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Abstract

Suppressing the elevation in core body temperature is an important factor in preventing

heatstroke. However, there is still no non-invasive method to sense core body temperature.

This study proposed an algorithm that estimates core body temperature based on electro-

cardiogram signals. A total of 12 healthy men (mean age ± SD = 39.6 ± 13.4) performed an

ergometric exercise load test under two conditions of exercise load in an environmental

chamber adjusted to a temperature of 35˚C and humidity of 50%. Vital sensing data such as

electrocardiograms, core body temperatures, and body surface temperatures were continu-

ously measured, and physical data such as body weight were obtained from participants

pre- and post-experiment. According to basic physiological knowledge, heart rate and body

temperature are closely related. We analyzed the relationship between core body tempera-

ture and several indexes obtained from electrocardiograms and found that the amount of

change in core body temperature had a strong relationship with analyzed data from electro-

cardiograms. Based on these findings, we developed the amount of change in core body

temperature estimation model using multiple regression analysis including the Poincaré plot

index of the ECG R-R interval. The estimation model showed an average estimation error of

-0.007˚C (average error rate = -0.02%) and an error range of 0.457–0.445˚C. It is suggested

that continuous core body temperature change can be estimated using electrocardiogram

signals regardless of individual characteristics such as age and physique. Based on this

applicable estimation model, we plan to enhance estimation accuracy and further verify effi-

cacy by considering clothing and environmental conditions.

Introduction

Heatstroke has become more prevalent in recent years [1, 2], thus constituting a social prob-

lem [3]. Heatstroke is defined as a failure of the thermoregulatory system of the central
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nervous system and results in multi-organ damage and failure due to elevated temperatures

[4]. Pathophysiological processes of heatstroke at the cellular level include an inflammatory

reaction, and multi-organ failure due to the combination of high body temperature and circu-

latory disorder may eventually lead to lethal disseminated intravascular coagulation, defined

“clinically as a core body temperature that rises above 40˚C and that is accompanied by hot,

dry skin and central nervous system abnormalities such as delirium, convulsions, or coma”

[5]. Countermeasures include changes to outdoor working conditions, altered working hours

in business and educational settings, environmental improvements designed to facilitate break

times, and educational provisions concerning the nature of the issue itself. As severe cases of

heatstroke can be life-threatening, it is important to ensure adequate occupational health man-

agement (e.g., water supplementation and rest) in addition to providing health education

aimed at raising awareness about appropriate preventive measures. While these elements have

proactively been implemented in a variety of contexts, deaths due to heatstroke continue to

occur. Adding to the concern, the Intergovernmental Panel on Climate Change [6] reported

substantial increases in global average surface temperatures over the past 50 years due to global

warming, which has largely been triggered by human activity. As this is a worldwide issue,

international efforts are targeted at reducing greenhouse gas emissions, starting with carbon

dioxide. However, these improvements will take time, while temperatures are continually

expected to rise over the foreseeable future. This makes it urgent to develop and implement

technologies that can continuously manage changes in physical conditions when working in

hot environments.

When evaluating heat stress, it is important to consider factors related to heat dissipation

from the human body—such as, radiative heat (radiation temperature) and wind speed—in

addition to measurable environmental factors (e.g., temperature and humidity). These risk fac-

tors must be comprehensively evaluated even in relatively cool environments, as the heat

transfer rate varies due to exercise intensity and several other points of concern, including the

heat retention/thermal insulation properties of clothing, age, and physical condition. The

guidelines of the American Conference of Governmental Industrial Hygienists [4] recommend

the termination of heat exposure in cases where the heart rate does not return to 120 or less

within 1 min after reaching peak work intensity. The ISO 9886 [7] issued four heat risk evalua-

tion indexes for determining work discontinuation, including core body temperature (rectal,

esophageal, intraperitoneal, tympanic membrane, ear canal, and urine temperature), skin tem-

perature (local site, multiple site average), heart rate, and body weight reduction; a rectal tem-

perature of 38.0–38.5˚C and skin temperature of 43˚C (according to heat acclimation) are

considered work termination threshold values. In addition, the ISO 9886 also states that the

maximum heart rate should not exceed a threshold of 185–0.65×(age) or continuous heart rate

of 180–(age).

