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Differential expressions of genes are widely evaluated for the diagnosis and prognosis

correlations with diseases. But limited studies investigate how transcriptional regulations

are quantitatively altered in diseases. This study proposes a novel model-based

quantitative measurement of transcriptional regulatory relationships between mRNA

genes and Transcription Factor (TF) genes (mqTrans features). This study didn’t

consider the regulatory relationships between TF genes, so the mRNA genes were the

protein-coding genes excluding the TF genes. The models are trained in the control

samples in a lung cancer dataset and evaluated in two independent datasets and the

hold-out testing samples from the third dataset. Twenty-nine mRNA genes are detected

with transcriptional regulations quantitatively altered in lung cancers. The transcriptional

modification technologies like RNA interference (RNAi) may be utilized to restore the

altered transcriptional regulations in lung cancers.

Keywords: transcription factor, mRNA, quantitative measurement, regression, mqTrans

INTRODUCTION

Lung cancer is considered as the most prevalent cancer type and it is also one of the most frequent
causes of cancer related death (Siegel et al., 2019, 2020). Even though, approved molecular targeted
therapies other than chemotherapy are currently very limited, and the pathogenesis mechanism of
lung cancer remains largely unclear (Amalraj et al., 2018). This disease may be impacted by both
genetic mutations and environmental exposures (Ebben et al., 2016). Various precise diagnosis and
prognosis models and technologies are under rapid developments (Jiang et al., 2019; Cheng et al.,
2020; Wang et al., 2020).

Imaging technology has been widely used for the diagnosis and subtyping of lung cancers
(Jacobsen et al., 2017; Zukotynski and Gerbaudo, 2017). Chest X-ray imaging is a popular way
to screen for lung nodules, a major diagnosis factor of candidate lung cancer lesion (Huber et al.,
2016). But its low resolution renders it difficult to find small nodules of the early-stage lung cancer
and doesn’t significantly improve the outcomes of lung cancers (Parkin and Pisani, 1996). Positron
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emission tomography (PET) is a functional imaging technology
that can non-invasively observe the metabolic active locations
throughout the animal body (Han et al., 2020). Magnetic
resonance imaging (MRI) is another medical imaging
technology for non-invasive cancer lesion detection without the
radiological adverse effect of ionizing radiations (Momcilovic
and Shackelford, 2018; Leandri et al., 2019). Computed
tomography (CT) provides the high-resolution non-invasive
imaging of the internal organs and serves as a very good
technology to screen the early-stage cancers (Wang et al., 2019).
Multi-modality fusion of different imaging technologies provides
even more information for characterizing the cancer lesions, e.g.
PET/CT (Zamboglou et al., 2019), etc.

Molecular biomarkers are usually evaluated for their
individual associations with the disease risks and have been
widely used in the decision processes of disease diagnosis and
prognosis (He et al., 2019; Leiro et al., 2019; Yokobori et al.,
2019; Muller et al., 2020). Transcription factor (TF) plays a
critical role in cancer cell processes, such as cell proliferation,
apoptosis, migration, and regulate gene expression. Thus, the
identification and characterization of transcription factors
involved in lung cancer will provide valuable information for
further elucidation of the mechanism(s) underlying pathogenesis
and the identification of potential therapeutic target types, which
are critical for the development of therapeutic strategies. For
example, the transcription factor gene E2F3 recognizes the DNA
motifs of cell-cycle-associated genes by interacting with the
retinoblastoma protein (pRB) and its differential expression in
the human blood well-discriminates the lung cancer patients
from the control samples (Al Ahmed and Nada, 2017).

Expression levels of various protein-coding genes
demonstrate significant associations with the diagnosis or
prognosis of lung cancers. The tyrosine kinase EGFR (Epidermal
Growth Factor Receptor) binds to the epidermal growth factors
on the cell surfaces and demonstrated differential expressions
in the non-small cell lung cancers (NSCLC) (Rusch et al.,
1993; Liang et al., 2012). EGFR’s expression patterns are also
associated with the survival of the NSCLC patients (Brabender
et al., 2001). Another prognosis biomarker PD-L1 (Programmed
Death-Ligand 1) demonstrates significant associations with the
survival of multifocal lung cancers on the transcriptional level
(Al Ahmed and Nada, 2017).

