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Abstract

We report a meta-Genome Wide Association Study involving 73 published studies in soybean [Glycine max L. (Merr.)] covering 17,556
unique accessions, with improved statistical power for robust detection of loci associated with a broad range of traits. De novo GWAS and
meta-analysis were conducted for composition traits including fatty acid and amino acid composition traits, disease resistance traits, and
agronomic traits including seed yield, plant height, stem lodging, seed weight, seed mottling, seed quality, flowering timing, and pod shat-
tering. To examine differences in detectability and test statistical power between single- and multi-environment GWAS, comparison of
meta-GWAS results to those from the constituent experiments were performed. Using meta-GWAS analysis and the analysis of individual
studies, we report 483 peaks at 393 unique loci. Using stringent criteria to detect significant marker-trait associations, 59 candidate genes
were identified, including 17 agronomic traits loci, 19 for seed-related traits, and 33 for disease reaction traits. This study identified
potentially valuable candidate genes that affect multiple traits. The success in narrowing down the genomic region for some loci through
overlapping mapping results of multiple studies is a promising avenue for community-based studies and plant breeding applications.
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Introduction
Genome-wide association studies (GWAS) analyze the associa-
tion between a trait of interest and thousands of genetic variants
throughout the genome. The general approach has benefited
from the development of greatly increased numbers of markers
due to the advent of next-generation sequencing approaches ,
and increased sample size with the formation of biobanks, such
as the 100,000 Genomes Project (2019). Plant scientists now rou-
tinely conduct GWAS in crop species, including soybean [Glycine
max (L.) Merr.]. Increased marker data availability and develop-
ment of new statistic methods provided great opportunities to
gain new knowledge from existing data and address the previous
lacuna of GWAS experiments (Bandillo et al. 2015, 2017; Zhang
et al. 2015, 2017; Zhou et al. 2015; Chang et al. 2016; Chang and
Hartman 2017; de Azevedo Peixoto et al. 2017; Zeng et al. 2017).

Researchers have recognized that while single environment
GWAS such as those conducted in the greenhouse are powerful
for genetic studies and candidate gene identification, their ex-
trapolation in field environment applications require further vali-
dation (Zhang et al. 2015; Coser et al. 2017; de Azevedo Peixoto
et al. 2017; Moellers et al. 2017). When comparing separate studies
of the same trait, significant differences in results are often
found. These differences may be caused by allele frequency vari-
ation between populations, inadequate control of population
structure, or environmental dependencies (Bubeck et al. 1993).
With the availability of standardized marker data across the

USDA soybean germplasm collection (Song et al. 2015), several

studies have mapped important major effect quantitative trait

loci (QTL) using historical records and GWAS analysis: for

example, insect resistance (Chang and Hartman 2017), disease

resistance (Chang et al. 2016), descriptive traits such as flower

and pubescence color (Bandillo et al. 2017), and seed oil and pro-

tein content (Bandillo et al. 2015). However, for many quantitative

traits such as seed composition or plant height, using raw meas-

urements from differing environments introduces bias, which

may erode the power of detection for significant QTL (Chen et al.

2010). While results from within the same environment(s) share

a common environmental component, attempting to combine

multiple panels grown in different environments leads to an

improper assignment of environmental effects to the differences

between genetics of the panels involved (Zhao et al. 2019). Meta-

analysis provides an attractive alternative to address the above-

mentioned challenges of individual GWAS, and this analysis can

be performed on results from independent studies using statisti-

cal approaches such as those provided by the analysis program

METAL (Willer et al. 2010).
Quantitative traits, in contrast with qualitative traits, are con-

trolled by many genes and environmental factors. To provide

greater understanding of the genetic and metabolic networks

that regulate these traits, interactions between previously discov-

ered genes and new candidate genes can be added to the existing

models. Directly measured traits often comprise only a portion of
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the information about a biological pathway, necessitating the
identification of pleiotropic effects (on correlated traits) for an in-
creased biological understanding of the phenotype. Genes may
exhibit pleiotropy either through control of a common pathway
such as the influence of Dt1 on both plant height and lodging
(Diers et al. 2018), or through multiple effects of a chemical as
seen in the effect of T locus that has a dual role in pigmentation
and chilling tolerance through isoflavones (Takahashi and
Asanuma 1996). Identifying genes that control multiple pheno-
types of importance can either suggest candidates for fixation, in
cases where both effects are positive, or may identify possible
penalties associated with incorporating particular alleles and im-
prove multi-trait selection results (Bolormaa et al. 2014).

Meta-analyses include separately analyzing each individual
experiment in order to determine experiment-specific P-value
and allele effect estimates, rather than performing a combined
analysis to leverage extensive data (Bandillo et al. 2015). Further
genetic insights can be gleaned through an ease in the identifica-
tion of pleiotropic effects due to the analysis of a wide range of
traits. Moreover, the ability to compare the results from a meta-
analysis with those from separate analyses of individual studies
allows for the identification of both environment-dependent
associations and for the enrichment and detection of rare alleles
from more unique but diverse populations. Previous results have
shown the effectiveness of combined panels to identify minor
genes that were missed in a single study (Chang et al. 2017). Due
to the need for adequate representation of minor alleles in
GWAS, rare alleles that are predominant in a small zone of adap-
tation may be absent or undetectable within individual studies.
The agronomic screenings for the USDA soybean germplasm col-
lection are arranged based on the influx of new germplasm into
the United States, and therefore serve as a semi-randomized sub-
set of global soybean variation and spatiotemporal patterns in
the origins of new accessions enabling potential detection of rare
variants, which may be enriched in one of these geographical
regions (Trotta et al. 2016).