Body temperature is roughly categorized into brain/internal organ temperature (core body

temperature) and skin surface temperature. As elevated core body temperature increases the

risk of heatstroke onset, it is critical to measure body temperature at a bodily location as deep

inside the body as possible (e.g., the esophagus or rectum) [5, 8]. Some studies have proposed

simulating changes in body temperature by modeling its heat production and dissipation

mechanisms [9, 10]. These models divide the body into several nodes and then formulate bio-

markers that are correlated with body-temperature regulating mechanisms (e.g., perspiration,

blood flow volume), heat transfer and production at various nodes, and heat dissipation to the

outside. In this context, estimation precision is proportional to the number of nodes and calcu-

lation volume, which results in a mutually exclusive relationship. To accurately estimate body

temperature during exercise, it is also important to use estimation methods that are based on

temporally variable data. Casa et al. [11] measured body temperature at multiple sites and
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reported that the oral, axillary, tympanic (aural), and temporal measures were invalid during

outdoor exercise in hot environments. In addition, they suggested that rather than using meth-

ods for assessing body temperature that may be affected by the environment, skin temperature,

sweat, or ingested fluids, other techniques (e.g., assessment of central nervous system function)

should be used to measure the temperature of persons who have exercised in a hot

environment.

Non-invasive measurement of core body temperature has been a matter of interest over the

years, and it is expected to be applied in a wide range of research areas, including sport [12]

and medicine [13]. Some simulation models have been proposed to predict heat storage and

transfer between physiological indicators and the environment [14, 15]. These models can pro-

vide highly accurate results by using multiple indicators, such as environment and clothing.

Recently, some studies have attempted to use wearable devices that are designed to sense bio-

data (e.g., heart rate and body movement) when evaluating physical conditions in hot environ-

ments, thus providing a way to predict the risk of heatstroke [16, 17]. The results of these

studies have also suggested the feasibility of real-time heat stress evaluations that combine the

Internet of Things technology and wearables. Considering practicality, the assessment tool

should be non-invasive; furthermore, it should not restrict movement and not involve the

placement of a large number of sensors on the body.

To meet these requirements, electrocardiogram (ECG) signals are seen as a useful index for

evaluating heatstroke risk. Non-linear analyses and frequency analyses of the R-R interval

(RRI) obtained from ECG signals are now widely used and well-known as typical indexes of

autonomic nervous system activity [18–20], and can be readily calculated mathematically.

Thus, we believe that it would be useful to assess the risk of heatstroke through the decomposi-

tion of ECG signals into biomarkers showing various relevant characteristics. The purpose of

this study was to propose a useful algorithm designed to estimate core body temperature using

ECG signals as a diagnostic criterion for heatstroke. The proposed model estimated continu-

ous core body temperature regardless of individual characteristics such as age and physique,

and the validity of the model was verified.

Materials and methods

Experimental procedure

The experiment involved an exercise load test, which was performed in an environmental

chamber adjusted to a temperature of 35˚C and humidity of 50% (Wet Bulb Globe Tempera-

ture: WBGT approximately 30˚C). Temperature conditions were determined with reference to

the average maximum summer temperature (36˚C) measured in major cities in Japan over the

past 5 years. After ensuring the safety of the participants, the humidity at which the WBGT

reaches approximately 30˚C (severe warning level) was obtained as a condition of high heat

risk using Ono and Tonoishi’s estimation method [21]. The experiment was performed in the

following order: rest, 6 min; exercise load, 18 min; rest, 18 min; exercise load, 24 min; rest, 18

min. Physiological signals were measured continuously, and exercise intensity was assessed

every 3 min from the start of the experiment using the Borg Rating of Perceived Exertion Scale

(RPE) [22]. RPE during exercise was measured by pointing at a score board presented in front

of the participant, and the experimenter recorded data every 3 min.