This study hypothesizes that the TF-mRNA regulatory
modules altered in lung cancers may serve as diagnosis
biomarkers and proposes a model-based quantitative metrics
(mqTrans) to measure the TF-mRNA regulatory relationship
using the machine learning algorithms. The proposed metrics
mqTrans is applied to detect the TF-mRNA regulatory
relationships in the healthy samples and this study focused
on those mqTrans relationships that are significantly altered
in the lung cancers. Most of the existing studies focused on
investigating the differential expression or up-/down-regulation
of a gene (Xin et al., 2020). But it’s important to investigate
the transcription regulation of healthy subjects (Busing et al.,
2019; Rodriguez-Nunez et al., 2019). The metrics mqTrans is
the first method to quantitatively measure the transcription
regulation relationship. The observations are further validated

TABLE 1 | Summary of the three datasets.

Notation Dataset Samples Features Summary

dsTrain GSE19804 120 54,675 60 non-smoking female

lung cancers vs. 60

lung normal

dsTest1 GSE30219 307 54,675 293 lung tumor

samples vs. 14

non-tumoral lung

samples

dsTest2 GSE33532 100 25,906 Four different sites (A,

B, C, D) of individual

primary tumors vs.

matched distant normal

lung tissue (N) from 20

patients

These datasets are all methylomes generated by the GeneChip Human Genome U133

Plus 2.0 (platform GPL570) transcriptome array (Affymetrix, Inc.).

by the hold-out testing samples from the above dataset and
two independent datasets. Our experimental data suggests the
existence of the quantitative TF-mRNA regulatory relationships
statistically significantly altered in lung cancers, while the
expression levels of TF or mRNA genes do not demonstrate
significantly differential expressions.

MATERIALS AND METHODS

Summary of the Training Dataset
The transcriptome dataset GSE19804 is chose to train the
mqTrans models of TF-mRNA regulatory relationships (Lu et al.,
2010, 2015). This transcriptome dataset recruits a cohort of 60
female Asian lung cancer patients with no smoking histories
and 60 paired adjacent normal lung tissues as controls (dataset
accession GSE19804), as shown in Table 1. This dataset is
retrieved in the format Series Matrix File from the database Gene
Expression Omnibus (GEO) (Clough and Barrett, 2016).

The total RNAs are isolated from the tissue specimens and
the cDNA/cRNA are synthesized according to the standard
Affymetrix protocol. Each sample is hybridized to the Gene
Chip Human Genome U133 Plus 2.0 (platform GPL570)
transcriptome array (Affymetrix, Inc). All probe sets of the
previous version GeneChip Human Genome U133 Set are
identically used on the GeneChip Human Genome U133 Plus
2.0 Array. The sequences of these probe sets were derived from
the databases GenBankTM, dbEST, and RefSeq. The sequence
clusters were created from the UniGene database (Build 133,
April 20, 2001) and then refined by analysis and comparison
with a number of other publicly available databases, including the
Washington University EST trace repository and the University
of California, Santa Cruz Golden-Path human genome database
(April 2001 release).

Each sample generated by the platform GPL570 has
54,675 features with the normalized probeset values. The
54,675 transcriptomic features of the platform GPL570 are
annotated with human gene symbols and split into two
groups, i.e., TF and mRNA. This study didn’t consider the
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regulatory relationships between TF genes, so the mRNA
genes investigated in this study are the protein-coding genes
excluding the TF genes. We eliminate the features without
the gene symbol annotation. Among the remaining 45,056
features, there are 5,827 TF features, whose gene symbols
are annotated as transcription factors based on the database
AnimalTFDB version 3.0 (Hu et al., 2019). The other 39,229
transcriptomic features are regarded as the mRNA features,
which are screened for their quantitative regulations by the
TF features.

Two Independent Validation Datasets
Two more transcriptome datasets generated using the same
microarray platform GPL570 are chosen to independently
validate the model-based quantitative metrics of transcriptional
regulatory relationships (mqTrans) features, as shown in Table 1.
The dataset GSE30219 is designed to detect the metastasis-
prone tumors and has 293 lung tumor samples and 14 non-
tumoral lung samples (Rousseaux et al., 2013). This dataset
provides the sample set of transcriptomic features. The other
validation dataset GSE33532 collects four tumor lesion sites
and one matches normal lung tissue from each of the 20
lung cancer patients (Meister et al., 2014). The authors of this
dataset carry out a stringent pre-screening step to remove those
probesets with minor expression levels or no matching expressed
transcripts, etc. The expression matrix provided by this study has
25,906 features.

