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Abstract

Background: Orthology analysis is an important part of data analysis in many areas of bioinformatics such as
comparative genomics and molecular phylogenetics. The ever-increasing flood of sequence data, and hence the
rapidly increasing number of genomes that can be compared simultaneously, calls for efficient software tools as
brute-force approaches with quadratic memory requirements become infeasible in practise. The rapid pace at
which new data become available, furthermore, makes it desirable to compute genome-wide orthology relations
for a given dataset rather than relying on relations listed in databases.

Results: The program Proteinortho described here is a stand-alone tool that is geared towards large datasets
and makes use of distributed computing techniques when run on multi-core hardware. It implements an extended
version of the reciprocal best alignment heuristic. We apply Proteinortho to compute orthologous proteins in
the complete set of all 717 eubacterial genomes available at NCBI at the beginning of 2009. We identified thirty
proteins present in 99% of all bacterial proteomes.

Conclusions: Proteinortho significantly reduces the required amount of memory for orthology analysis
compared to existing tools, allowing such computations to be performed on off-the-shelf hardware.

Background
Genome annotation largely depends on the determina-
tion of sequence intervals that are homologous, and
if possible, orthologous to sequences of known identity
and function in related genomes. Orthologous genes
(orthologs) are derived from a common ancestor by a
speciation event [1]. Orthologs are of particular interest
because they can be expected to have maintained at least
part of their (ancestral) biological function. For protein-
coding genes, several well-known databases, including
InParanoid [2], OrthoMCL-DB [3], COG-database
[4], Homogene [5], eggNOG [6], OMA Browser [7] and
Ensembl Compara [8] compile such information. Their
content is restricted to data previously published in
comprehensive databases of protein sequences such as
UniProt [9]. Updates with additional proteomic data
thus are published relatively infrequently. Modern high-
throughput technologies, however, produce huge
amounts of protein data and even larger amounts of

transcript data that are computationally translated to
putative polypeptide sequences. Oftentimes, therefore, it
would be desirable to generate the orthology relation for
a particular dataset, so that the availability of orthology
data does not limit the set of species or genes that can be
included.
The computation of genome-wide orthology data, how-

ever, is a challenging and time consuming task with the
currently available tools. In many cases, orthologs cannot
be identified unambiguously by means of sequence com-
parison. The main difficulty arises from the presence of
paralogs (homologous genes within the same genome)
which can make it very difficult to recognize the correct
ortholog among the other homologs. Gene duplications
following the speciation, furthermore, create two or more
genes in one lineage that are, collectively, orthologous to
one or more genes in another lineage. Such genes are
known as co-orthologs [10].
The most widely used approach to identify (putative)

orthologs between two species is the reciprocal best
alignment heuristic [11-15]. This approach was more
recently extended e.g. in OrthoMCL [16] and Multi-
Paranoid [17] to detect (co-)orthologs within multiple
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species. All these tools, however, are limited to relatively
small sets of species. In practise, analyzing the complete
proteomes of more than about 50 prokaryote species
goes beyond the capabilities of standard hardware and
requires access to supercomputer resources. This limita-
tion arises from both, technical issues such as insufficient
parallelization and the algorithmic design that requires
all reasonable alignments for each input protein to be
held in the memory for efficient access in the clustering
stage. Proteinortho is specifically designed to deal
with hundreds of species together containing millions of
proteins. It achieves this performance both by optimizing
the implementation and by modifying the reciprocal best
alignment method in a way that allows alignment proces-
sing on the fly.

Results and Discussion
Orthology prediction
Theory
As for other approaches to large-scale orthology detec-
tion, the starting point is a complete collection of pair-
wise comparisons, typically performed using blast. For
simplicity of presentation, we assume that the individual
sequences that are compared represent proteins,
although algorithms and pipelines are applicable also to
other sequence data such as non-coding RNA genes or
conserved DNA regions. Typically, the results of pairwise
comparisons are ranked by similarity, for instance based
on blast statistics, evolutionary distances, or genome
rearrangement analysis [7,16,18]. High-ranking align-
ments across multiple species then have to be combined
in order to determine orthologous groups. However,
these groups usually do not readily provide detailed
insights since they can contain large numbers of related
genes for each species. Hence, meaningful units have to
be identified. For this purpose, a variety of clustering
algorithms has been applied to determine Clusters of
Orthologous Groups (COGs). The MCL-algorithm for
instance uses a stochastic flow simulation to determine
meaningful COGs [16,19,20]. In addition, MultiPara-
noid explicitly searches and tags in-paralogs, i.e., recent
paralogs that represent species-specific gene expansions.
This strategy requires to directly compare proteins within
each species. Alternatively, data were curated by manual
postprocessing [4].
We will argue here that orthology determination can be

