported by data that higher intracellular
Ca2+ in PAECs from SU5416/hypoxia-induced PAH rats versus those from normoxic animals is
acutely diminished by the mitochondria-targeted antioxidant MitoQ [113]. A recent study from our
laboratory similarly employed the mitochondrial antioxidants MitoQ and MitoTEMPO to demonstrate
that mitoROS production is greater in PASMCs from CH neonatal rats compared to normotensive
animals and contributes to enhanced PA vasoconstriction following CH [114]. Since MitoQ suppresses
mitochondrial O2

.− generation, it suggests the involvement of mitochondria-derived O2
.− in the

pathology of PH. Using genetically modified mice, other groups reported that mitochondrial H2O2 is
also pathogenic in the development of PH elicited by CH. Evidence from Adesina et al. [29] show that
indices of CH-induced PH, including RVSP, RV hypertrophy and PA remodeling, are attenuated by
mitochondrial catalase overexpression, which breaks down mitochondrial H2O2, but are exacerbated
by SOD2 overexpression, which increases mitochondrial H2O2.
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2.1.3. Endothelial Nitric Oxide Synthase

NO, an important vasodilator in the pulmonary vasculature [115], is produced by eNOS using
L-arginine as substrate, which requires the cofactor tetrahydrobiopterin (BH4) [116,117]. eNOS is
constitutively expressed in endothelial cells and has 3 domains, a reductase domain in the C terminus,
an oxygenase domain in the N terminus and a linking domain [118,119]. Binding of Ca2+/camodulin to
the linking domain activates the enzyme, allowing NADPH oxidation to occur at the reductase domain.
Flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) of the reductase domain of one
monomer pass electrons from NADPH to the heme-containing oxygenase domain of a second monomer
via BH4 [117,119], which couples NADPH oxidation to L-arginine oxidation. NO is synthesized from
O2 and L-arginine at the oxygenase domain through a multi-step chemical reaction including: (1) the
combination of O2 with the heme group of the oxygenase domain to form a ferrous–dioxygen complex;
(2) reduction of O2 within the ferrous-dioxygen complex to form H2O; and (3) oxidation of L-arginine
to produce NO and L- citrulline [116–118,120]. Results from Vásquez-Vivar et al. [116] demonstrate
that BH4 stabilizes the ferrous-dioxygen complex to prevent O2

.− generation from eNOS. Thus, without
adequate availability of BH4, eNOS produces O2

.− [121]. O2
.−, in turn, can oxidize BH4. BH4 oxidation

is detrimental because it further reduces BH4 bioavailability and produces dihydrobiopterin (BH2) [122],
a process that additionally favors O2

.− generation from eNOS [123]. Interestingly, it is also reported that
increases in BH2 alone, without a change of BH4 levels, are sufficient to induce O2

.− generation [121],
suggesting the BH4/BH2 ratio is key to regulation of eNOS function. Therefore, a deleterious cycle is
established in which uncoupled eNOS produces O2

.−, and O2
.− further uncouples eNOS.

BH4-eNOS coupling is important in maintaining physiologically low pulmonary arterial pressure
as evident by the effect of BH4 deficient mice to increase endothelial O2

.− levels as well as right
ventricular systolic pressure compared to wild type mice under normoxia, regardless of changes
in eNOS expression [124]. In addition, pathological hypoxic exposure triggers more severe PH
in BH4-deficient mice versus WT mice, which is attenuated by genetic BH4 restoration [124].
The importance of BH4-eNOS coupling in CH-induce PH is also supported by research findings from
Dikalova et al. [31], in which oral BH4 administration attenuates the development of CH-induced
PH in piglets. The therapeutic potential of BH4 is demonstrated by effects of BH4 treatment to
reverse established CH-induced PH in rats [34]. Consistent with evidence that supplementation
of BH4 [116,123–126] and an increased BH4/oxidized BH4 ratio [31,121,123] enhance eNOS activity,
oral BH4 administration promotes eNOS activity, lowers lung O2

.− levels, and reverses established
CH-induced PH [34]. Additionally, BH4 is shown to be beneficial in the treatment of a rat PAH
model [127].

In addition to BH4 oxidation, O2
.− can mediate inhibition of eNOS by exogenous NO [63,128,129],

a response that correlates with the clinical observation that sudden withdrawal of inhaled NO therapy
worsens PH in children [130] and infants [131] with congenital heart diseases. In primary ovine
PAEC cultures, Sheehy et al. [128] discovered that reduced eNOS activity by the NO donor sodium
nitroprusside is partially restored by the O2

.− scavenger Tiron. Since the reduction of eNOS activity by
NO is not related to cell viability, eNOS expression, subcellular localization, or phosphorylation of
eNOS [128], the mechanism by which ROS mediate NO-induced eNOS inhibition remains unclear in
this cell model. More in-depth mechanisms are revealed by effects of NO inhalation to inhibit eNOS
activity in a lamb model [63,129]. The involvement of ROS is implicated by the fact that O2

.− and
ONOO− are increased in PAs following 24 h of NO inhalation [63]. The subsequent elevated nitration
of eNOS by ONOO− [63] is known to reduce enzyme activity [129]. Furthermore, lambs receiving
polyethylene glycol-conjugated superoxide dismutase (PEG-SOD) at the same time of NO inhalation do
not show rebound PH after acute NO withdrawal seen in those treated with vehicle [63]. Taken together,
these data suggest exogenous NO leads to O2

.− generation in the pulmonary vasculature, which reacts
with NO to produce ONOO−. The resultant nitration of eNOS suppresses its activity.
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2.1.4. Xanthine Oxidase

The final two biochemical reactions of purine catabolism, namely conversions of hypoxanthine to
xanthine to uric acid, are catalyzed by xanthine oxidoreductase (XOR). XOR consists of one molybdenum,
two different iron-sulfur centers, and one FAD that all function as electron transporters [132–134].
An NAD+-dependent form of XOR, called xanthine dehydrogenase (XDH), is constitutively expressed,
which fulfills purine degradation and generates NADH [135]. However, through oxidation of
cysteine residues or proteolytic cleavage, XDH can be converted into xanthine oxidase (XO) [134,136].
Due to a decrease in NAD+ affinity and an increase in O2 affinity at the FAD site, XO exhibits high
xanthine/O2 reductase activity instead of high xanthine/NAD+ reductase activity seen in XDH [132–136].
Therefore, purine catabolism catalyzed by XO produces ROS [132–136]. Experimental data from
Kelley et al. [137] show that XO generates both H2O2 and O2

.− with the former as the main product
(>70% of ROS) under both normoxic (21% O2) and hypoxic conditions. Interestingly, when the O2

concertation is less than 10%, the proportion of H2O2 produced is inversely related to O2 concentration
and can up to 90% in the presence of 1% O2 [137], indicating the involvement of H2O2 in XO-mediated
diseases caused by hypoxia.