While combined analyses for disease and insect resistance
(Chang et al. 2016; Chang and Hartman 2017) and seed composi-
tion (Bandillo et al. 2015) have previously been reported, we per-
form a large-scale meta-analysis utilizing individual studies in
soybean. Our study takes a two-pronged approach: first, each in-
dividual germplasm characterization study is subjected to tradi-
tional GWAS analysis, with the inclusion of quantitative traits of
agronomic importance, stress tolerance, and seed composition.
Following the initial GWAS analysis, studies of the same trait un-
dergo meta-analysis. The multitude of traits examined with our
study facilitates the detection of co-localized peaks indicative of
potential pleiotropic effects of genes across a diverse range of
phenotypes. Subsequent study of pleiotropic genes and reporting
on gene-rich clusters can be useful when attempting to introgress
favorable alleles into breeding lines (Cameron et al. 2017), as it
improves the understanding of potential complications of intro-
gression. Loci associated with multiple traits identified within
this study require additional functional validation, as GWAS are
not designed to definitively differentiate between pleiotropy and
lack of recombination. We included results from reports pub-
lished from 1964 to 2009 for a total of 73 individual studies. The
design of this study was intended to identify co-localization of
peaks for multiple traits, as well as to identify previously over-
looked genes through meta-analysis approaches. The meta-
GWAS approach differs from the original GWASs in that it can be
continually added to as new studies are performed, with each
new study increasing the power to detect marker-trait

associations by increasing the sample size. Two main approaches
have been used for performing meta-analysis on GWAS results: a
P-value and effect-sign based approach, and an effect size
approach (Zeggini and Ioannidis 2009). Using meta-GWAS analy-
sis and analysis of individual studies, we report 393 unique peaks
including 66 candidate genes across important traits and provide
confirmation of many previously reported genes. This study pro-
vides targets for functional characterization and introgression of
previously untapped diversity for many important traits.

Materials and methods
Genotypic data and quality control
Marker data from the testing of 20,087 G. max and G. soja acces-
sions from the USDA Soybean Germplasm Collection with the
SoySNP50K iSelect BeadChip (Song et al. 2013) were downloaded
from SoyBase (www.soybase.org/dlpages/#snp50k; last accessed
April 13, 2021). A data imputation pipeline based on Java imple-
mentation of Beagle 5.0 (Browning and Browning 2016) was uti-
lized to impute missing data for the 42,080 SNP markers that
were aligned to the Williams 82 reference genome v2 assembly.
Markers aligned to scaffolds but not assigned to a chromosome
were removed prior to processing. Ten burn-in iterations and five
phasing iterations were used to impute missing markers, which
accounted for 0.64% of all markers. For each test, markers
remaining after applying cutoffs of minor allele frequency �0.05
for studies involving 300 �n� 1000 accessions, or 0.01 for studies
involving n� 1001 accessions, were selected for further analysis.

Phenotypic data and genetic accessions
Quantitative phenotypic data from USDA reports were compiled
from the U.S. National Plant Germplasm System website (http://
npgsweb.ars-grin.gov/gringlobal/descriptors.aspx, Descriptors for
Soybean 2019). Subsets of accessions that were part of historical
USDA germplasm characterization trials with a size n� 300 were
selected for further analysis. Information on the design of the
original trials is available from the technical bulletins in which
they were originally published. These technical bulletins are
available online in part at https://pubs.nal.usda.gov/sites/pubs.
nal.usda.gov/files/tb.htm (Miller 2003). Alternatively, PDFs of the
technical bulletins are available on our GitHub (https://github.
com/SoylabSingh/META-GWAS). Additional traits, such as dis-
ease resistance and amino acid composition, were downloaded
from the NPGS website.

Genome-wide association analysis
Each experiment was analyzed separately with a mixed linear
model implemented using GAPIT in R (Lipka et al. 2012) to prevent
confounding of environmental effects with marker effects, which
would be expected for several traits (i.e., flowering time, oil, pro-
tein, and so on). Population structure was controlled using the
first three PCAs based on the marker data. This resulted in 585
combinations of experiment/trait analyses. Analysis was subse-
quently performed for combined panels for each trait. The
Bonferroni threshold (Neyman and Pearson 1928) was employed
to minimize the likelihood of false positives in declaring signifi-
cance. The significant SNPs were compiled for further analysis
(Supplementary Table S1).

Meta-analysis
For each trait with two or more studies, a meta-analysis was per-
formed using METAL (Willer et al. 2010). The P-value, direction of
effect, and sample size were utilized to carry out a sample size
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weighted analysis, with additional genomic control collection

performed based on the difference between the median test sta-

tistic and that expected by chance.