understood as the problem of finding nearly disjoint
maximal nearly-complete multipartite subgraphs in an
edge-weighted directed graph �ϒ whose vertices are the
proteins in the input set, and whose edges connect cer-
tain pairs of similar proteins of different species. The
edge weights ωx®y encode the similarity of x and y.
In our implementation, the bit score of the blast align-
ment (x ® y) will serve as edge weight. An E-value cut-

off is used beyond which blast alignments are not
included into �ϒ.
In order to motivate our point of view, we first con-

sider an idealized dataset (see Figure 1) in which (1)
each protein x (from species A) has at most one ortho-
log in any other species B ≠ A, (2) if y Î B is an ortho-
log of x Î A, then a blast search of x against B yields
at least one alignment and (3) the unique best alignment
of query x against B is the true ortholog y of x. In this
case, the well-know “reciprocal best alignment heuristic”
(RBAH), also known as “reciprocal best hits” (RBH)
[11], can be used to retrieve the correct ortholog set. To
see this, we construct a subgraph �ϒRBAH of �ϒ as follows:
For each protein x in species A and a given species B ≠
A we retain only the arc with maximal weight:

(
x → y

) ∈ �ϒRBAH iff ωx→y = max
y′∈B

ωx→y′ (1)

The symmetric subgraph of �ϒRBAH, containing only
reciprocal best alignments, can be regarded as an undir-
ected graph ϒRBAH. By construction, any two vertices
are connected by edges in ϒRBAH if and only if they are
orthologs. A set of orthologs therefore corresponds to a
complete multipartite subgraph of �ϒRBAH in which every
species is represented at most once. Furthermore, we
note that these subgraphs are disjoint, i.e., ortholog sets
correspond to the connected components of �ϒRBAH.
When applied to real data, however, RBAH usually

gives rise to several artifacts. In general, therefore, it
does not produce correct and complete sets of ortho-
logs. First, gene duplications produce co-orthologs,
destroying the uniqueness of best blast alignments.
The blast comparison of two species both containing
two co-orthologs will in general produce slightly differ-
ent scores among those genes, so that �ϒRBAH in general
will not contain all arcs between them, see Figure 2a.
RBAH now extracts the symmetric part of �ϒRBAH, i.e., it
removes all non-reciprocal edges. Thus the undirected
graph ϒRBAH has an edge {x, y} if and only if both (x, y)

(1) (3)(2)

B

A

Figure 1 Orthology relations. Idealized dataset for two species A
and B. Proteins x Î A and y Î B are depicted by open boxes.
Orthology relations between proteins x and y are represented by
grey shadows. Arrows indicate alignments above a certain cut-off
from the search of x against B. Solid lines refer to the best
alignments. Cases (1), (2), and (3) cannot occur by definition in an
idealized dataset, but of course do appear in real life applications.
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and (y, x) are arcs in �ϒRBAH. A missing arc in the exam-
ple of Figure 2a thus translates into a missing edge in
ϒRBAH. Ortholog sets, therefore, are still located in dis-
joint connected components, but they are only approxi-
mately multipartite and there is no guarantee that they
remain connected. As a remedy, it could be proposed to
use the k-best blast alignments instead of a single
best one. This leads, however, to another type of artifact:
If distant homologs or spurious blast alignments with
scores above the blast threshold are present, see
Figure 2b, the inclusion of up to k alignments can result
in edges between paralogous but non-orthologous
proteins.
In order to reduce such problems, we suggest to intro-

duce a similarity cut-off value that itself depends on the
quality of the matches, i.e., to consider all those blast
alignments of each query against a given species whose
E-values are only slightly smaller (by a factor f < 1) than
the queries’ best blast alignments. More precisely,