In the context of PH, enhanced XO activity upon hypoxic exposure has been confirmed in both
in vitro [138] and in vivo [35,36] studies. Experimental inhibition of XO is protective against CH-induced
increases in mPAP [35], RV hypertrophy [35,36] and pulmonary arterial wall thickening [35,36] in
animal models. Consistently, compared to placebo treatment, XO inhibitor treatment (allopurinol)
alleviates RV hypertrophy in COPD-associated PH patients with severe airflow limitation in a
double-blinded randomized controlled clinical trial [139].

2.1.5. Monoamine Oxidases

Monoamine oxidases (MAOs) catalyze the oxidative deamination of bioactive amines and are
found in brain as well as various human tissues [140]. MAO type A (MAO-A) and MAO type B (MAO-B)
are two identified MAO isoforms characterized by different substrate preferences [141]. In particular,
MAO-A oxidizes dopamine, norepinephrine and serotonin (5-HT), while MAO-B reacts with dopamine,
phenylethylamine, benzylamine and tryptamine [142–146]. Substrate selectivity of MAOs is determined
by phenylalanine residue 208 of MAO-A and isoleucine residue 199 of MAO-B [146]. During the
oxidative deamination process, FAD, a cofactor of MAOs, delivers electrons from amines to molecular
O2 to generate ROS [147], including O2

.− [148,149] and H2O2 [150–153]. Therefore, MAOs can act
as sources of ROS. One of the downstream targets of MAOs is mitochondria, which is consistent
with evidence that MAOs are tethered to the outer membrane of mitochondria [154] via a C terminal
transmembrane helix [155,156]. Specifically, MAOs mediate mitochondrial dysfunction [157–160] and
promote mitoROS production [158,159]. Within the pulmonary circulation, MAO-A is expressed in
PAs and contributes to O2

.− generation triggered by 5-HT [148]. Preliminary observations from Sun
and colleagues demonstrate that expression of MAO-A is upregulated in PAH patients [161] and that
the MAO-A inhibitor clorgyline partially reverses indices of PH in a PAH rat model (SU5416/hypoxia),
including RVSP, RV hypertrophy and PA remodeling [161,162]. However, the role of MAOs-derived
ROS in vasoconstrictor responses of PAs and their contribution to CH-induced PH remains unclear.

2.2. Decreased Antioxidant Capacity in PH

Augmented ROS signaling can also result from decreased antioxidant capacity. Impaired SOD
activity has been reported in a variety of PH models of animals and patients [33,163–168]. Aiming at
rescuing the dysfunctional SOD system, SOD mimetics have been demonstrated to alleviate indices of
PH following CH [3,32,37]. As mentioned before, three SOD isoforms are found in mammals [38] and
all of them are reported to be important in the pathogenesis of PH.
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2.2.1. SOD1

Expression of the predominant cytosolic SOD isoform, SOD1, is lower in PAs from CH piglets [165]
and CH adult rats [28] in comparison to normoxic controls, a response associated with increased O2

.−

and decreased H2O2 levels. However, the role of SOD1 in CH-induced PH is not clear. Interestingly,
compared to WT mice, SOD1 KO mice display elevated O2

.− levels in PAs, exhibit enhanced
vasoreactivity to ET-1, as well as greater RV hypertrophy, PA remodeling and greater RVSP under
normoxia [166]. Collectively, these results indicate that loss of SOD1 in response to CH may contribute
to the pathogenesis of PH.

2.2.2. SOD2

SOD2 is localized to the mitochondrial matrix [38]. SOD2 expression is reported to be
downregulated in PH including in a CH mouse model [169], persistent PH lamb model [170],
PAH patients [168] and a fawn-hooded rat model of PAH [164]. Loss of SOD2 in PASMCs during CH
exposure may promote PA remodeling since SOD2 suppresses proliferation and promotes apoptosis
of hypoxic cultures of human PASMCs [171]. It is also been shown that loss of SOD2 in PAECs is
involved in elevated PA constriction in PH. In a PH neonatal lamb model established by ligation of the
fetal patent ductus arteriosus during late gestation, SOD2 restoration in PAECs by adenovirus vectors
reduces mitochondrial O2

.− levels and restores eNOS expression [170], suggesting an improvement of
PA dilation. Moreover, SOD2 transduction in PA rings from PH animals ameliorates their relaxation in
response to the NO-dependent vasodilator, ATP, compared to control transduction [170]. Since the
greater H2O2 production following restoration of SOD2 expression is thought to be responsible for
the observed upregulation of eNOS [170], these findings suggest that mitochondria-derived H2O2

is protective. However, Adesina et al. [29] found that CH-induced RV hypertrophy, PA muscularization
and increases in RSVP are exacerbated in a transgenic mouse model overexpressing SOD2 in
comparison to WT mice. In this study, increased mitochondrial H2O2 is shown to be detrimental rather
than protective.