After the experiment, an interview survey was conducted on mood during the experiment

(anxiety, tension etc.) and the exercise history of the student. To ensure the safety of the partic-

ipants, the experiment was immediately discontinued if any of the experiment discontinuation

criteria were met (core body temperature exceeding 38.5˚C, convulsions, headache, dizziness,

nausea/vomiting, blank expression, loss of consciousness, or elevated levels of RPE). A Health
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Guard II ergometer was used during the test (Takei Scientific Instruments Co., Ltd.). Two con-

ditions with varying exercise loads were used; the ergometer was set to an intensity of 80 W for

Condition A and maximum oxygen intake was measured beforehand at 60% for Condition B

(where VO2 ¼ 3:5þ ð1:8�Work rateÞ � Body Weight, and

1W ¼ 6:12�Work rate ½kg �m∕min�) [23]. The experiment was approved by the Institutional

Review Board of the University of Occupational and Environmental Health (Approval No.

H29-213) and the study was performed in accordance with the guidelines.

Participants

The participants included 12 healthy men aged 21–64 years (mean age ± SD = 39.6 ± 13.4) (see

Table 1). Six participants who were able to measure maximum oxygen intake performed Con-

dition B in additional to Condition A on a different day. Therefore, 12 participants in Condi-

tion A and 6 participants in Condition B performed the test, and a total of 18 test runs were

conducted. We preliminarily confirmed that the participants were free of arrhythmia and any

diseases related to the cardiovascular system by using a questionnaire containing specific items

relating to health examination and verbal communication. The questionnaire comprised items

Table 1. Participants and environmental conditions.

No. Partici-

pants

Age Height

(cm)

Weight

(kg)

BMI Exercise

Habits

VO2max (ml/kg/

min)

Condi-

tions

Exercise Load

(W)

Status Note

#10 #11

1 S01 57 169 62 21.7 No Yes None A 80 Dis-

continued

Poor physical condition,

data loss

2 S02 47 175 103 33.6 No Yes None A 80 Completed

3 S03 46 170 57 19.7 No Yes None A 80 Dis-

continued

Rectal temperature reached

38.5˚C

4 S04 64 174 70 23.1 No No None A 80 Dis-

continued

Poor physical condition

5 S05 53 167 66 23.7 Yes Yes None A 80 Completed

6 S07 26 184 90 26.6 No Yes None A 80 Completed

7 S06 31 173 85 28.4 Yes Yes 44.8 A 80 Completed Data loss

8 Yes Yes B 120 Dis-

continued

Poor physical condition

9 S08 21 175 61 19.9 Yes No 34.6 A 80 Completed

10 Yes Yes B 94 Completed

11 S09 27 172 80 27.0 Yes No 62.7 A 80 Completed

12 Yes No B 157 Completed

13 S10 31 165 67 24.6 No No 43.3 A 80 Completed

14 No No B 104 Completed

15 S11 28 167 64 22.9 No Yes 41.6 A 80 Completed

16 No Yes B 109 Completed

17 S12 44 184 93 27.5 Yes Yes 41.3 A 80 Completed

18 Yes Yes B 114 Completed

BMI, body mass index. The column for exercise habits shows the results of the questionnaire on items regarding specific health examination. Specifically, #10 ("Have

you been in a habit of exercising to sweat lightly for over 30 min at a time, 2 times weekly, for over a year?") and #11 ("In your daily life, do you walk or do any

equivalent amount of physical activity for more than 1 h a day?”). Participants who performed two test runs under both conditions responded to the exercise habit

questions before each test run; thus, these answers are shown separately. In test runs with different exercise intensities, six participants took part in both Conditions A

and B; thus, there were 18 test runs. Of these, measurements were discontinued for three cases because the discontinuation criteria were met, while two cases were

excluded from analysis due to data loss.

https://doi.org/10.1371/journal.pone.0270626.t001
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regarding short- and long-term exercise habits. For the item on long-term exercise habits, #10:

“Have you been in a habit of exercising to sweat lightly for over 30 min at a time, two times

weekly, for over a year?,” seven (58.3%) out of the total 12 participants answered “yes.” For the

item on short-term exercise habits, #11: “In your daily life, do you walk or do any equivalent

amount of physical activity for more than 1 h a day?,” participants in 12 of the 18 test runs

(66.7%) answered “yes.” None of the participants were taking medications. After receiving

written descriptions of the experiment, all participants completed written informed consent

forms. Further, each participant followed a regulated diet beginning with dinner on the previ-

ous day and lasting through breakfast on the test day (alcohol consumption was prohibited).