(
x → y

) ∈ �ϒ∗ iff ωx→y ≥ f max
y′∈B

ωx→y′ (2)

This has two advantages: it retains edges to likely co-
orthologs while at the same time reducing the number
of edges that are inserted in �ϒ∗.
The symmetric part ϒ* of �ϒ∗ now retains more edges

than ϒRBAH. In particular, it includes all the edges con-
necting similar co-orthologs. On the other hand, the
threshold at fairly high bit scores disconnects at least
most of the more distant homologs. Sets of (co-)ortho-
logs thus appear in ϒ* as nearly complete multipartite

subgraphs. Typically they will contain more than one
node from the same species, among them, in particular,
all in-paralogs. Although this approach strongly reduces
the problem with spurious edges, ϒ* may also contain
additional edges connecting two or more sets of (co-)
orthologs.
The problem of finding maximal complete multipartite

subgraphs of a graph is NP complete [21]. Furthermore,
we have seen above that ϒ* may lack a few edges which
should connect orthologs (“false negatives”), while at the
same time there are also some additional “false positive”
edges. In a two-species comparison there is no informa-
tion that could compensate missing and spurious edges,
while in the multi-species case, the graph ϒ* is in a
sense “self-correcting” since we can formulate orthology
detection as an optimization problem. More precisely,
we search for a decomposition of ϒ* into a disjoint col-
lection of complete multipartite subgraphs so that the
number of edge insertions and deletions is minimized.
Since no efficient approaches to this combinatorial

optimization problem seem to be known, it appears
fruitful to resort to a heuristic approach that employs a
somewhat different point of view: nearly complete mul-
tipartite subgraphs are very dense subgraphs, which in
our case either form connected components on their
own, or which are connected to other dense clusters by
a few additional edges. The problem thus is to deter-
mine for each connected component ϒ* of whether it is
sufficiently densely connected, and if not, to partition it
into its densely connected components by removing the
spurious edges connecting them. Here, we approach this
issue by means of spectral partitioning [22], see Addi-
tional File 1 for a detailed description.
We remark, finally, that one could efficiently add the

explicit determination of in-paralogs after ϒ* has been
constructed, although currently this is not implemented
in Proteinortho. Following e.g. InParanoid, sets
of in-paralogs are subsets of proteins from the same
species within the same connected component ϒ* of
that are more similar to each other than to any protein
in another species. It is sufficient, thus, to determine
alignment scores for pairs of nodes from the same spe-
cies within connected components of ϒ*. As in Multi-
Paranoid, in-paralogs could be collapsed to a single
node.
Implementation
Blast searches Proteinortho expects fasta files
containing either nucleic acid or amino acid sequences
as input. Proteinortho does not build a large data-
base containing all proteins but rather keeps the protein
complements of different species separate. This has mul-
tiple advantages: (1) the blast step can be partitioned
into multiple runs. The available processor cores are
used efficiently as each blast process can utilize one

Figure 2 Adaptive RBAH. Reciprocal best alignment heuristic
(RBAH). (a) If there is a pair of divergent co-orthologs x1, x′

1, and y1
and y′

1, resp., it is possible that there are no reciprocal best blast
alignments. In this situation, RBAH will not identify any orthologs.
(b) One possible remedy is to include the second best blast
alignment (n = 2). However, in this case highly similar orthologs (x2
and y2 as well as x3 and y3), which in principle can clearly be
divided, can get combined. (c) Proteinortho uses an adaptive
approach that is (1) flexible with respect to the number of more
diverged orthologs in absence of a reciprocal best blast
alignment and (2) will not intermix orthologous groups that can be
disentangled easily because of large differences in pairwise
similarity.
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processor core to the full, which is usually not the case
if threading is handled by blast itself. Furthermore,
the blast jobs can be distributed to several computers
in a network. (2) The computationally expensive blast
search of species against themselves (which is implicit in
searching a comprehensive protein database) can be
avoided. (3) The E-values returned by blast depend
only on the proteome of each input species, not on
the database of all input sequences. Therefore, Pro-
teinortho implicitly enforces higher similarity for
related proteomes but allows lower levels of similarity
for larger evolutionary distances. Conceptually, this
replaces the normalization of the scores employed e.g.
by OrthoMCL. (4) The scope of the analysis can be
extended without the need to re-compute blast com-
parisons that have already been computed earlier. The
E-values remain unchanged when species are included
or excluded from the analysis. Proteinortho can use
several PCs with a shared storage (such as an NFS file
system). The implementation of distributed computing
is illustrated in Additional File 2. Furthermore, cluster
infrastructure (e.g. MPI or SGE) is supported. A bench-
mark illustrating the performance improvements is
shown in Figure 3a. Proteinortho is faster than
OrthoMCL even if only a single processor core is avail-
able and gains much of its practical advantage from par-
allelization. In applications to large numbers of species,
for which Proteinortho is primarily intended, hand-
ling blast alignments dominates the spectral partition-
ing step by several orders of magnitude. As blast and
the memory consumption of holding the graph structure