All the three transcriptomic datasets in Table 1 are
generated on the same microarray platform GPL570, and
their transcriptomic features have the same annotations.

Formulation of mRNA Features Regulated
by Multiple Transcription Factors
This study hypothesizes that one mRNA gene may be
transcriptionally regulated by multiple transcription factors.
In a transcriptomic dataset, a feature is regarded as either a
transcription factor (TF) or an mRNA gene (mRNA). So the
expression level of an mRNA feature is modeled asmRNA′ (i) =

w0 +
5827
∑

k=1

w
(

k, i
)

×TF
(

k
)

, where i is an integer between

[1, 39,229] and the weight of the kth transcription factor
TF(k) is w(k, i).

This study calculates the TF weights using the L1-regularized
regression as implemented by the function “Lasso()” in the
Python package sklearn.linear_model. Because an mRNA gene
is not regulated by all the 5,827 TF genes, the model consists of
both feature selection and regression. Lasso is one of the most
efficient ways to provide both functionalities. The TF features
are regarded as being selected if their weights are non-zero.
The default parameter values are used. Lasso() generated ZERO
weights for many features and only those features with non-
zero weights are kept for further analysis. This study assumes
that only the TF genes with non-zero weights regulate the target
mRNA genes.

Model-Based Quantitative Metrics of
TF-mRNA Regulatory Relationships
(mqTrans)
This study defines the absolute difference between mRNA′(i)
and mRNA(i) as the mqTrans feature of the original ith mRNA
feature, where mRNA′(i) is defined as above and mRNA(i) is the
real expression level of the ith mRNA feature. For the simplicity
of notations, the calculated and real expression values of a given
transcriptomic feature F are also denoted as mRNA′(F) and
mRNA(F), respectively. The model-based quantitative metrics of
the TF-mRNA regulatory relationship of the mRNA feature F is
defined asmqTrans (F) =

∣

∣mRNA (F) −mRNA′ (F)|.

Experimental Design
It’s difficult to find multiple datasets on the same disease type
and the same technological platform. All the three datasets were
the case-control studies with reasonable numbers of samples.
The model training relies on the high-quality training data.
The dataset dsTrain (GSE19804) consists of the most balanced
sample classes compared with the other two datasets, as shown
in Table 1. But the dataset dsTrain collected the female samples
from Taiwan only, which may cause the model bias. So the
regression models trained over the dataset dsTrain need to be
evaluated by the hold-out samples in the same dataset and the
independent validation datasets, i.e., dsTest1 and dsTest2 in this
study. Due to the nature of biomedical research, it’s difficult
to collect the healthy lung tissues. So the two datasets dsTest1
and dsTest2 have imbalanced numbers of disease and control
samples. The statements in this study may be further validated
with future balanced datasets.

This study firstly trains a Lasso regression model for each
mRNA feature F using the randomly-chosen 70% of the healthy
control samples from the dataset dsTrain, as shown in Figure 1.
The lung cancer samples and the controls are denoted as P and
N samples, respectively. Then the model is evaluated on the
remaining 30% of the N samples and all the P samples of the
dataset dsTrain, as denoted in Table 1. The two independent
validation datasets dsTest1 and dsTest2 are utilized to further
evaluate the TF-mRNA regulatory relationships detected in the
N samples of the dataset Train.

So the engineered feature mqTrans (F) =
∣

∣mRNA (F) −mRNA′ (F)
∣

∣ tends to be close to zero, if the
validation samples quantitatively maintain a similar TF-mRNA
regulatory relationship as in the model-training samples.

RESULTS AND DISCUSSION

Summary of the mqTrans Features in the
Dataset Train
This study constructs the regression models for 2,463 out of the
39,299 mRNA features. Each regressionmodel has at least one TF
feature with a non-zero weights. And the non-zero weights for
the TF features suggest that these TF features have associations
with the expression levels of the specific mRNA feature.
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FIGURE 1 | Flowchart of this study. This study uses three datasets, i.e., Train, Test1, and Test2. The regression model of each mRNA feature is trained over the 70%

randomly-chosen N samples in the dataset Train.