Candidate gene identification
Initial peak calling was performed trait-by-trait based on marker

position. Subsequently, peaks for related traits (such as flowering

date and maturity date) with substantial overlap were merged,

resulting in fewer unique peaks than originally called. Local LD

decay analysis was used to further clarify between separate or

overlapping peaks.
Markers that were significant for multiple traits and experi-

ments, or were identified during meta-analysis of the results,

were examined for nearby candidate genes. Candidate genes

were identified by examining annotated genes within linkage dis-

equilibrium (LD) of the leading SNP with r2 > 0.7 for each experi-

ment and peak (de Azevedo Peixoto et al. 2017). Candidate gene

identification was performed based on previously characterized

genes, gene family function, and distance from lead SNP <100

kbp. For candidate causal genetic variant analysis, we utilized

the SNP dataset from the genome resequencing study of 302 soy-

bean lines (Zhou et al. 2015) and searched the possible causal

mutants at the identified candidate genes. We first identified the

lead SNP from peaks of interest in the resequencing dataset, then

calculated the pairwise LD r2 values between the lead SNP and

the SNPs covering the locus of candidate gene. All other analyses

here within were aligned to the Wm82.a2 reference genome

(https://soybase.org/gb2/gbrowse/gmax2.0/; last accessed April

13, 2021). The R package “circlize” was employed to generate the

circular visualizations of significant SNPs for multiple traits

throughout the genome (Gu et al. 2014). Study names have been

shortened for convenience within the text; a reference file is

provided to find the initial source of phenotypic data used in this

work (Supplementary Table S2). Trait definitions, as well as the

number of peaks and candidate genes identified for each trait,

are provided in Supplementary Table S3. A process workflow

diagram can be found as Figure 1.

Data availability
The authors affirm that all data necessary for confirming the

conclusions of the article are present within the article, fig-
ures, and tables. Raw data, supplementary, and code files

are available at https://github.com/SoylabSingh/Soy-Meta-
GWAS.

Results and discussion
From the individual study GWAS and meta-GWAS 4919 signifi-
cant SNPs were detected, of which 787 were reported from the

meta-GWAS analysis. Complete listing of the significant SNP
identified using individual study GWAS and meta-GWAS are pro-

vided in Supplementary Table S1. Among these 787 SNPs identi-
fied using meta-GWAS, 110 were associated with agronomic

traits, 106 with seed composition traits, and 571 with disease re-
sistance traits. Overall, candidate genes were assigned for 65

unique loci; and these included genes with moderate to large
effects. We focus our results on loci that were associated with

multiple traits.

Agronomic traits
Among agronomic traits, we identified 1422 marker-trait associa-

tions with traditional GWAS studies, as well as 110 SNPs associ-
ated with agronomic traits when analyzed across studies by

meta-GWAS. In all, 115 peaks across 20 chromosomes were iden-
tified, with 17 candidate genes (Figure 2, Table 1, Supplementary

Tables S1 and S3).
In our approach, we used results from individual studies to de-

tect overlapping genomic regions for the purpose of locating can-

didate genes for traits, including for genes previously cloned. The
locus harboring Dt1 (Glyma.19g194300) (Liu et al. 2010), the major

gene conditioning stem termination in soybean, was significantly
associated with oleic acid and linoleic acid content, as well

as plant height, stem termination, and stem lodging
(Supplementary Table S1). By comparing the mapping results of

four studies, we were able to limit the candidate genomic region
to a 125 kb fragment harboring previously cloned Dt1 (from

Figure 1 Process workflow. In step 1, GWAS is performed on each trait/study combination. In step 2, the P-value, allele effect, and standard error from
each GWAS for a given trait are subjected to meta-analysis using METAL. In step 3, candidate gene identification is performed in parallel for peaks
detected in individual studies and the meta-analysis.
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ss715635422 to ss715635460) (Supplementary Figure S1). These
results highlight the advantages of meta-GWAS for finer mapping
the candidate gene region. A nonsynonymous SNP
(SNP_19_44980087), in high LD (r2 ¼ 0.5) with the leading SNP
ss715635424 (also known as SNP_19_45000827), was found at the
fourth exon of Dt1 that changes amino acid R (Arg) to W (Trp)
(Supplementary Figure S2). This SNP is identical to the R166W
mutation previously identified (Liu et al. 2010).

On chromosome 19, we identified a peak for stem lodging
which was on the opposite end of the chromosome as Dt1. Stem
lodging is associated with plant height and this has been reported
in multiple crops (Flint-Garcia et al. 2003; Diers et al. 2018; Singh
et al. 2019). As lodging causes significant yield and quality losses,
the development of the shorter statured wheat and rice were pro-
moted which could better handle high input agriculture.
However, this solution is not universally applicable. In soybean,
pods are arranged at nodes on the stem, so a reduction in height
through decreased node number may reduce yield potential.
Leveraging four studies, we report a peak for tolerance to stem
lodging with the candidate gene Glyma.19g016400, an ABC

transporter on chromosome 19. This locus was found to affect
lodging tolerance but was not found to be associated with plant
height, thereby making it a useful target to develop lodging resis-
tant soybean cultivars without decreasing stem length and yield
potential. While this is the first genome-wide association study
identifying this gene, additional evidence towards its validity
comes from several recent patents (US Patents #8697941,
8748695, and 9675071) that relate to molecular markers in the re-
gion of interest and include Glyma.19g016400 as one of the candi-
date genes for PPO inhibitor tolerance in soybean. Significant
effects of this region for seed yield, lodging, and plant height were
reported from the SoyNAM project (Diers et al. 2018). The results
from Hulting et al. (2001) on PPO inhibitor tolerance and our find-
ings on stem lodging susceptibility suggest a tradeoff between
PPO inhibitor tolerance and lodging susceptibility. The soybean
accessions highly tolerant to sulfentrazone contain alleles associ-
ated with increased lodging in our study, necessitating further
studies to validate these observations.

On chromosome 6, a significant SNP peak was identified that
co-located with the T gene, a flavonoid 3’ hydroxylase (Toda et al.