2.2.3. SOD3

SOD3 locates extracellularly by binding to extracellular matrix components such as heparan
sulfate proteoglycan, collagen and fibulin-5 [38]. Since introduction of extracellular ROS by
administration of XO [172] and knockdown of SOD3 by siRNA [173] in cultured human PASMCs triggers
pro-proliferative and anti-apoptotic phenotypic changes, it suggests extracellular O2

.−, as well as SOD3
are likely important in the pathogenesis of PH. Considering that expression [28] and activity [28,173]
of SOD3 in PAs are reduced by CH exposure, genetically modified animals with SOD3 deletion have
been used to study its role in CH-induced PH development. Compared to control animals, mice with
smooth muscle-specific SOD3 KO [174] or global SOD3 KO [175] exhibit greater RVSP, RV hypertrophy
and pulmonary arterial wall thickening following CH. In line with this, SOD3 overexpression
protects against CH-induced PH [30]. In addition to favoring PASMC proliferation, extracellular ROS
also participate in CH-induced extracellular matrix remodeling as SMC SOD3 deletion augments
CH-induced collagen deposition in PAs [174]. While dysfunctional SOD3 has been reported to be
associated with PA remodeling, the role of SOD3 in enhanced PA vasoconstriction following CH is
undetermined except for evidence that SOD3 helps to maintain normal eNOS function. Nozik-Grayck
and colleagues [174] found that eNOS activation and GTP cyclohydrolase-1 (GTPCH-1, a key enzyme
for BH4 synthesis) levels are diminished in lungs from smooth muscle-specific SOD3 KO mice exposed
to CH, while eNOS expression is unaltered. These results are consistent with the notion that the loss of
SOD3 contributes to development of PH.
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3. ROS Modulation of Augmented PA Constriction

The effect of CH to augment PA vasoconstrictor reactivity has been convincingly demonstrated [6–10].
Smooth muscle contraction is triggered by an increase in intracellular Ca2+ levels ([Ca2+]i) via either
Ca2+ influx or Ca2+ release from the sarcoplasmic reticulum (SR). Ca2+ binds to calmodulin and actives
myosin light chain kinase (MLCK). When the regulatory light chain of myosin is phosphorylated
by MLCK, cross-bridge cycling occurs and results in smooth muscle contraction (Ca2+-dependent
mechanism). Contraction ends when phosphorylated myosin light chain is dephosphorylated by
myosin light chain phosphatase (MLCP). Therefore, factors that inhibit MLCP activity can maintain
smooth muscle contraction and contribute to prolonged vasoconstriction independent of changes in
[Ca2+]i (Ca2+ sensitization mechanism). Both increases in [Ca2+]i in PASMCs [11,17,176–180] and Ca2+

sensitization [12,18,20–22,180–182] are known to mediate enhanced PA vasoconstriction in response
to CH.

3.1. ROS Modulation of Ca2+-Dependent Vasoconstriction

3.1.1. Ca2+ Influx

Ca2+ influx is thought to contribute to the increase in [Ca2+]i in PASMCs after CH exposure, which can
involve either voltage-gated calcium channels (VGCC) or non-selective cation channels (i.e., conduct both
Ca2+ and Na+) including receptor-operated channels (ROC), store-operated channels (SOC),
and mechanosensitive channels (MSCs) (Figure 4).
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Figure 4. Summary of Ca2+-dependent influx and release mechanisms in pulmonary arterial
smooth muscle cells following chronic hypoxia. See text for details. KV, voltage-gated K+ channel;
VGCC, voltage-gated Ca2+ channel; SOC, store-operated channel; ROC, receptor-operated channel;
MSC, mechanosensitive channel; GPCR, G protein-coupled receptor; PLC, phospholipase C;
PIP2, phosphatidylinositol 4,5-bisphosphate; DAG, diacylglycerol; IP3, inositol triphosphate;
SR, sarcoplasmic reticulum; MLCK, myosin light chain kinase; MLCP, myosin light chain phosphatase;
MLC, myosin light chain.

VGCC are gated by plasma membrane potential. Based on their sensitivity to depolarization,
they are classified as high voltage-activated channels (L-, P/Q-, R-, N-type) and low voltage-activated
(T-type) channels [183]. L-type and T-type VGCC are found in the pulmonary circulation [184].
Since membrane potential is a product of uneven distribution of Na+, K+ and Cl− across the plasmamembrane,
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the opening of non-selective cation channels (increased Na+ influx) and closing of K+ channels
(reduced K+ efflux) lead to membrane depolarization and VGCC activation [185]. Plasma membrane
depolarization is observed in PASMCs from CH animals [186,187] and PAH patients [188].

ROCs are controlled by diacylglycerol (DAG) generated from Gq protein-coupled receptor pathway
activation [189]. SOCs are activated when intracellular SR Ca2+ stores are depleted [190]. When Ca2+

depletion in the SR is sensed by stromal interaction molecule (STIM) [190], STIM moves towards the
plasma membrane and activates store-operated Ca2+ entry (SOCE) via Orai [191], acid-sensing ion
channels (ASICs) [17,192] and transient receptor potential (TRP) channels [193].

Ca2+ channel expression and/or activity have been shown to be increased by CH and coupled to
enhanced vasoconstriction (Table 2). Ca2+ signaling contributes to PA constriction [189]. However, it is
worthwhile to note that some research findings may be animal model-specific. Previous data from
our laboratory demonstrate the existence of differences in Ca2+ handling after CH exposure in two
commonly used strains of rats [194]. In particular, CH induces an elevation in resting smooth muscle
[Ca2+]i in Wistar rats but not in Sprague-Dawley (SD) rats [194]. Additionally, SOCE is attenuated by
CH in SD rat while augmented in Wistar rats [194].

Table 2. Ca2+ influx in CH-induced PH.