FIGURE 2 | Venn plots of the detected mqTrans features in three datasets dsTrain, dsTest1 and dsTest2. The numbers of detected mqTrans features in the three

datasets (A) before and (B) after the screening criteria of mqTrans features alter in lung cancers. The Venn plot is generated using the online software from Prof. Yves

Van de Peer’s lab, which is available at http://bioinformatics.psb.ugent.be/webtools/Venn/.

Two popular criteria are utilized to ensure the regression
qualities. The Pearson correlation coefficient (PCC) is calculated
between the original values “mRNA()” and the regression-
based calculates values “mRNA′()” of each mRNA feature in
the training dataset. The Pvalue of the false discovery rate
(FDR) is also calculated by the Python package Lasso() to
ensure the statistical significance of FDR estimation. Only
those features with PCC > 0.5 and P < 0.05 are kept for
further analysis (Amalraj et al., 2018). Other criteria may also

be utilized to evaluate the regression models from the other

aspects of views, e.g., the root mean square difference (RMSD)
(Peslin et al., 1992).

The regression models of 2,030 mRNA features pass

the above screening criteria. For the convenience of
discussion, the mqTrans feature of the original mRNA
feature F is also annotated using the original feature
name F.

The mqTrans Features Altered in Lung
Cancers
The mqTrans feature F in the cancer samples is supposed to be
larger than that in the controls on average. The mqTrans feature
F describes the absolute difference between the real expression
level and the regression model-based predicts expression level of
the feature F. If a group of samples share a similar transcriptional
regulatory relationship of the feature F with the randomly-
chosen 70% of the control samples in the dataset dsTrain, the
calculated mqTrans feature F would be close to zero. And if the
transcriptional regulatory relationship of the mRNA F is altered
in the lung cancer samples, the mqTrans feature F in the lung
cancers would be larger than that in the control samples.

There are 2,030 mqTrans features detected in the dataset
dsTrain, and 487 of them are confirmed in the two independent
validation datasets dsTest1 and dsTest2, as shown in Figure 2A.
1,589 mqTrans features in the dataset dsTrain demonstrate
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FIGURE 3 | Pearson correlation coefficients of the regression performances of the 10 mqTrans features. We select the top 10 mqTrans features with the largest

Pearson correlation coefficients on the hold-out testing dataset. The regression model of each mqTrans feature is evaluated for its regression performances in the

control samples in the three datasets dsTrain, dsTest1 and dsTest2.

alternations in the lung cancer samples, as screened in the above.
The other two independent validation datasets have 687 and
585 mqTrans features altered in lung cancers, respectively. The
overlap of these three feature lists have 242 mqTrans features, as
shown in Figure 2B.

Restrict the FDRs of the mqTrans Features
The false discovery rate (FDR) is calculated for the regressed
model of each mRNA feature, and the mqTrans features with
FDR ≥ 0.01 are excluded from further analysis. There are 76
mqTrans features passed the screening, and 29 of them are
confirmed in the other two independent validation datasets
dsTest1 and dsTest2. Figure 3 shows the top 10 mqTrans
features ranked by the largest Pearson correlation coefficients
(PCC) and illustrates the PCC values of these mqTrans features
are consistently large in all the three datasets. The Pearson
correlation coefficients of all the 29 mqTrans in three datasets
are shown in the Supplementary Figure 1. The mqTrans feature
239916_at is within the gene CFAP52 (Cillia and flagella
associated protein 52) and achieves 0.9729, 0.9791 and 0.9851 in
the three datasets dsTrain, dsTest1 and dsTest2, respectively.

We selected the mqTrans features with the top 10 largest
ratios of the mean values of mqTrans features in the cancer
group and the control group in three data sets and the detail is
shown in the Figure 4. The 29 mqTrans features are calculated
based on the regression models trained on the randomly-
chosen 70% of the control samples in the dataset dsTrain, and
satisfyingly demonstrate consistently small values in the other
control samples in the same dataset and the two independent
validation datasets, as shown in the Supplementary Figure 2.
The engineeredmqTrans features are at much higher levels in the
lung cancer samples in all the three datasets. So the experimental

data suggest that these 29 mRNA features have quantitatively
altered transcriptional regulatory relationships in the lung cancer
samples. For example, the above-discussed mqTrans feature
201539_s_at has much larger values in the lung cancer samples
than in the control ones, as shown in Figure 4.