Figure 2 Significant SNPs from GWAS from individual studies and meta-GWAS for agronomic and developmental traits. Symbol position along the
x-axis shows the position (in Mb) along the chromosome, while y-axis symbol position shows the LOD score of the lead SNP for each QTL. The x-axis
labels indicate position (in Mb) of tertile points, while y-axis labels show minimum, maximum, and middle of LOD score range for the given trait class.
Shape and color correspond to unique traits.
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2002). This region was significant for arginine, cysteine, isoleu-
cine, and leucine levels, as well as for seed mottling (Figure 3).
The cloned E2 locus (Watanabe et al. 2011) was significantly asso-
ciated with flowering and maturity date, maturity group, days
from flowering to maturity, plant height, and seed yield
(Figure 2). The associations between E2 and these traits have
been previously reported (Fang et al. 2017).

Seed composition traits
Among seed composition traits, we identified 1364 marker-trait
associations with traditional GWAS studies, as well as 106 SNPs
associated with compositional traits when analyzed across stud-
ies by meta-GWAS. SNPs associated with composition were found
on chromosomes 1–9, 11, 13–15, 17, and 19–20, resulting in 88
peaks with 19 candidate genes (Figure 3, Table 2, Supplementary
Tables S1 and S3).

A cluster of candidate genes for seed composition, including
isoleucine, methionine, leucine, tryptophan, threonine, lysine,
and palmitic acid, were located in a region of 30 kb on chromo-
some 1 between 53.13 and 53.16 Mb, 4 a cysteine desulfurase

(Glyma.01g197100) and a malate and lactate dehydrogenase gene
(Glyma.01g197700) (Supplementary Figure S1). Further targeted
analysis will be necessary to determine which gene is influencing
each trait, as a single enzyme is unlikely responsible for multiple
steps in the metabolic pathway. We found significant SNPs in
high LD (r2 > 0.5) with the detected leading SNP at the promoter
of Glyma.01g197700, but not in the coding region of the gene
(Supplementary Figure S2).

A region including the I locus on chromosome 8 (Clough et al.
2004) was associated with seed mottling, as well as oil, cysteine,
isoleucine, leucine, linoleic acid, lysine, methionine, palmitic
acid, stearic acid, threonine, and valine levels in the seed
(Figure 3). The most likely candidate gene for the observed differ-
ences in amino acids levels, AK-HDSH (aspartokinase homoserine
dehydrogenase, Glyma.08g107800) is a bifunctional enzyme cata-
lyzing the key steps of asparagine phosphatization and the aspar-
tate-semialdehyde to homoserine conversion by which aspartate
family amino acids (lysine, threonine, methionine, and isoleu-
cine) are synthesized (Zhu-Shimoni and Galili 1998). However,
amino acid data were generated using Near Infrared Reflectance,

Table 1 List of candidate genes identified for agronomic traits using GWAS from individual studies and meta-GWAS

Chromosome Likely gene Meta-GWAS Individual
studies GWAS

Trait(s) Studies source

5 Glyma.05G200100 * Flower date, Maturity date,
Maturity group

4il87, ms1999.01, ms923

6 E1 * * Flower date, Maturity date,
Maturity group, Stem ter-
mination

1il64, 1il66, 2il81.1, 2il81.2,
4il87, 5il90, il0102, il989,
meta, mn945

Glyma.06G068900 * * Seed mottling 3mn83.2, meta
Glyma.06g134400 * Pod shattering (early), Pod

shattering (late)
4il87

T * * Seed mottling 3il84, meta, ms1999.01,
ms923, ms967

7 Glyma.07g049800 * * Pod shattering (early), Pod
shattering (late)

3il84, meta, ms1999.01,
ms923

8 I * Seed mottling 1il66, 2ky81, 4il87, il0102,
ms923

9 fr1 * Root fluorescence fluorjt97
Glyma.09g090600 * * Seed mottling 1il66, 4il87, meta
Glyma.09g266200 * Flower date, Maturity group ms923, ms1999.01

10 E2 * * Branching, Flower date,
Height, Maturity date,
Maturity group, Yield

1il64, 1il66, 2il81.1, 3il83.1,
3il84, il0102, il989, meta,
ms1999.01, ms967

11 K1/AGO * * Seed mottling 3mn83.2, il0102, meta,
ms923, ms967

13 Rsv1 * * Seed mottling 1il66, 2il81.1, 2il81.2, 5il90,
meta, ms1999.01,
ms2000.02, ms923

14 fan1 * Seed quality 2ky81
15 Glyma.15g139800 * * Pod shattering (early), Pod

shattering (late)
1il66, 2il81.2, 2ky81, meta

16 E9 * * Flower date, Maturity group 2il81.1, 3il83.1, meta,
ms1999.01

Pdh1 * * Pod shattering (early), Pod
shattering (late)

1il64, 2il81.1, 4il87, il0102,
meta, ms1999.01,
ms2000.02, ms923,
ms967

18 Dt2 * * Stem termination meta, mn945, ms923
19 ABC, Glyma.19g016400 * * Lodging 1il66, 2ky81, ms923, 3il84,

meta
Dt1, Glyma.19g194300 * * Height, Lodging, Stem ter-

mination
1il64, 1il66, 2il81.1, 2il81.2,

2ky81, 3il83.1, 3il84,
3mn83.2, 4il87, 5il90,
il0102, meta, mn945,
ms1999.01, ms2000.02,
ms923, ms967

E3 * Maturity group 2il81.2

* Bonferroni corrected P-value threshold [p-value 0.05 / number of markers].
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which may have low precision in estimating amino acid composi-

tion when there is variability in seed coat color (Baianu et al.