Channel/Molecule Alteration by CH Functions

L-type VGCC
Increased current density [195],

channel upregulation (Cav1.2) [196]

Positive:
Mediate CH-induced enhanced pulmonary vascular tone [195] and PA
vasoconstriction to KCl [195,196] and to L-type VGCC activator [195]

Negative:
1. Without effects on basal [Ca2+]i in PASMCs or basal PA tension [180]
2. Responsible for 30–40% of basal [Ca2+]i in cultured PASMCs but not

affect basal PA tone [178]
3. Do not contribute to increase PA wall basal [Ca2+]i or elevated PA

constriction to UTP following CH [17]
4. Do not contribute to CH-induced augmentation of PA myogenic tone [21]
5. CH-induced PH is not acutely alleviated by L-type VGCC inhibition in

SD rats [197] or COPD patients [198,199]

T-type VGCC Channel upregulation (Cav3.2) [196] Positive:
Mediate CH-induced augmented PA constriction to K+ and U-46619 [196]

Negative:
1. Do not contribute to increase PA wall basal [Ca2+]i following CH [17]

2. Do not contribute to CH-induced augmentation of PA myogenic tone [21]

TRPC1 Channel upregulation [177,178,200] CH-induced PH [201,202]; SOCE in PASMC [178,200]; CH-induced
augmented basal tone and vasoconstriction to 5-HT [202]

TRPC6 Channel upregulation [177,178,203]
CH-induced PH [202,203]; ROCE in PASMC [178]; augmented SOCE in

PASMCs following CH [203]; basal tone under normoxia [202]; CH-induced
augmented vasoconstriction to 5-HT [202]

TRPV4
Channel upregulation in

PASMCs [204,205], increased channel
activities in PASMCs [204,205]

1. CH-induced PH development [204,206]
2. CH-induced enhanced myogenic tone [204] and augmented

vasoconstriction to serotonin [206] and TRPV4 agonist [205] but not to
U46619 [204], PE [206] or ET-1 [206] in endothelium-disrupted PAs

3. Ca2+-induced Ca2+ release in PASMCs [205]

ASIC1 Unaltered expression [207] Contribute to augmented SOCE and SOCE-induced vasoconstriction in PAs
following CH [17]; CH-induced PH [207]

Orai1 Upregulation [14,200,203,208] CH-induced increases in basal Ca2+ [14] and SOCE [14,200] in PASMCs
Orai2 Upregulation [14,203,208] CH-induced increases in basal Ca2+ and SOCE in PASMCs [14]
Orai3 Unaltered expression [14] CH-induced increases in basal Ca2+ and SOCE in PASMCs [14]

STIM1 Upregulation [200,208],
unaltered expression [14] CH-induced increases in basal Ca2+ [14] and SOCE [14,200] in PASMCs

STIM2 Upregulation [203,208] Enhanced SOCE in PASMCs from PH patients [209]
MSC Increased channel activities [176] CH-induced augmentation of PA myogenic tone [19,21,176]

Voltage-Gated Calcium Channels

As summarized in Table 2, both positive and negative findings are documented for the role of
VGCC in the pathogenesis of CH-induced PH. This discrepancy may be due to differences in animal
species/strains and hypoxic protocols employed. Even though the role of VGCC in CH-induced PH
is controversial, redox regulation of VGCC is possible. L-type VGCC can be inhibited by NO but
stimulated by ONOO− [210], a product from NO and O2

.−. S-nitrosothiols are NO-donors that can cause
either L-type VGCC inhibition [211] or activation [210]. Application of H2O2 [212–214] and oxidized
glutathione [71,72] leads to Ca2+ influx through L-type VGCC [212–214]. Further study showed that of
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the Cav1.2 subunit of L-type VGCC is glutathionylated by H2O2 and oxidized glutathione (GSSG),
which increases channel open probability and inward Ca2+ currents [71,72] (Figure 5). The well-known
vasoconstrictor ET-1 can also stimulate L-type VGCC-mediated Ca2+ increases in PASMCs from CH
Wistar rats [180,215]. Interestingly, this response is plasma membrane depolarization independent [180]
but PKC and Rho kinase-dependent [215]. Redox modulation in this process is possible as both
PKC [216] and Rho kinase [25] can be activated by oxidation. This possibility is further supported by
the fact that ET-1 increases ROS production in PASMCs [22,217,218]. Even though this hypothesis is
not tested in pulmonary circulation, stimulation of L-type VGCC by ET-1 in isolated cardiac myocytes
is demonstrated to be O2

.−-mediated [219].
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Transient Receptor Potential Canonical 1 and 6 (TRPC 1 and 6) Channels

TRPC1 and TRPC6 contribute to increased [Ca2+]i in PASMCs as well as vasoconstriction
following CH via involvement of SOCE and ROCE as indicated in Table 2. Their activities can be
modulated by ROS. TRPC1 is mainly involved in SOCE in PASMC [178,200]. Administration of H2O2

increases STIM1/TRPC1 interactions and SOCE in cultured rat PASMCs [200]. TRPC6 is gated by
diacylglycerol (DAG) [220–223]. The production of DAG can be facilitated by ROS. It is documented
that NOX2-derived O2

.− during ischemia-reperfusion and exogenous H2O2 phosphorylate and activate
phospholipase C (PLC) [222] that generates DAG from cleavage of membrane PIP2. More direct
evidence for ROS modulation of TRPC6 is that H2O2 triggers TRPC6-dependent Ca2+ influx in aortic
vascular smooth muscle cells, as well as contraction in endothelium-denuded aorta [224] (Figure 5).
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Transient Receptor Potential Vanilloid 4 (TRPV4) Channels

TRPV4, a member of the TRP channel superfamily, is a Ca2+ permeable non-selective
cation channel. TRPV4 is expressed in all three layers of PAs, namely intimal (PAECs) [225–227],
medial (PASMCs) [204,205] and adventitial (fibroblasts) layers [228]. Whereas TRPV4 expression in
adventitial fibroblasts is upregulated by CH and contributes to excessive adventitial remodeling
during the pathogenesis of PH [228], PASMC TRPV4 channels contribute to enhanced pulmonary
vasoconstrictor reactivity following CH [204–206] (Table 2 for details).

In contrast, Ca2+ influx conducted by endothelial TRPV4 is coupled to vasodilation.
For example, Ca2+ sparklets via endothelial TRPV4 activate eNOS to cause PA vasodilation [225–227].
Moreover, the PA vasodilator effect of a TRPV4 agonist is absent when NOS is inhibited [226,227,229],
supporting the possibility that eNOS is downstream of TRPV4 in PAECs. Another possible mechanism
underlying TRPV4-mediated PA dilation is through small/intermediate conductance Ca2+-activated K+

channels (SKCa/IKCa)-dependent endothelium-derived hyperpolarizing factor (EDHF) responses [226].
Intravenous injection of the TRPV4 agonist GSK101790A lowers pulmonary arterial pressure in normal
rats [229], although its therapeutic potential in PH has not been documented.