Participants were also instructed not to consume caffeine on the day of the experiment. Fur-

ther, they were told to coordinate their sleeping environments; this included a bedtime of

23:00 on the day prior and wake time of 6:00 on the day of the experiment.

Physiological measurement

Both pre- and post-experiment, participants were measured for body weight using a precision

scale (Combics 1 plus, Sartorius). During the experiment, we continuously measured ECG,

core body temperature (rectal temperature), and body surface temperature (chest, palms,

outer surface of sensor, inner surface of sensor). ECG was recorded at a 1.5kHz sampling inter-

val with a BSM-2401 wireless electrocardiograph (Nihon Kohden Corporation), while both

core body and body surface temperatures were measured with a thermocouple (Class 1 for

Type T) and recorded via computer at 10-s intervals. Rectal temperature was measured using a

coated thermocouple (3 mm diameter), covered with a disposable probe cover (NIKKI-

SO-THERM CO., LTD.) and Vaseline, 15 cm from the anus, inserted by the participants them-

selves. A wired flexible cable was connected to ensure stable measurement during exercise.

The experiment started after the experimenter confirmed the fixation of the thermocouple and

the certainty of the measure values.

Analysis methods

Regarding precise body weight measurement data, we analyzed differences due to exercise

loads through a repeated t-test of the changes. We also calculated differences before and after

(Δ = after-before) for each physical data item and investigated the relationship between muscle

mass and body height (relative muscle mass). Regarding the analysis of test runs in which par-

ticipants took part in both conditions (excluding one data loss trial; n = 5), we examined the

differences between conditions using a signed test.

Regarding physiological responses, we analyzed 16 total cases, after two (one each in Condi-

tions A and B) were excluded due to data loss (Table 1; S01, S06-A). The continuous measure-

ment data were divided into 28 3-min blocks (Rest1-1~Rest1-2, Ergo1-1~Ergo1-6, Rest2-

1~Rest2-6, Ergo2-1~Ergo2-8, and Rest3-1~Rest3-6); we also examined the correlations

between various physiological data. Test runs in which the experiment was discontinued were

subjected to analysis up to the block at which a 3-min period could be assured. We extracted

the RRI from the ECG, then conducted an average of RRI and Poincaré plot analysis in each

3-min block, and heart rate variability (HRV) frequency analysis in each 6-min block. Thus,

we calculated six indexes, including average RRI, SD1, SD2, low frequency (LF), high fre-

quency (HF), and LF/HF. For each 3 or 6-min block, we derived core body temperature and

the average amount of change in core body temperature Dtemp ¼ tempðiþ1Þ � tempi, and also

examined the correlations between the six indexes. In this regard, we derived the Euclidean

distance of each physiological index as converted into a standardized score (z-score) for each

participant and examined the degree of similarity in the time series data for both the core body

PLOS ONE Core body temperature using ECG

PLOS ONE | https://doi.org/10.1371/journal.pone.0270626 June 28, 2022 5 / 20

https://doi.org/10.1371/journal.pone.0270626


temperature and ECG signals. For the Poincaré plot indices that were strongly correlated with

changes in core body temperature, 11 factors (RRI, SD, SD1, SD2, SD1low, SD2low, SD1up,

SD2up, SD(i-1), SD1(i-1), SD2(i-1)) were calculated as candidates for independent variables

on the basis of mathematical knowledge. The low and up component of each index indicates

that these indexes are divided into upper and lower sides with respect to the diagonal of each

index. Participants’ age and body mass index (BMI) were added to these 11 indexes, and we

deleted variables for which the variance inflation factor (VIF) was 10 or higher. Then, we con-

ducted a multiple regression analysis (forced entry method) wherein the amount of change in

core body temperature was treated as the objective variable. IBM SPSS Statistics for Windows,

version 19 (IBM corp., Armonk, NY, USA) was used for analysis. Finally, estimate values of

this model were evaluated as the agreement with actual measurement values using the Bland-

Altman method [24].