2011). Therefore, further validation is needed to establish the
association between the AK-HDSH or I loci and the amino acid

profile.
SACPD-C (Glyma.14g121400) was the primary candidate to ex-

plain differences in stearic acid content within seed oil and has
been previously functionally validated (Gillman et al. 2014). Using

the Wm82.a2 reference genome build, this appeared as three sep-

arate peaks; however, a single peak was observed when using the
Wm82.a1 version. We postulate a possible assembly error in the

region surrounding the SACPD-C locus in the soybean reference

genome Wm82.a2, due to conflicting results (Supplementary
Table S4). We attempted to identify false peaks generated due to

genome mis-assembly by fitting the lead SNP as a covariate in

the GWAS model, and then observed lower P-values for the
remaining SNPs and detected a weaker signal from surrounding

SNPs indicative of a single gene. Presence of stronger signals in
surrounding SNPs would have indicated that two separate genes

are in play. In addition, the r2 between SNPs in all three regions

was greater than 0.7, suggesting physical linkage. The Wm82.a1

results (SNP effects, physical location, LD) provide the most plau-
sible explanation for the presence of a single gene in this genomic

region and suggest that Wm82.a2 has unresolved errors in scaf-

fold positioning.
A peak on chromosome 5 associated with palmitic acid con-

tent was detected in 3 different studies. Using data from the

“2mn81” study, the locus mapped to a region of over 600 kb.

However, two other studies (2ky81 and ms2000.02) mapped this
locus within a smaller region of 130 kb (ss715592495-ss715592503)

and 182 kb (ss715592491-ss715592500), respectively, with an over-

lap of about 88 kb (ss715592495-ss715592500) (Supplementary
Figure S2). The candidate gene FATB1a (Glyma.05g012300) (Wilson

et al. 2001) was identified in the overlap. However, no SNP in LD

(r2 � 0.5) with the leading SNP of the locus was identified at the
coding region or promoter of FATB1a based on analysis of rese-

quencing data (Zhou et al. 2015) except the synonymous
SNP_5_7995427 (Supplementary Figure S1). Causal variants have

Figure 3 Significant SNPs from GWAS from individual studies and meta-GWAS for seed-related traits. Symbol position along the x-axis shows the
position (in Mb) along the chromosome, while y-axis symbol position shows the LOD score of the lead SNP for each QTL. The x-axis labels indicate
position (in Mb) of tertile points, while y-axis labels show minimum, maximum, and middle of LOD score range for the given trait class. Shape and color
correspond to unique traits.
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been identified in mutagenized breeding material (Bachleda et al.
2016; Goettel et al. 2016; Thapa et al. 2016), but naturally occurring
variations are not well characterized.

Disease resistance traits
Among disease traits, we identified 1346 marker-trait associa-
tions with traditional GWAS studies, as well as 571 SNPs
associated with disease traits when analyzed across studies by
meta-GWAS. 213 peaks mapped to all 20 chromosomes, with 33
candidate genes or QTL identified (Figure 4, Table 3,
Supplementary Tables S1 and S3). Meta-analysis in several
instances narrowed the genomic region for peaks. For example,
the association between the Rps3 region and resistance to race 1
of Phytophthora root rot was mapped to a 144 kb region in the
meta-analysis, compared to a 1 Mb region in individual studies
(Supplementary Table S1). This reduces the search space for
causal genes and allows for greater accuracy when identifying
candidate genes.

We found a peak that was associated with resistance to
races 1, 2, 3, 4, 5, 7, 10, and 17 of Phytophthora sojae that mapped
to the position of the Rps1 locus (Gao and Bhattacharyya 2008).
A previously unreported peak for soybean cyst nematode resis-
tance identified on chromosome 11 was mapped to
Glyma.11g234500, an alpha-soluble N-ethylmaleimide-sensitive

factor (NSF) attachment protein (a-SNAP). Notably, the candi-
date genes GmSNAP11 (Glyma.11g234500) and GmSNAP14
(Glyma.14g054900) (Lakhssassi et al. 2017), identified at 7 and
84 kb apart from lead SNPs ss715610420 and ss715618859, re-
spectively, are paralogs and encode a Soluble NSF Attachment
Protein (SNAP). Another soybean SNAP gene on chromosome
18, GmSNAP18, has been reported to play a role in resistance to
SCN (Cook et al. 2012). On chromosome 1, the locus for seed
composition co-localized with a bacterial pustule resistance
peak. This peak does not correspond to the previously identi-
fied Rxp locus, instead, a candidate gene Glyma.01g197800 is
identified as the potential underlying gene. A peak on chromo-
some 3 at 34.24–35.18 Mb was found to be significantly associ-
ated with iron deficiency chlorosis tolerance and Pythium
irregulare resistance. This region has previously been investi-
gated as the source of IDC tolerance in “Isoclark” (Stec et al.
2013; Assefa et al. 2020). The GWAS analysis identified previ-
ously unreported genomic regions that were associated with
resistance to bean pod mottle virus, brown stem rot, frogeye
leaf spot, Phytophthora root rot, and soybean cyst nematode
(Figure 4). A full list of identified SNPs and candidate genes for
these traits, as well as for all other traits examined in this
study using both combined analyses and analysis of individual
experiments are provided in Supplementary Table S1.