Literature Support for the Detected
Transcriptional Regulatory Relationships
Altered in Lung Cancers
The numbers in the heatmap region of Figure 5 suggest that
limited studies have investigated the transcriptional regulatory
relationships described by the detected mqTrans features. The
screening criteria is to find a publication in the database PubMed
mentioning both the target mRNA and the TF in the title or
abstract (Canese and Weis, 2013). And the screening is carried
out on February 3, 2020. The expression level of the target mRNA
gene CFAP52 is accurately predicted in the dataset dsTrain
and further independently supported by two other datasets
dsTest1 and dsTest2, as shown in Figure 2. The ratios between
the averaged mqTrans features in the lung cancer and control
samples are 1.6215, 1.8015, and 1.8522 in the three datasets
dsTrain, dsTest1, and dsTest2, respectively. This suggests that
the transcriptional regulatory relationship between CFAP52 and
the TF ZBBX is quantitatively changed in lung cancers compared
with the control samples.

Neither CFAP52 nor ZBBX is investigated for the relationship
with lung cancer, as illustrated y 0 in the second row and the
second column in Figure 5. A gene is defined to be investigated
by a publication if its title and abstract has this gene symbol
and the disease name, i.e., “lung cancer” or “lung tumor” or
“lung adenocarcinoma” or “lung squamous cell carcinoma.”
The literature research is carried out on February 3, 2020.
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FIGURE 4 | The distributions of the 10 mqTrans features in the control and lung cancer samples. The mean and standard deviation values of the calculated mqTrans

features in the dataset (A) dsTrain, (B) dsTest1, and (C) dsTest2. The top 10 mqTrans features were ranked by the ratio of the mean value of mqTrans features

between the cancer group and the control group.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 6 June 2020 | Volume 8 | Article 582

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Duan et al. Quantitative Transcription Regulatory Relationship (mqTrans)

FIGURE 5 | Summary of the literature support for the detected transcriptional regulatory relationships altered in lung cancers. The heatmap with the solid boundary

lines illustrate the transcriptional regulatory relationships altered in lung cancers. Each row is a target mRNA, which is transcriptionally regulated by the transcription

factors denoted by the gray boxes in that row. The dotted box suggests that the transcription factor in that column and the target mRNA in that row are investigated in

the same PubMed literature (Canese and Weis, 2013), and the number in that box is the number of publications mentioned both the transcription factor and the target

mRNA. The number in the column left to the target mRNA gene symbols is the number of publications investigating the gene symbol of the target mRNA in lung

cancers. And the number in the second row is the number of publications investigating the TF gene under the number.

The TF ZBBX and the target mRNA CFAP52 are mentioned
together as downregulated genes in nasopharyngeal carcinoma
(Ye et al., 2019).

The target mRNA HBEGF (heparin binding EGF like growth
factor) is transcriptionally regulated by the TF FOSB (FosB
Proto-Oncogene, AP-1 Transcription Factor Subunit) and their
transcriptional regulatory relationship is quantitatively changed
in lung cancers. The regression model of HBEGF is trained
in the randomly-chosen 70% control samples from the dataset
dsTrain and the model is supported by the other samples in the
datasets dsTrain, dsTest1, and dsTest2, with Pearson correlation
coefficients ranging between 0.6936 and 0.9246. The mqTrans
features are 2.1529, 2.2641, and 2.7139 times in lung cancers
compared with the control samples in the three datasets. HBEGF
and FOSB are separately investigated for their connections
with lung cancers, and they are investigated together only in

one study for their upregulated in the hypospadias patients
(Karabulut et al., 2013).

Biological Inferences of the Detected
Transcriptional Regulatory Relationships
This study firstly uses the online enrichment analysis platform
DAVID (Huang da et al., 2009a,b) to screen for the enriched
functions in the 24 target mRNA genes and 7 regulatory TF genes
as shown in Figure 5 and Table 2. Unfortunately, no enriched
functions are detected in the target mRNA genes or the TF
genes, respectively.