for clustering are limiting, we do not investigate the
complexity of the clustering step itself in detail.
Most importantly, the algorithm outlined in the previous
section avoids the memory bottleneck that limits pre-
vious approaches. Suppose our input set comprises N
species with, on average, m genes. The size of the input
is thus n = N × m proteins. Instead of storing all n × n
pairwise blast scores, Proteinortho processes the
comparisons between any two species A and B immedi-
ately: first the blast alignments are filtered by two
additional criteria: (1) The alignment must exhibit a
minimum level of sequence identity. (2) The alignment
must cover at least a minimum fraction of the query
protein. This second rule ensures that fusion genes such
as rice OsUK/UPRT1 [23] are eventually assigned as
homologs of the dominating part of the protein. Then
equ.(2) is evaluated for all x in A, so that Protei-
northo directly constructs the sparse graph �ϒ∗, while
�ϒ does not need to be stored at all. Proteinortho
therefore uses chained arrays, requiring only n × k
entries, where k is the average number of nearly optimal
blast alignments per gene, and k = a × N, where a is
the average number of (co-)orthologs of a gene in a sin-
gle species. The value of a is independent of the size of
the dataset. Empirically, we found a ≤ 1 in all datasets
investigated so far. Thus Proteinortho saves a factor
n2/N2ma = m/a ≥ m of memory. Note that prokaryotes
have m ≈ 103 ... 104 proteins.
Spectral partitioning First we reduce the problem by
determining the connected components ϒ* of since
these can be treated separately. We use the well-known
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Figure 3 Benchmarks. CPU time and memory requirements of Proteinortho. (a) The speed benchmark was performed using an E. coli
strain with 4132 proteins on an eight core Intel Xeon system using one thread (1) and eight threads (8) at 2.33 GHz. The encoded proteins
were used multiple times to simulate multiple (identical) species. This is the worst case scenario for Proteinortho since in this case every
protein has a link to at least one protein in every other species. Proteinortho is significantly faster than OrthoMCL. Using multiple threads
we observe a substantial speed up. (b) The memory benchmark is performed using the same set as in (a). OrthoMCL quickly exhausts memory
for larger sets. Proteinortho clearly performs more efficient, even though this artificial scenario is a more complex case than real world
analysis. Both benchmarks outline that Proteinortho allows comprehensive studies which were not possible before.
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breath-first search approach [24] to this end. In order to
check whether a connected component Ξ is sufficiently
dense to represent a single set of co-orthologs we com-
pute its normalized algebraic connectivity α∗

2 = α2
/

n.
Here n is the number of vertices of Ξ and aalpha2 is
2nd-smallest eigenvalue of the graph Laplacian L = D -
A of Ξ [25]. Here A is the adjacency matrix of Ξ and D
is the diagonal matrix of the vertex degrees. The eigen-
value aalpha2 can be computed iteratively, see Addi-
tional File 1. Values of α∗

2 ≈ 1 indicate dense clusters
that most likely correspond to coherent sets of (co-)ortho-
logs. Small values α∗

2, on the other hand indicate that Ξ
has a low connectivity and either consists of two or more
dense components or it has (nearly) tree-like protrusions.
Very large components α∗