Table 2 List of candidate genes identified for seed composition traits using GWAS from individual studies and meta-GWAS

Chromosome Likely gene Meta-GWAS Individual
studies GWAS

Trait(s) Studies source

1 BCAT/MDH * * Isoleucine, Leucine, Lysine,
Methionine, Palmitic
acid, Threonine,
Tryptophan

aa op sugar fa 2009, il0102,
meta, ms967

3 Glyma.03g173400 * Methionine aa op sugar fa 2009
5 fap3 * * Iodine number, Palmitic

acid, Stearic acid
aa op sugar fa 2009, 1il64,

2il81.1, 2il81.2, 2ky81,
2mn81, 3il83.1, 3il84,
3il87, il0102, meta,
ms1999.01, ms2000.02,
ms923, ms967

MTFL * Linoleic acid, Seed oil, Oleic
acid, Tryptophan

aa op sugar fa 2009, 2il81.1,
il0102, ms1999.01, ms967

6 Glyma.06G214800 * * Stearic acid meta, ms1999.01,
ms2000.02

Glyma.06g275100 * Cysteine aa op sugar fa 2009
T * Arginine, Cysteine,

Isoleucine, Leucine
aa op sugar fa 2009

8 I/AK-HDSH * * Cysteine, Isoleucine,
Leucine, Linoleic acid,
Lysine, Methionine, Seed
oil, Palmitic acid, Stearic
acid, Threonine, Valine

aa op sugar fa 2009, meta,
ms967

9 Glyma.09g090600 * * Palmitic acid il0102, meta
R * Tryptophan aa op sugar fa 2009

13 Glyma.13g149700 * * Oleic acid, Palmitic acid,
Seed protein

meta, ms2000.02

14 fan1 * * Linolenic acid 2mn81, 3il83.1, il0102,
meta, mn945, ms967

15 Glyma.15g049200
“GmSWEET15”

* * Linolenic acid, Seed oil,
Seed protein, Threonine

aa op sugar fa 2009, 2ky81,
3il83.1, 3il84, il989, meta,
ms1999.01, ms923

19 Dt1, Glyma.19g194300 * Linoleic acid, Oleic acid,
Valine

aa op sugar fa 2009,
ms1999.01, ms2000.02

20 CHR20OP * * Seed oil, Seed protein aa op sugar fa 2009, 2il81.1,
meta, ms1999.01, ms967

14 (3) SACPD-C * * Stearic acid 1il66, 2il81.1, 2mn81,
3il83.1, 4il87, 5il90, il0102,
meta, mn945, ms923

* Bonferroni corrected P-value threshold [p-value 0.05 / number of markers].
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Table 3 List of candidate genes identified for disease resistance/stress tolerance traits using GWAS from individual studies and
meta-GWAS

Chromosome Likely gene Meta-GWAS Individual
studies GWAS

Trait(s) Studies source

1 RLK3 * Bacterial pustule bp488001
3 Glyma.03g127100 * Pythium root rot PYU.11002

Glyma.03g130600 * * Iron deficiency chlorosis lssleepyeye04, meta
Glyma.03g262500 * SCN races: 14 Meta

Rps1 * * Phytophthora root rot
races: 1, 2, 3, 4, 5, 7, 10, 17

meta, PRR1, PRR1.10001,
PRR1.10002, PRR1.10004,
PRR1.11002, PRR1.11003,
PRR1.461592,
PRR1.488001,
PRR1.492577,
PRR1.492990, PRR10,
PRR17, PRR17.491404,
PRR17.492448,
PRR17.492990, PRR2,
PRR3, PRR3.492577,
PRR3.492990, PRR4,
PRR4.492990, PRR5,
PRR5.492990, PRR7,
PRR7.491404,
PRR7.492448,
PRR7.492990, prrdl96_1,
prrdl96_3, prrfs04_17,
prrfs04_7, prrrs01_1

Rps7 * * Phytophthora root rot
races: 1, 2, 3, 4, 5, 7, 10, 17

meta, PRR1, PRR1.10002,
PRR1.10003, PRR1.10004,
PRR1.11003, PRR1.488001,
PRR1.492577,
PRR1.492990, PRR10,
PRR17, PRR17.491404,
PRR17.492448,
PRR17.492990, PRR2,
PRR3, PRR3.492990, PRR5,
PRR5.492990, PRR7,
PRR7.491404,
PRR7.492448,
PRR7.492990, prrfs04_17,
prrfs04_7

4 Glyma.04g190400 * * SCN races: 3, 4, 14 meta, SCN14, soysc-
nyoung94_3

Glyma.04g227900 * Brown stem rot bsrcodeall
5 Glyma.05g137500/

Glyma.05g137800
* Brown stem rot bsr97, bsrcode492477

6 Glyma.06g199600/
Glyma.06g197800

* * Frogeye leaf spot, race 2 2ky91, Fe2, meta

7 Glyma.07g192200 * * SCN races: 1, 3, 5, 14 meta, SCN14,
SCN14.491576,
SCN14code.491576,
soyscnanand_3, soyscna-
nand_5, soysc-
nyoung94_3, soysc-
nyoung94_5

8 Glyma.08g231100 * * SCN races: 3, 5, 14 meta, SCN14, soysc-
nyoung94_5, soysc-
nyoung94_14

Rhg4 * * SCN races: 1, 3, 5, 14 meta, SCN1, SCN14, soysc-
nyoung94_3

10 Glyma.10g273300/
276600

* * SCN races: 14 meta, SCN14,
SCN14.491576,
SCN14code.491576,
soyscnyoung94_14

11 Glyma.11g233500 * Phytophthora root rot
races: 17

PRR17.492990

Glyma.11g234500
(SNAP11)

* * SCN races 1, 3, 4, 14 meta, SCN14, sojascnar-
elli00, soyscnanand_5,
soyscnyoung88_5, soysc-
nyoung94_5, soysc-
nyoung94_14

12 Glyma12g22660 * SCN races: 1 SCN1
13 Glyma.13g222300 * * SCN races: 1, 3, 14 meta, SCN14, sojascnar-

elli00, soyscnyoung94_14

(continued)
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The majority of studies included in this study for disease resis-

tance were germplasm screenings, where many entries were

tested to find new sources of resistance. Such germplasm screen-

ing studies were not originally intended for GWAS; for example,

multiple rating systems, ordinal rating scales, and noninteger
ratings used in the studies complicates result comparisons and

are not easily amenable to linear statistical models.