Interestingly, TRPV4 activity in PAECs is enhanced by ROS. Extracellular H2O2 increases Ca2+

influx via TRPV4 in PAECs from mice and humans [230]. Mechanistically, this response requires TRPV4
phosphorylation by Fyn of the Src family kinases [230]. This process is facilitated by the scaffolding
molecule CD36 that brings Fyn and TRPV4 together for efficient phosphorylation [231]. The possible
phosphorylation site of TRPV4 that mediates its activation by H2O2 is serine 824 residue as demonstrated
in human coronary artery endothelial cells channels [232]. Moreover, increased basal Ca2+ levels
in PAECs from PAH rats are normalized by the SOD memetic TEMPOL, by mitochondria-targeted
antioxidant MitoQ and by TRPV4 inhibitors [113], suggesting TRPV4 opening is maintained by
endogenous ROS from mitochondria. This enhanced TRPV4-mediated Ca2+ entry in PAH animals
contributes to proliferation and migration of PAECs [113]. Additionally, MitoQ attenuates TRPV4
agonist (GSK1016790A)-triggered Ca2+ influx observed in PAECs isolated from PAH rats [233] (Figure 5).
Whether a similar ROS-induced TRPV4 activation mechanism in PASMCs contributes to elevated
[Ca2+]i and vasoconstriction in PH [204–206], however, remains to be determined.

Acid-Sensing Ion Channel 1 (ASIC1)

ASICs are members of degenerin/epithelial sodium channels that are activated by extracellular protons.
There are at least six known different ASIC subunits (ASIC1a, ASIC1b, ASIC2a, ASIC2b, ASIC3,
and ASIC4) that exist in mammals and are encoded by 4 genes (ASIC1-4). Some ASICs, such as ASIC1a
homomeric channels and ASIC1a/2b heteromeric channels, also have the ability to conduct Ca2+,
therefore directly participating in intracellular Ca2+ homeostasis regulation [234,235]. ASIC subunits
are cysteine-rich and modified by the cellular redox status. Reducing agents potentiate ASIC1 activity
while oxidizing agents decrease ASIC1 current [74,236–239]. In addition, oxidizing agents like H2O2

introduce intersubunit disulfide bonds, thereby decreasing the amount of ASIC1a present on the
cell surface and reduce acid-evoked currents [74]. Consistent with these studies, we found that
H2O2 inhibited, and PEG-catalase augmented ASIC1-dependent Ca2+ influx in PASMCs [28]. Using a
Wistar rat model of hypobaric hypoxia-induced PH, we found that PASMC O2

.− levels are increased
and H2O2 levels are decreased as a result of decreased SOD1 expression and activity [28]. This loss of
endogenous H2O2 following CH contributes to the augmented ASIC1-dependent Ca2+ influx (Figure 5).
The contribution of ASIC1 channels to CH-induced PH is summarized in Table 2.

Orai/STIM

STIM locates on SR. Translocation of STIM to plasma membrane upon SR depletion triggers SOCE
via Orai channels. Orai/STIM participate in increases in resting cytosolic Ca2+ as well as SOCE following
CH in PASMCs (Table 2). The resulting increase in intracellular Ca2+ levels is believed to couple to
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vasoconstriction but direct evidence for the contribution of Orai/STIM to PA constriction regulation is
still absent. Orai/STIM-dependent SOCE can be regulated by ROS since oxidative stress upregulates
STIM1 and Orai1 [200], increases STIM1/Orai1 interactions [200], facilitates STIM1 translocation to
plasma membrane [73,240] and causes S-glutathionylation of cysteine 56 in STIM1 to trigger sustained
Ca2+ entry that is independent of SR depletion [73] (Figure 5).

Mechanosensitive Channels (Aka Stretch-Activated Channels)

MSCs activated by plasma membrane stretch are permeable to Ca2+, therefore increasing [Ca2+]i.
Ducret et al. [176] reported that MSC activity in PASMC is increased by CH exposure and contributes
to myogenic tone of pulmonary arteries from CH rats whereas the PAs from normoxic animals do not
exhibit tone (Table 2). Both O2

.− and ONOO− are shown to facilitate stretch-included activation of
MSCs [241] (Figure 5).

3.1.2. K+ Efflux

K+ channels selectively conduct outward K+ currents that are important in maintaining
physiological membrane potential. K+ channels can be classified into different categories depending
on the gating mechanisms. Within the pulmonary vasculature, four different types of K+ channels
have been identified, including voltage-gated K+ channels (KV), Ca2+-activated K+ channels (KCa),
inwardly rectifying ATP-sensitive K+ channels (KATP) and four transmembrane segments-2 pore
K+ channels (K2P) [242–244]. Loss of outward K+ currents can lead to membrane depolarization.
Since plasma membrane depolarization is observed in PASMCs after CH exposure [186,187], a role for
suppression of K+ channels in this response has been investigated. Membrane depolarization is an
important PA constriction stimulus because it activates Ca2+ channels such as VGCCs. Evidence for
the involvement of different K+ channels will be discussed below.

Loss of KV channel function is coupled to enhanced L-type VGCC activity and PA constriction.
This is evident by data indicating that general KV channel blocker, 4-aminopyridine (4-AP), leads to
L-type VGCC dependent increases in cytosolic Ca2+ as well as dose-dependent increases in basal
pulmonary arterial tone [245]. Similar findings have been reported using blockers specific for KV7
(linopirdine and XE991) [246]. Therefore, KV channel downregulation and reduced KV currents
observed in pulmonary vasculature [247–253] following CH are thought to mediate augmentation of
PA constriction. This alteration is pathologically significant as restoration strategies have been shown
to be beneficial in limiting PH [251–253]. KV1.5 and KV2.1 are of most importance in the context of
CH-induced PH [247–253]. Detailed information is summarized in Table 3.