2 ≈ 0 can arise when genes
duplicate frequently and diverge quickly according to the
duplication-degeneration-complementation (DDC) model
[26].
The “Fiedler vector” x2, i.e., the eigenvector of L to

eigenvalue a2 can be used to find a partition of Ξ into
two connected components, one consisting of the ver-
tices for which x2 has positive entries and one for which
x2 has negative entries [27]. This decomposition is iter-
ated until Ξ is partitioned into components with alge-
braic connectivity α∗

2 above a certain threshold value and
tree-like pieces, which most likely correspond to false-
positive edges of ϒ*. In order to speed up the computa-
tion, trees are therefore removed from the component Ξ
before the algebraic connectivity and the Fiedler vector is
computed. This is achieved by iteratively removing a ver-
tex of degree 1 and its adjacent edge. This step is not per-
formed if Proteinortho is used to compare only two
species.
We remark that the memory and CPU consumption

for the clustering step of OrthoMCL can be drastically
reduced by using a novel algorithm [28], reaching a per-
formance that is theoretically comparable to spectral
partitioning as used by Proteinortho (see Additional
File 1). Both require only the storage of edge or adja-
cency lists. The current implementation of spectral par-
titioning could be further optimized e.g. by employing
the Lanczos algorithm [29] for computing the eigenva-
lues. Spectral partitioning on average scales as O(n2k).
This leads to an expected runtime of O(N3) for Pro-
teinortho which is comparable to the O(N3 log N)
complexity bound achieved for COG clustering in [28].

Evaluation of Proteinortho
We compared Proteinortho with the COG-database
[4] and OrthoMCL [3]. The latter is the main competitor
in terms of speed and memory. The COG-database pro-
vides a manually curated dataset that can be regarded as
more reliable than fully automated approaches. For

benchmark analysis, a set of 16 randomly chosen bacteria
from three different classes (six Gram-positive bacilli, six
gamma- and four alpha-proteobacteria) are used. The
input set comprises 53, 623 protein sequences.
Figure 4 summarizes the size distribution of co-ortho-

log sets for the three approaches. Using default settings
(E-value cutoff 10-10, algebraic connectivity threshold
α∗

2 > 0.1, minimum 25% identity, 50% coverage of query
sequence, similarity threshold f = 0.95) Both Protei-
northo and OrthoMCL report fewer groups than listed
in the COG-database. This is not surprising, however,
since the COG-database relies on less restrictive criteria
and thus tends to include multiple co-orthologs, while
both stand-alone tools apply clustering algorithms that
attempt to split the large components whenever possible.
Figure 5 presents the outcome in more detail. Pro-

teinortho and OrthoMCL report comparable results.
Proteinortho is more stringent. The amount of
completely new groups which have to be regarded as
false positives is considerably lower. OrthoMCL reports
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Figure 4 Coverage completion. Comparison of the results of
Proteinortho with different thresholds of the normalized
algebraic connectivity α∗

2 = 0...0.8 with the COG-database and
OrthoMCL for a dataset consisting of 16 randomly chosen
bacterial proteomes. The vertical dashed line marks the transition
from clusters containing mainly a single ortholog from each species
to sets including co-orthologs. The COG-database reports many
large groups which often include co-orthologous proteins.
OrthoMCL and Proteinortho focus on highly connected
subsets in order to find orthologous sets and thus split those
groups. Thereby, Proteinortho’s clustering algorithm becomes
more stringent with increasing values of α∗

2 in splitting in particular
large groups. While these groups are left intact for α∗

2 = 0,
thresholds of 0.5 and higher drastically reduce the fraction of
included co-orthologs.
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slightly more groups. Even though both tools were
applied with the same E-value threshold the results vary
due to the different blast strategies: OrthoMCL
employs one large database containing all proteins,
while Proteinortho uses species-specific databases.
Most pairwise E-values derived by Proteinortho
thus tend to be somewhat larger than those derived by
OrthoMCL for the same set of proteins. In turn,
OrthoMCL reports some more and larger groups. How-
ever, the overall outcome can be regarded as similar
while the runtime and memory requirements of Pro-
teinortho are substantially reduced in comparison to
OrthoMCL.