Standardization of screening protocols across research groups

and inclusion of key data for comparison of studies such as those

suggested by the MIAPPE checklist (Ćwiek-Kupczy�nska et al. 2016)
will be key for future research into plant disease resistance. In

addition, an increased utilization of image-based phenotyping

will play a key role, allowing for digital disease severity ratings on

a continuous scale (Naik et al. 2017; Zhang et al. 2017), minimal

inter- and intra-rater variability in measurements through hyper-

spectral camera and ML-based analysis (Nagasubramanian et al.
2018, 2019). It will also enable the comparison of results across

studies by facilitating reanalysis of previous experiments with

new rating systems or approaches, as long as needed input varia-

bles are available.

Implications of pleiotropy vs linked genes
While repeated crossing or careful selection of the donor parent

can break linkage drag, negative pleiotropic effects associated

with a gene of interest are more problematic. Candidate gene

analysis was aided by tissue-specific gene expression data avail-

able at SoyBase. The use of a blend of individual and meta-analy-

ses provided improved resolution through examining overlapping
peaks and utilizing the increased power in larger panels in the

meta-analysis. However, when investigating the peak on chromo-

some 1 for fatty acid and amino acid composition, a convincing

distinction between pleiotropy and linkage could not be made.

This was due to the presence of multiple strong candidate genes.

While meta-GWAS approaches are very beneficial for improving

map resolution, they are still limited in their inference in regions

with strong LD. Meta-GWAS results outputs still require follow-

up molecular and functional validation to confirm the candidate

genes as well as to confirm pleiotropy vs linkage.
Pleiotropic effects of major genes significantly alter multiple

traits simultaneously, creating a situation of either rapid im-

provement across traits, or of tradeoffs, such as is found in most

soybean protein/oil content QTL. Genetic improvement utilizing

pleiotropic effects may be limited in applicability to specific geo-

graphic regions if they affect key adaptation genes such as the

maturity loci or stem termination. Therefore, it will be necessary

for breeders to independently determine whether a gene with

pleiotropic effects is a good fit for their variety development

goals. In cases where pleiotropy is associated with a tradeoff be-

tween multiple traits, such as between seed protein and oil con-

tent, breeders will need to weigh the importance of each trait or

identify combinations of genes affecting the trait that can provide

an adequate phenotype for each trait considered.

Motivation for the use of meta-analysis
For many important row crop species, such as soybean, corn,

wheat, and sorghum, it is impractical or impossible to evaluate

the full breadth of the available germplasm at a single location.

This is due to space limitations, availability of labor or funding

Table 3. (continued)

Chromosome Likely gene Meta-GWAS Individual
studies GWAS

Trait(s) Studies source

Rag2/Rag5 * Soybean aphid aphidcm02
Rps3 * * Phytophthora root rot

races: 1, 4, 12, 20, 25
PRR1, PRR1.10004,

PRR1.11003, PRR1.492990,
PRR12, PRR20, PRR25,
PRR25.491404,
PRR25.492990, PRR4,
PRR4.492990, meta

Rsv1 * Peanut mottle virus pmv
14 Glyma.14g098900 * Brown stem rot bsr97, bsrcode492477

NSC14 * Northern stem canker NSC, NSC.491493
15 Glyma.15g052000 * Phytophthora root rot

races: 2
PRR2

16 Glyma.16g096900 * Phytophthora root rot
races: 2

PRR2

Rag3 * Soybean aphid aphidcm02
Rbs1/ Rbs2/ Rbs3 * Brown stem rot bsr97, bsr491584, bsrall,

bsrcodeall
Rcs3 * * Frogeye leaf spot, race 2 2il81.1, Fe2, meta
Rps2 * * Phytophthora root rot

races: 2, 25
PRR2, meta

17 Glyma.17g090200 * Bean pod mottle virus bpmvall
18 Glyma.18g138700 * Phytophthora root rot

races: 5
PRR5, PRR5.492990

Rhg1 * * SCN races: 3, 4, 5, 14 meta, SCN14, soyscna-
nand_3, soysc-
nyoung88_5, soysc-
nyoung94_3, soysc-
nyoung94_14

Rps4 * * Phytophthora root rot
races: 1, 3, 4, 25

meta, PRR1, PRR1.10001,
PRR1.10002, PRR1.10004,
PRR1.488001, PRR25,
PRR25.491404, PRR4

* Bonferroni corrected P-value threshold [p-value 0.05 / number of markers].
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for phenotyping, or irreconcilable differences between genotypes
preventing them from growing in the same place, such as differ-
ences in photoperiod sensitivity or vernalization requirements.
To capture the breadth of the genetic and phenotypic diversity, it
is necessary to test each variety with a similarly adapted cohort.
The separate analysis of each environment can increase the odds
of detecting alleles which are near fixation in the population
or are environmentally dependent (Singh et al. 2014; Sherman
et al. 2019).