A systematic error (bias) is an inaccuracy that has a certain biased tendency toward the true

value, and the presence of such systematic errors can be visually verified with the limits of

agreement (LoA) method. This method plots the difference (estimated value–actual measured

value) against the mean of the actual measured and estimated values, and the LoA are calcu-

lated. If the differences between the actual measured and estimated values are within the mar-

gin of error, the two values can be interpreted as equivalent.

Results

Experiment implementation and changes in physical data

Of the 18 total test runs, four were discontinued (i.e., three participants discontinued—two

due to poor physical conditions and one due to elevated rectal temperature; those who discon-

tinued due to poor physical condition were the oldest participants in the study). For test runs

in which both conditions were performed, the exercise loads were greater in Condition B. S1

Table shows the results of precise weight measurements before and after the trial. As pre-

sented, body weight decreased significantly (rate of change = -1.5%, mean±SE = -1.11±0.09, p
< .001). The American Conference of Governmental Industrial Hygienists [4] treats a 1.5%

body weight reduction (before and after work comparison) as the heat exposure limit value.

The rate of weight change found in this study was extremely close to this threshold; thus, we

were able to determine that environmental conditions associated with a high risk of heatstroke

can be adequately set. In addition, regarding the test runs conducted under both conditions

(n = 5), body weight showed a greater reduction tendency in Condition B (mean ± SEM =

-0.50 ± 0.14, p = .063, sign test).

Time series changes in physiological responses

Fig 1A shows the time series changes in core body temperature, while Fig 1B shows changes in

the ΔTemp of core body temperature. Here, core body temperature rose rapidly due to exercise

loads, and did not substantially decline during the subsequent 18-min rest period. In particu-

lar, a gentle rise continued during the first half of the rest period following the first exercise

load (Rest 2); body temperature rose the same degree during the second exercise load as seen

at the conclusion of the first exercise load. Approximately the same rises in core body tempera-

ture were observed due to the first and second exercise loads. Figs 1B and 2A–2D depict the

time series data of the physiological indexes calculated from the ECG signals. Although the

RRI average dropped rapidly due to exercise loads and rose during rest, the RRI during rest

showed a shortening trend over time without returning to the pre-exercise state during 18 min

of rest (Fig 2A). The same trend for RRI was also observed in the Poincaré plot index. SD2

lengthened in blocks with status changes during rest periods following exercise loads, thereby
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suggesting its possible usefulness in detecting postural and behavioral transformations (Fig

2B). Regarding the HRV indexes for frequency analysis, both the LF and HF components dis-

appeared during exercise loads. Further, it was difficult to ascertain the state during exercise

loads within these frequency bands.

After defining the time series data in terms of Eqs (1) and (2), the Euclidean distance (the

scale of the similarity measures for the two time series) was easily obtained from Eq (3). The

Fig 1. Temporal changes in core body temperature (mean ± SE). (A) Core body temperature. The left side shows the raw data while the right side shows the

standardized score (z-score). Core body temperature rose over time, and did not drop, even in the rest block (Rest 2) between exercise blocks. (B) Differences

in core body temperature. The left side shows the raw data while the right side shows the standardized score (z-score). No major differences were observed in

the rise in body temperature during exercise between the first and second exercise blocks.

https://doi.org/10.1371/journal.pone.0270626.g001
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shorter the Euclidean distance, the higher the similarity degree between the two time series

data. For comparison of Euclidean distances between all indexes, these were calculated with

the standardized score (z-score) for each participant. In the relationship between core body

temperature and various physiological indexes, the results of the Euclidean distance measure-

ments (Table 2) clarified changes in ΔTemp with a higher degree of time series data similarity

(i.e., rather than core body temperature itself). The Euclidean distances of both the LF and HF