But the sub-cellular localization annotations from the
database UniProt Knowledgebase (UniProt, 2019) demonstrate
an enrichment of membrane-associated proteins encoded by
these biomarker genes, as shown in Table 2. Nineteen out
of the 24 target mRNA genes encoded membrane-associated

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 7 June 2020 | Volume 8 | Article 582

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Duan et al. Quantitative Transcription Regulatory Relationship (mqTrans)

TABLE 2 | Annotations of the detected mqTrans biomarkers with quantitatively altered transcriptional regulations in lung cancers.

mqTrans Gene Location CelLoc Annotation

205846_at PTPRB chr12q15-q21 Membrane Protein tyrosine phosphatase, receptor type, B

210190_at STX11 chr6q24.2 Membrane Syntaxin 11

217546_at MT1M chr16q13 Nucleus, cytoplasm Metallothionein 1M

210298_x_at FHL1 chrXq26 Nucleus, cytoplasm Four and a half LIM domains 1

200671_s_at SPTBN1 chr2p21 Membrane; cytoskeleton Spectrin, beta, non-erythrocytic 1

220170_at FHL5 chr6q16.1-q16.3 Nucleus Four and a half LIM domains 5

205779_at RAMP2 chr17q12-q21.1 Membrane Receptor (G protein-coupled) activity modifying protein 2

203821_at HBEGF chr5q23 Membrane; extracellular space Heparin-binding EGF-like growth factor

1556711_at FAM216B chr13q14.11 - Family with sequence similarity 216, member B

1552715_a_at RXFP1 chr4q32.1 Membrane Relaxin/insulin-like family peptide receptor 1

230601_s_at LRRC46 chr17q21.32 - Leucine rich repeat containing 46

208983_s_at PECAM1 chr17q23.3 Membrane; Cell junction Platelet/endothelial cell adhesion molecule 1

221132_at CLDN18 chr3q22.3 Membrane; tight junction Claudin 18

201539_s_at FHL1 chrXq26 Nucleus; Cytoplasm Four and a half LIM domains 1

238018_at FAM150B chr2p25.3 Secreted Family with sequence similarity 150, member B

217628_at CLIC5 chr6p12.3 Membrane; cytoskeleton; cytoplasm; cell cortex Chloride intracellular channel 5

38037_at HBEGF chr5q23 Membrane; extracellular space Heparin-binding EGF-like growth factor

1554921_a_at SCEL chr13q22 Membrane; Cytoplasm Sciellin

237020_at CATSPERD chr19p13.3 Membrane Catsper channel auxiliary subunit delta

220736_at SLC19A3 chr2q37 Membrane Solute carrier family 19 (thiamine transporter), member 3

1555191_a_at FHL5 chr6q16.1-q16.3 Nucleus Four and a half LIM domains 5

221133_s_at CLDN18 chr3q22.3 Membrane; tight junction Claudin 18

243802_at DNAH12 chr3p14.3 Cytoskeleton Dynein, axonemal, heavy chain 12

231804_at RXFP1 chr4q32.1 Membrane Relaxin/insulin-like family peptide receptor 1

1564494_s_at P4HB chr17q25 Membrane; Endoplasmic reticulum; Melanosome Prolyl 4-hydroxylase, beta polypeptide

211574_s_at CD46 chr1q32 Membrane CD46 molecule, complement regulatory protein

204395_s_at GRK5 chr10q26.11 Membrane; Nucleus; Cytoplasm G protein-coupled receptor kinase 5

239916_at CFAP52 chr17p13.1 Cytoplasm; flagellum Cilia and flagella associated protein 52

1552667_a_at SH2D3C chr9q34.11 Membrane; Cytoplasm SH2 domain containing 3C

Column “mqTrans” is the target mRNA feature name from the transcriptome microarray platform GPL570. Columns “Gene” and “Location” are the corresponding gene symbol and

the chromosome locations in the Human Reference Genome GRCh37 released in February 2009. Column “CelLoc” is the sub-cellular localizations of the proteins encoded by this

gene, and the annotation is collected from the database UniProt Knowledgebase. Column “Annotation” is the functional annotation collected from the definition file of the microarray

platform GPL570.

proteins. Nucleus (6) and cytoplasm (8) are another two
common sub-cellular locations for the proteins encoded
by the genes with transcriptional regulations altered in
lung cancers.