Domain-wide commons
In order to demonstrate that Proteinortho is suita-
ble for large-scale analysis we asked Which proteins can
be found in all bacterial species? Proteins that are con-
served domain-wide are likely to be useful for the con-
struction of a phylogeny of eubacteria as an alternative
to the prevalent usage of 16S rRNA sequences [30].
They can also serve as protein-based markers for identi-
fying novel bacterial species as members of an estab-
lished phylogenetic group. In addition, they can give
insight into basic protein equipment of bacterial life.
Hence, we applied Proteinortho to the set of all
eubacterial proteomes available at NCBI at the begin-
ning of 2009 (Additional File 3).

The input dataset comprises 2, 155, 620 proteins
annotated in 717 bacterial genomes. The Protei-
northo run took less than two weeks using 50 proces-
sor cores (Intel Xeon at 2.00-2.33 GHz) distributed over
multiple PCs. Only 2 GB memory were required.
OrthoMCL could not be employed for this task on the
hardware available in our lab. Extrapolating from the
benchmarks in Figure 3, we estimate that hundreds of
gigabytes of memory and years of runtime would have
been required.
Proteinortho identified 152 proteins as core of the

bacterial protein complement, occurring in at least 90%
of all 717 free-living and endosymbiotic bacteria. Of
these, 32 are ribosomal subunits. The 30 apparently
most indispensable proteins, occurring in 99% of all
bacteria, are:

Elongation factor Tu (often co-orthologous to elon-
gation factor 1-alpha)
Elongation factor G
Translation initiation factor IF-2
RNA polymerase subunits b and b’
ATP-dependent metalloprotease FtsH
O-sialoglycoprotein endopeptidase
Methionine aminopeptidase
F0F1 ATP synthase subunits a and b
Dimethyladenosine transferase
1 ribosomal protein of the 30S rRNA subunit
3 ribosomal proteins of the 50S rRNA subunit
3 GTP-binding proteins
12 tRNA synthetases

A more detailed list, including unique identifiers for
groups of proteins can be found in the supplemental
material. The sensitivity of Proteinortho in this sur-
vey is limited by incomplete annotation in many species,
which we complemented here by tblastn searches
with fairly restrictive cut-off values, see Methods for
details. Figure 6 summarizes the results quantitatively,
emphasizing the effect of incomplete annotation. We
remark that this example also shows that Protei-
northo can be used to complement existing annota-
tions in an automatic fashion.
Nevertheless, about one third of the 30 most con-

served proteins could not be recovered in the genomes
of the two species with the smallest proteomes in our
dataset: Candidatus Carsonella ruddii PV and Candida-
tus Sulcia muelleri GWSS. Both are endosymbionts that
are considered as organelle-like [31,32]. Numerous
genes that are otherwise considered to be essential for
life have been reported as missing in both species. A
more detailed and larger list of domain-wide common
proteins can be downloaded at http://bioinf.pharmazie.
uni-marburg.de/supplements/proteinortho/.

Figure 5 Comparison of results. Comparison of OrthoMCL and
Proteinortho to the COG-database. The following assignments
were defined: identity: the group equals a COG-group; subset: the
group is subset of a COG-group, at least two proteins are equal;
superset: the group is a superset of a COG-group, at least two
proteins are equal; new: none of the above-noted criteria matched.
Both tools reveal comparable results with respect to the manually
curated COG-database. OrthoMCL covers more identical and
differently composed groups while Proteinortho is more
restrictive and reports fewer new groups which are not present in
the COG-database. All groups with less than six species were
omitted from the OrthoMCL and Proteinortho data. See
Additional File 2 for comparisons with different minimal coverage.
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Conclusions
Proteinortho implements a blast-based approach
to determine sets of (co-)orthologous proteins or nucleic
acid sequences that generalizes the reciprocal best align-
ment heuristic. The software is optimized for large data-
sets, and in particular provides a drastic reduction of
the memory requirements compared to earlier tools. It
can therefore be run on off-the-shelf PC hardware for
large datasets. Our implementation scales very well with
the number of available processor cores. The blast
searches can be trivially parallelized and distributed
easily to multiple PCs without the need for a cluster
management system, while deployment to existing clus-
ter infrastructure is also supported.
Proteinortho views orthology detection as a variant