KV channels are redox-sensitive primary via the modification of cysteine residues. NOX4 is
reported to be colocalized with KV1.5 in PASMCs and oxidizes cysteine residues in KV1.5 [249]. NOX4
inhibition alleviates the CH-induced reduction in KV currents [249]. Studies from Svoboda et al. [78]
showed that ROS target the thiol (-SH) group of a cysteine (C581) residue at the C terminus of KV1.5,
creating a sulfenic acid modification to KV1.5. Such modification results in a reduction of KV1.5
function by facilitating KV1.5 sequestration [78]. However, ROS modulation of KV2.1 within pulmonary
circulation is understudied. In the central nervous system, ROS inhibit KV2.1 function by increasing
its oligomerization [76,254]. Studies focused on molecular mechanisms of ROS-induced KV2.1
oligomerization revealed that KV2.1 oligomers are stabilized by disulfide bridges formed by oxidized
cysteine residues at position 73 [75,76] and 710 [76].
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Table 3. Suppression of KV channels following CH exposure contributes to PH.

Experimental Model CH Protocol Down-Regulation Functional Outcomes Ref.

Primary PASMCs from
normal rats,

unspecified strain

Hypoxia (3% O2, 5% CO2,
and 92% N2),

Normoxia (5% CO2 in air),
48–72 h

KV1.2, KV1.5 N/A [247]

Male Wistar rats Hypoxia (10±0.5 % O2),
Normoxia (room air), 21 days

KV1.1, KV1.5, KV1.6,
KV2.1, and KV4.3 N/A [248]

Primary PASMCs from
male SD rats

Hypoxia (1% O2, 5% CO2,
balance N2), Normoxia (5%

CO2 in air), 48–72 h
KV1.5 and KV2.1 Decreased KV currents [249]

Primary PASMCs from
normal SD rats

Hypoxia (3% O2, 5% CO2,
and 92% N2),

Normoxia (5% CO2 in air),
60–72 h

KV1.1, KV1.5, KV2.1,
KV4.3, KV9.3

Loss of channels causes decreased KV
currents, membrane depolarization,

increase cytosolic Ca2+
[250]

Male Wistar rats Hypoxia (10% O2, balance N2),
Normoxia (air), 21 days KV1.5 and KV2.1 in PAs Expression restoration prevents

elevation in mPAP, RV hypertrophy [251]

Male SD rats Hypoxia (10 % O2), Normoxia
(room air), 14–21 days KV1.5 and KV2.1 in PAs

Expression restoration reverses and
prevents PH indices following CH,

including mPAP, PVR, RV
hypertrophy, PA remodeling

[252]

Male SD rats
Hypoxia (380 mmHg),

Normoxia (718 mmHg),
28 days

KV1.5 and KV2.1 in PAs

Expression restoration (1) rescues
CH-induced suppression of KV

currents in PASMCs and (2) prevents
RVSP elevation, RV hypertrophy and

PA remodeling following CH

[253]

Female wild-type
control mice

(C57BL/6XCBA strain)

Hypoxia (10% O2), Normoxia
(air), 14 days N/A

KV7 activator dilates pre-constricted
PAs and prevents PH indices

following CH, including mRVP,
RV hypertrophy and PA remodeling

[255]

Other K+ channels in pulmonary circulation, including KATP, KCa and K2P channels, are less
well-studied in PH. Generally, these K+ channels exert a vasodilator effect in PAs when involved.
The relevant findings are summarized in the following Table 4. Redox regulation of these K+ channels
is possible but remains unclear in the pulmonary vasculature. As shown in Table 5, both activation
and inhibition by ROS were observed in studies from other vascular beds.

Table 4. Other K+ channels involved in CH-induced PH or PAH.

Type Channel Function Ref.

Kir KATP

Gain of function protects against
CH-induced PH indices including mPAP,

RV hypertrophy and PA remodeling
[256]

KCa Large conductance KCa (BKCa)

Gain of function protects against
monocrotaline-induced PH, reduces
PDGF-induced PASMC proliferation

[257]

Loss of function does not affect PH
development following CH [258]

K2P TREK-1 (K2P2.1) Gain of function leads to PAEC
hyperpolarization and PA relaxation [259]

K2P TWIK-2 (K2P6.1) Gain of function leads to PAEC
hyperpolarization and PA relaxation [259]

K2P TWIK-2 (KCNK6)

Loss of function results in increased RVSP,
PA thickening, greater PA vasoconstrictor

to U46619
[260]

Loss of function causes PASMC
depolarization, enhanced [Ca2+]i and PA

constriction to U46619
[261]

K2P TASK-1 (KCNK3)

Loss of function favors proliferation of
(PAEC, PASMC and fibroblast) and

enhanced basal tone
[262]

Gain of function protects against
monocrotaline-induced PH [262]

Loss of function is without effects on
CH-induced PH [263]
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Table 5. ROS modulation of KATP and KCa channels in cardiovascular system.

Outcome
ROS

O2.− H2O2 ONOO−

KATP
activation Mesenteric artery SMC [264]

Mesenteric arteries [265]
Cerebral arteries [266]

Retinal microvessels [267]
Cardiomyocytes [268]

Cerebral arteries [266]
Internal carotid arteries [269]

KATP inhibition Cerebral arteries [270] A10 cell line [271] N/A

KCa activation Cerebral arteries [266] Coronary arteries [272–274]
Cerebral arteries [266,275] Arteriolar SMC [276]

KCa inhibition Coronary arteries [277]
Cerebral arteries [270] Renal arteries [278] Coronary artery SMC [279]

Gracilis arteries [280]