EPAS1 is known to be a major transcriptional regulator
associated with the diagnosis and prognosis of lung cancers
(Wang et al., 2018; De Bastiani and Klamt, 2019; Zhang et al.,
2019). This study detects that sixteen EPAS1-regulated genes
demonstrated quantitatively altered transcriptional regulations
in lung cancers. But none of these 16 genes are investigated
together with EPAS1 in lung cancers, by screening for their co-

appearances in the PubMed literature (Canese and Weis, 2013).
The experimental data in this study suggest that these 16 genes

had similar quantitative correlations with the transcription factor

EPAS1 on the expression level in the control samples in the
two independent datasets and the hold-out testing dataset, while
such correlations are altered in the lung cancer samples in these
three datasets.

Cross-Dataset Confirmation of the
mqTrans Features in Lung Cancer
We further use the control samples in the other two datasets
to train the mqTrans features and validate the 29 mqTrans
biomarkers detected in the above sections. The dataset GSE19804
has only the female samples from Taiwan, which may cause the
sex and ethnicity bias. Both of the other two datasets GSE30219
and GSE33532 consist of both male and female samples. The
dataset GSE30219 was collected from the French cohort, while
the dataset GSE33532 was from the Germany cohort. So the
control samples in these two datasets were used to train the
mqTrans models, which were validated for their alternations in
lung cancers.

Three out of the 29 lung cancer mqTrans biomarkers are
further confirmed by all the four validation experiments, as
shown in Table 3. The mqTrans models trained using the control
samples of the dataset GSE30219 confirmed 7 and 8 out of
the 29 mqTrans biomarkers detected in the above sections.
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TABLE 3 | The 29 lung cancer mqTrans biomarkers confirmed by the

cross-dataset validations.

Training GSE30219 GSE33532

Testing GSE19804 GSE33532 GSE19804 GSE30219

Lung

cancer

specific

mqTrans

features

237020_at 238018_at 238018_at 238018_at

243802_at 203821_at 1556711_at 237020_at

239916_at 38037_at 237020_at 243802_at

203821_at 217546_at 243802_at 217546_at

217546_at 1555191_a_at 239916_at 38037_at

1556711_at 243802_at 230601_s_at 239916_at

238018_at 1556711_at 230601_s_at

239916_at 1554921_a_at

203821_at

The mqTrans models are trained using the control samples in the dataset identified in

the first row. The validation dataset is given in the second row. The mqTrans biomarkers

confirmed in all the four validation experiments are highlighted in bold.

And there are six mqTrans biomarkers confirmed by both of
these two experiments. There are 6 and 9 GSE33532-trained
mqTrans models confirmed by the datasets GSE19804 and
GSE30219, respectively. Both of the two experiments support five
mqTrans biomarkers.

The three mqTrans biomarkers confirmed by all the
six validation experiments are 238018_at (FAM150B),
243802_at (DNAH12) and 239916_at (CFAP52). Each validation
experiment trains the mqTrans models using one dataset and
validates the models using another one. The two genes DNAH12
and do not have literature supports for their associations with
lung cancer, but FAM150B was observed to be potent ligands for
human anaplastic lymphoma kinase (ALK) (Guan et al., 2015),
whose aberrant activation is involved in non-small cell lung
cancers (Hallberg and Palmer, 2013).

There are only three mqTrans biomarkers supported by these
four cross-dataset validation experiments. This is mainly due to
that the numbers of the control samples are only 14 (out of
307 total samples) and 20 (out of 100 total samples) in the two
datasets GSE30219 and GSE33532.

CONCLUSION

This study proposes a novel model-based quantitative
measurement mqTrans of the transcriptional regulatory
relationship between mRNA and TF, and utilizes the mqTrans
features to detect 29 transcriptional regulatory relationships
altered in lung cancers. The conclusions are validated using both
the samples in the same dataset and two independent datasets.
These 29mqTrans biomarkers of lung cancers may be verified for

their diagnosis and prognosis roles by various biological knock-
down technologies. Three out of the 29 mqTrans biomarkers are
further confirmed by the cross-dataset validation experiments.
One of the three mqTrans biomarker genes encodes a ligand
for human kinase ALK, which is involved in the non-small cell
lung cancers.

It’s difficult to collect healthy lung tissues as the control
samples. So the two independent validation datasets do not have
balanced numbers of control samples. The statements in this
study may be further validated in the future balanced datasets.
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