of graph clustering since co-orthologous sets correspond
to maximal complete multipartite subgraphs, which at the
same time are well separated from each other. Due to the
unavoidable noise in the real data, however, co-ortholo-
gous sets appear as dense subgraphs without clearly recog-
nizable low-weight cuts. This property is measured quite
well by the algebraic connectivity. At the same time, low-
weight cuts between dense regions are identified very well
by the corresponding Fiedler vector. We therefore employ
spectral partitioning instead of a direct graph clustering
approach. The quality of the co-orthologous sets proposed

by Proteinortho is comparable to the performance of
OrthoMCL.
Both time and memory requirements are significantly

reduced compared to earlier approaches, enabling appli-
cations that were infeasible before. For instance, we
applied Proteinortho to the complete set of 2.1 mil-
lion proteins from the 717 bacterial genomes available
at NCBI at the beginning of 2009. We found 30 proteins
that are present in more than 99% of the investigated
sequences.

Methods
All analysis with Proteinortho and OrthoMCL were
applied using default values unless described otherwise.
These are E - value < 10-10, 25% percent identity, Mar-
kov Inflation Index of 1.5 for OrthoMCL and E-value <
10-10, 25% percent identity, adaptive best alignments
similarity of f = 0.95, algebraic connectivity > 0.1 for
Proteinortho. OrthoMCL version 1.4 was down-
loaded from http://OrthoMCL.org/common/downloads/.
Speed and memory benchmark were performed multi-

ple times using the proteome of Escherichia coli K12
substr. MG1655 data from the NCBI. The protein ids
were renamed systematically to prevent duplicated ids
for benchmarking purposes which cannot be handled by
Proteinortho. A script continuously observed the
memory consumption and reported the maximum peak
for each run, Figure 3.
For the domain-wide commons we applied Protei-

northo with default values of the parameters. Bacterial
proteomes and genomes were downloaded from NCBI
ftp://ftp.ncbi.nih.gov/genomes/Bacteria/ in March 2009.
A detailed list can be found in Additional File 3. In order
to recover missing annotation, we selected all ortholo-
gous groups covering at least 75% of all species that are
good candidates of domain-wide commons. The unique
set of sequences of each orthologous group was blasted
against all genomes that lack an annotated ortholog
using tblastn (E-value < 10-20). The sequence of the
best alignment was then added to the orthologous group.
For evaluation we used the proteome data from the

COG-database ftp://ftp.ncbi.nih.gov/pub/COG/COG/
downloaded in November 2009. We have chosen Bacillus
halodurans, Bacillus subtilis, Lactococcus lactis, Listeria
innocua, Streptococcus pneumoniae TIGR4, Streptococcus
pyogenes M1 GAS from the Gram-positive bacilli class,
Buchnera sp. APS, Escherichia coli K12, Pasteurella mul-
tocida, Salmonella typhimurium LT2, Vibrio cholerae,
Yersinia pestis from the gamma proteobacteria class and
Brucella melitensis, Caulobacter vibrioides, Mesorhizo-
bium loti, Rickettsia prowazekii from the alpha proteo-
bacteria class. Both, Proteinortho and OrthoMCL
were applied to this set. All groups with proteins
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Figure 6 Orthologous groups. Number of orthologous groups
present in nearly all bacterial species. The dashed line represents
Proteinortho results based on the NCBI annotation. Using
tblastn the annotation was complemented with high scoring
genomic matches (solid curve). Note that this is a cumulative plot,
i.e., each group of co-orthologs present in x species is also included
in the count of groups contained in x’ <x species.
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covering at least 6 species were compared to the COG-
database, illustrated in Figure 4 and Figure 5.

Availability
The source code of Proteinortho can be obtained
under the GPLv2 (or later) from http://www.bioinf.
uni-leipzig.de/Software/proteinortho/

Additional material

Additional File 1: Algebraic connectivity and Fiedler vector. Iterative
approximation of the Algebraic Connectivity using the Fiedler Vector.

Additional File 2: Supplemental figures. Supplemental Figures
showing how multiple instances of Proteinortho can cooperate and
how the comparison to OrthoMCL looks using smaller cutoffs.

Additional File 3: Species list for domain wide commons. Table of
species and accession numbers used in this analysis.
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