3.2. ROS Participate in Ca2+ Sensitization

3.2.1. Rho Kinase Mediates Enhanced Ca2+ Sensitization

Enhanced vasoconstrictor responses in small PAs following CH can also be mediated by a
Ca2+-independent mechanism in which vasoconstriction is independent of changes in intracellular
Ca2+ levels. The contractile state of PASMCs results from the balance of MLCK and MLCP activities.
Ca2+-independent vasoconstriction happens when phosphorylation of myosin light chain is maintained
due to loss of MLCP activity. Phosphorylation of MLCP inhibits its function, which can be achieved by
Rho kinase (ROK) either directly or indirectly via phosphorylated myosin light chain phosphatase
inhibitor protein CPI-17 [281–283] (Figure 6). ROK is activated by GTP-bound RhoA [281,284].
Inhibition of ROK exerts a vasodilator effect on pulmonary vasculature [181,282,285] and therapeutic
strategies targeting RhoA/ROK signaling is protective against CH-induced PH development in
various animal models [282,286–289]. These observations suggest that RhoA/ROK represents a crucial
mechanism underlying the pathogenesis of PH following CH. Pathophysiologically, ROK mediates
the development of myogenic tone [19,21,181], along with enhanced vasoconstrictor reactivity to
ET-1 [12,182] and membrane depolarizing stimuli following CH [18–20]. ROK can promote actin
polymerization in PASMCs [19,288,290]. Our laboratory has demonstrated that such cytoskeletal
remodeling actions of RhoA/ROK account for augmented PA constriction following CH [19]. ROK also
facilities vasoconstriction by reducing eNOS expression as the inhibition of ROK increases eNOS
expression in lungs of CH mice [282].

3.2.2. ROS Regulation of RhoA/ROK Signaling

Generally, the RhoA/ROK pathway can be activated by hypoxia [290], by plasma membrane
depolarization [20,291–294] and by signals from G protein-coupled receptors, receptor tyrosine kinases,
cytokine receptors and integrins [281,284]. Activated ROK phosphorylates the myosin
phosphatase target subunit 1 (MYPT1) of MLCP at multiple threonine and serine residues [295],
therefore inhibiting MLCP. Direct evidence for redox regulation of ROK activity is that the O2

.− donor,
LY83583, increases ROK-dependent MYPT1 phosphorylation in PAs [27]. Additionally, ROS can mediate
ROK activation in PAs in response to stimuli such as U46619 [25] and CH [12,20]. ROS are important
in linking various pathogenic stimuli, such as receptor activation and membrane depolarization,
to ROK-dependent Ca2+ sensitization in PASMCs in the setting of CH, therefore contributing to
enhanced vasoconstriction [9].
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Figure 6. Summary of Ca2+ sensitization in pulmonary arterial smooth muscle cells. Myofilament
Ca2+ sensitization is facilitated by ROS following CH. In particular, membrane stretch and endothelin
1 (ET-1) activate Src kinase-epidermal growth factor receptor (EGFR)-NADPH oxidase 2 (NOX2)
signaling axis that contributes to CH-induced augmentation of Ca2+-independent pulmonary
vasoconstriction and pulmonary hypertension. See text for details. GPCR, G protein-coupled
receptor; PLC, phospholipase C; PIP2, phosphatidylinositol 4,5-bisphosphate; DAG, diacylglycerol;
PKC, protein kinase C; O2

.−, superoxide; ROK, Rho kinase; MLCP, myosin light chain phosphatase;
MLCK, myosin light chain kinase; MLC, myosin light chain.

The molecular mechanism by which ROS modulate RhoA/ROK signaling is not fully understood.
Upregulation of RhoA under hypoxia appears to be downstream of ROS production [296]. RhoA is a
member of Rho GTPase family whose function is regulated by guanine nucleotide-binding state [297].
RhoA is activated when binds to GTP with facilitation from guanine nucleotide exchange factors (GEFs)
and deactivated by hydrolysis of GTP [297]. ROS have been shown to activate RhoA by targeting its
redox-sensitive GXXXXGK(S/T)C motif, which determines guanine nucleotide dissociation [77,298].
Within this motif, cysteine residues 16 and 20 are critical for ROS modulation of RhoA activity [77,299].

Previous work from our laboratory has focused on delineating the contribution of ROS-dependent
myofilament Ca2+ sensitization to vasoreactivity following CH [12,18–22]. PAs from CH rats have
greater tone compared to vessels from control animals without a difference in [Ca2+]i in PASMCs [19,21],
suggesting the importance of the Ca2+ sensitization mechanism in maintaining elevated basal
contractile state of PAs following CH. CH exposure also augments vasoconstriction to agonists
independent of changes in Ca2+ because ET-1 [12] and membrane depolarization (KCl) [20] trigger
greater constriction in Ca2+-permeabilized PAs from CH rats versus normoxic controls. Such differences
are abolished by ROS scavengers alone [12,20], ROK inhibition alone [12,20] or combination of ROS
scavenger and ROK [20]. Considering RhoA activation upon ET-1 [12] and KCl [20] stimulation in
PAs requires ROS, it suggests ROS signal through ROK to facilitate CH-induced augmentation of
myofilament Ca2+ sensitization. Furthermore, elevated KCl-induced vasoconstriction in Ca2+-clamped
PAs from CH rats is normalized by NOX2 inhibition [18], indicating NOX2 as the enzymatic source of
ROS involved in Ca2+ sensitization regulation. Upstream of NOX2 is epidermal growth factor receptor
(EGFR) activation as EGFR is activated by KCl and contributes to KCl-induced ROS generation from
NOX2 [18]. In summary, an EGFR-NOX2-ROK-mediated Ca2+ sensitization mechanism mediates
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CH-induced augmentation of PA vasoconstriction (Figure 6). This signaling is pathologically important
because it participates in the development of PH following CH [22].