For simple, qualitative traits such as pubescence color in soy-
bean, there is often little benefit in meta-GWAS due to the consis-
tency with which the gene can be mapped and the lack of
environmental dependence on trait expression. When studying
environmentally dependent traits, such as agronomic, disease re-
sistance, and seed composition traits including seed oil or protein
content, meta-GWAS provides advantages particularly in in-
creasing the likelihood of finding small-effect genes. Studies
sharing an environmental factor, such as high nighttime temper-
ature, can be preferentially grouped for meta-analysis to identify
these small effect genes within the context of the shared

environmental cues. When comparing individual experiments
results (Supplementary Figure S3A) with the combined meta-
analysis (Supplementary Figure S3B), additional significant peaks
were observed in meta-analysis. For example, the SNP marker
ss715614263 was previously associated with seed protein using
mega-analysis (Bandillo et al. 2015). The same locus was found to
be associated with protein, palmitic, and oleic acid content in an
individual panel in the current study (ms2000.02), but was associ-
ated with protein and linoleic acid content in the meta-analysis
(Supplementary Table S1). Identification of an association with
multiple related traits is a strong signal that the association may
merit additional study to identify a strong candidate gene and
further explore the possible pleiotropic effects this locus is
exhibiting, especially when stringent cut-offs are used to declare
significance.

While meta-analysis identified fewer traits in the specific in-
stance of ss715614263, the association with an additional trait
(compared to individual analysis) still encourages its use, as each
newly associated trait may provide guidance in identifying puta-
tive causal genes. A full listing of candidate genes detected in

Figure 4 Significant SNPs from GWAS from individual studies and meta-GWAS for disease tolerance/resistance traits. Symbol position along the x-axis
shows the position (in Mb) along the chromosome, while y-axis symbol position shows the LOD score of the lead SNP for each QTL. The x-axis labels
indicate position (in Mb) of tertile points, while y-axis labels show minimum, maximum, and middle of LOD score range for the given trait class. Shape
and color correspond to unique traits.
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each study is provided as Supplementary Table S5, which also
provides a reference to candidate genes detected either only in in-
dividual studies or only via meta-analysis. To maximize the ef-
fectiveness of soybean breeding programs, we sought to identify
as many genes as possible for numerous traits, ensuring that
multiple paths are available for further cultivar improvement. To
this extent, we perform the first published GWAS analysis for
many, but not all, of these studies. By maximizing the identified
links between markers and phenotypes of interest, meta-GWAS
aids efforts to bridge the gap between genotype and phenotype,
allowing for improvements not only in trait prediction and selec-
tions, but also in modeling the interactions between multiple
genes in overall trait performance.

Future mapping, validation, and integration with
phenomics studies
Traditional fine mapping through creating lines sharing homoge-
nous genetic background, such as near isogenic lines, is a power-
ful tool to uncover the causal genetic variants. However, it is time
consuming to develop new near-isogenic lines in multiple back-
grounds to reduce the potential influence of background-specific
effects. In this study, large variation of LD architecture was ob-
served across populations. This enables substantially shortening
of the candidate chromosomal regions of specific peaks by com-
paring mapping results from separate studies using different
populations. Considering almost all accessions in the USDA
Soybean Germplasm Collection were genotyped by SoySNP50K
BeadChip and are publicly accessible, parents with divergent
haplotypes at specific genomic regions of interest can be selected
for fine mapping. The consistent identification of major genes, in-
cluding those affecting multiple traits of interest, suggests that
further improvements in mapping ability would likely require a
model with the major genes treated as covariates. While it is cur-
rently possible to account for the effects of major genes by using
SNPs linked to the gene of interest as covariates, this approach is
only an approximation due to incomplete linkage between com-
mon SNPs and the underlying gene. Instead, allele-specific
markers should be developed and deployed across both wild-type
germplasm and breeding material.

In the future, similar studies will benefit by incorporating
weather, soil, or management parameters to explain differences
in marker effects between individual studies and in Meta-GWAS
(Cook et al. 2017). In this scenario, access to standardized,
quality-controlled records will be needed to tease apart the GxE
component and identify the architecture of environmentally me-
diated expression and decipher associations between genetics
and environmental signals for the traits of interest. The estab-
lishment of standardized tests enabled with advanced sensors
and high-throughput phenotyping should improve the opportu-
nity to identify additional genes influencing traits of interest
through the analysis of previously ignored component traits,
such as leaf expansion rate or chlorophyll density in the case
of yield, (Dhondt et al. 2013) which may lead to an increased
understanding of the genetic architecture of these traits and
responses to environmental and management conditions
(Parmley et al. 2019).

Conclusions
Combined analysis of all investigated traits found 65 loci that
corresponded to previously reported QTL, characterized genes,
and new reported loci backed up with strong candidate genes
conditioning the observed phenotypes. Several of the previously

identified loci (for example, Dt1, E2) were associated with multi-

ple traits, identifying putative pleiotropic effects of the underly-

ing genes. Differences between results in individual trials and the

combined analyses confirm the importance of multi-

environment testing for the identification of key traits, but also

provide a strong motivation to create a community database that

can be queried for scientific advancement. Continued publication

of raw phenotypic values from screenings will increase the power

for identification of important genes for both mean and plastic

responses to reduce the financial and time burden on any indi-

vidual program while benefiting future breeders and researchers.

For example, the sharing of phenotypic information across

research programs both nationally and globally, as currently on-

going with multi-states and -institutions uniform soybean tests

and other cooperatively run tests in other crops.
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