4. Conclusion/Perspective

This review summarizes our understanding of ROS in enhanced PA constriction in the disease
of PH, with an emphasis on CH-associated PH. Pathological ROS signaling following CH is the
outcome of increased production from various enzymatic sources, as well as dysfunctional scavenging
systems. ROS participate in PA vasomotor tone regulation following CH by modulating Ca2+ influx,
K+ efflux and myofilament Ca2+ sensitization. Although ROS have convincingly reported to have
an effect on these processes, little is known about the precise ROS-induced modifications to the
relevant ion channels and signaling molecules. Limited studies indicate that ROS cause protein
phosphorylation at serine residues and target cysteine residues to introduce modifications such as
S-glutathionylation, disulfide formation and sulfenic acid formation. However, there are some potential
pitfalls associated with such studies. First, the majority of current knowledge about ROS regulation
of ion channels is gathered from experiments applying exogenous/extracellular oxidizing reagents,
which fail to fully reflect the actions of intracellular ROS seen in PH. Second, there is a lack of pulmonary
circulation-specific evidence regarding redox modifications. Third, it remains unclear how these
identified ROS-induced modifications alter functions of the affected ion channels and signal transducers.
Future studies are therefore needed to address these limitations. Furthermore, the upstream regulatory
mechanisms that regulate enzymatic sources of ROS in PH are not fully understood. Such knowledge
will be valuable in designing therapies specific to the disease while preserving the physiological
functions of ROS.

Considering the importance of ROS in mediating increases in pulmonary vascular resistance (PVR),
a number of groups have attempted to develop novel therapeutic strategies for PH/PAH by
preventing ROS production or scavenging ROS. Pre-clinical studies in PH/PAH animal models
have shown promising results [3,29–37,300,301]. It is likely that oxidative signaling is also
involved in human PH/PAH as oxidative stress is increased in chronic high-altitude residents [302]
and in PH patients [303]. Moreover, in PAH patients, oxidative stress markers correlate with an
adverse prognosis [304], and reducing oxidative stress by epoprostenol [305] or by recombinant
human angiotensin converting enzyme type 2 (rhACE2) [306] is associated with decreases in
PVR in small scale clinical trials. Aside from PVR, preserving or improving right heart function
is a crucial goal for disease management [307] because cor pulmonale occurring during PH
is fatal. Unfortunately, antioxidant therapy has shown little success in cardioprotection to date.
Oral administration of antioxidant coenzyme Q (CoQ) improves left and right heart functions
in PAH patients evaluated by echocardiography [308]. Additionally, cardiac magnetic resonance
imaging demonstrates that the XO inhibitor, allopurinol, alleviates right ventricular hypertrophy in
COPD-associated PH patients with severe airflow limitation [139]. However, in both trials, standard
clinical cardiac function biomarkers, such as 6-minite walk distance and brain natriuretic peptide
(BNP) levels, are not affected [139,308].

To our knowledge, these are the only available clinical trials [139,305,306,308] aimed at addressing
the therapeutic potential of antioxidation strategies in PH/PAH to now. It is important to note that
epoprostenol [305] and rhACE2 [306] used in clinical trials do not act primarily as antioxidants,
and other classical antioxidants including SOD memetic and SOD/catalase mimetic have not been
studied yet. Also, these pilot clinical trials have relatively small cohorts and fail to provide
clinical details about optimal dose, treatment protocol, side effects and population generalizability.
Therefore, multicenter double-blinded randomized controlled clinical trials are needed before drawing
a firm conclusion about the therapeutic value of antioxidants in pulmonary hypertension.
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Abbreviations

[Ca2+]i Intracellular Ca2+ level
5-HT Serotonin
ASIC Acid-sensing ion channel
BH2 Dihydrobiopterin
BH4 Tetrahydrobiopterin
BKCa Large conductance Ca2+-activated K+ channels
BNP Brain natriuretic peptide
Ca2+ Calcium
CH Chronic hypoxia
COPD Chronic obstructive pulmonary disease
CoQ Coenzyme Q
DAG Diacylglycerol
DTNB 5,5′-Dithiobis(2-nitrobenzoic acid)
DTT Dithiothreitol
EC Endothelial cell
EGFR Epidermal growth factor receptor
eNOS Endothelial nitric oxide synthase
ET-1 Endothelin-1
ETC Electron transport chain
FAD Flavin adenine dinucleotide
GPCR G protein coupled receptor
GSH Reduced glutathione
GSSG Oxidized glutathione
H2O2 Hydrogen peroxide
HPV Hypoxic pulmonary vasoconstriction
IKCa Intermediate conductance Ca2+-activated K+ channels
IP3 Inositol triphosphate
K+ Potassium
K2P Four transmembrane segments-2 pores K+ channels
KATP ATP-sensitive K+ channels
KCa Ca2+-activated K+ channels
KO Knockout
KV Voltage-gated K+ channels
MAO Monoamine oxidase
MitoROS Mitochondria-derived ROS
MLCK Myosin light chain kinase
MLCP Myosin light chain phosphatase
mPAP Mean pulmonary arterial pressure
MSC Mechanosensitive channel
MYPT1 Myosin phosphatase target subunit 1
Na+ Sodium
NADPH Reduced nicotinamide adenine dinucleotide phosphate
NO Nitric oxide
NOX NADPH oxidase
O2

.− Superoxide anion
ONOO− Peroxynitrite ion
PA Pulmonary artery
PAEC Pulmonary arterial endothelial cell
PAH Pulmonary arterial hypertension
PASMC Pulmonary arterial smooth muscle cell
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PEG-SOD Polyethylene glycol-conjugated SOD
PH Pulmonary hypertension
PIP2 Phosphatidylinositol 4,5-bisphosphate
PLC Phospholipase C
PVR Pulmonary vascular resistance
rhACE2 Recombinant human angiotensin converting enzyme type 2
ROC Receptor-operated channel
ROCE Receptor-operated Ca2+ entry
ROK Rho kinase
ROS Reactive oxygen species
RV Right ventricular
RVSP Right ventricular systolic pressure
SKCa Small conductance Ca2+-activated K+ channels
SMC Smooth muscle cell
SOC Store-operated channel
SOCE Store-operated Ca2+ entry
SOD Superoxide dismutase
SR Sarcoplasmic reticulum
STIM Stromal interaction molecule
TRPC Transient receptor potential canonical
TRPV4 Transient receptor potential vanilloid 4
VGCC Voltage-gated calcium channel
WHO World health organization
WT Wild-type
XDH Xanthine dehydrogenase
XO Xanthine oxidase
XOR Xanthine oxidoreductase
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