Fig 2. Temporal changes in ECG indexes (mean ± SE). (A) RR interval. The RRI average dropped rapidly according to the exercise load and did not return to

the pre-exercise state during rest. (B) Poincaré plot index. SD2 exhibited the same trend as RRI. The change in state from the exercise load to resting state was

remarkable. (C, D) Frequency analysis indexes LF/HF. The LF and HF components essentially disappeared during exercise loads, and thus may not be suitable

for evaluation under those conditions in the stipulated frequency band.

https://doi.org/10.1371/journal.pone.0270626.g002
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components were shorter. However, both indexes disappeared during exercise loads in which

the RRI became noticeably short with rapid respiration (see Fig 2C). Hence, these indexes

were considered unsuitable as independent variables for estimation of core body temperature.

When attempting to estimate core body temperature using ECG signals, these results show the

efficacy of setting the amount of change in core body temperature as the objective variable,

with the RRI average and Poincaré plot index set as the independent variables.

x ¼ ðx1; x2; x3; . . . xnÞ ð1Þ

y ¼ ðy1; y2; y3; . . . ynÞ ð2Þ

DEDðX;YÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
ðyi � xiÞ

2

q

ð3Þ

Multiple regression analysis

We observed the characteristics of the RRI average and Poincaré plot index, which are believed

to be useful in estimating core body temperature. We treated 11 variables from ECG (RRImean,

SD, SD1, SD2, SD1low, SD2low, SD1up, SD2up, SDi/SD(i-1), SD1(i)/SD1(i-1), and SD2(i)/SD2(i-

1)) and two variables from the participants’ characteristics (age and BMI) as candidate inde-

pendent variables. Poincaré plot indexes were defined by both the standard deviation vertical

(SD1) and horizontal (SD2) to the identity line (SD1). Here, SD1low is the lower (origin point)

SD1 bifurcated by the diagonal (y = x) in the Poincaré plot coordinates, while SD1up is the

length of the top side. SD2low and SD2up are the values at the coordinates shifted by 90˚ (Fig

3, Eqs (4) and (5)).

SD2

1
¼

1

n

X
v2

di þ
X

v2

ai

� �
ð4Þ

SD2

2
¼

1

n

X
h2

di þ
X

h2

ai

� �
ð5Þ

By calculating the multiple covariate index VIF and eliminating variables for which VIF

was 10 or higher, we performed a multiple regression analysis of these variables using the

forced insertion method, in which we treated the change volume of core body temperature

(ΔTemp) as the objective variable. Analysis results showed that the SD2 indexes and BMI

remained as significant statistically useful variables to estimate the core body temperature. The

Table 2. Euclidean distance of core body temperature with indexes from ECG signals.

Temp ΔTemp

RRI 8.52 4.88

SD1 8.46 5.65

SD2 7.96 5.49

LF 5.57 3.78

HF 5.81 3.90

LF/HF 4.45 4.56

RRI, R-R intervals. Euclidean distances between various physiological indexes from ECG signals and the Δcore body

temperature were shorter than those between these indexes and the core body temperature. That is, a high degree of

similarity was exhibited by the Δcore body temperature.

https://doi.org/10.1371/journal.pone.0270626.t002
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adjusted coefficient of determination (adjusted R-squared), which included both the SD2

indexes and BMI, was 0.466. A recalculation of the multiple regression analysis was under-

taken as the contribution of BMI was not high. As a result, the adjusted R-squares of the esti-

mation model that had only included the SD2 indexes was only slightly lower, at 0.460 (p<

.001). As shown in Table 3, the results suggest that the amount of change in core body temper-

ature ΔTemp(i) may be predicted sufficiently well by the functions SD2(i), SD2(i-1), and

ΔTemp(i-1). Eqs (6) and (7), where the symbol Δ denotes the amount of change and ^ the esti-

mated value.

DTempðjÞ ¼ f ðSD2ðjÞ; SD2ðj � 1Þ; T̂empðj � 1ÞÞ ð6Þ

T̂empðjÞ ¼ Tempð0Þ þ
Pj

i¼1
DTempðiÞ ð7Þ

Fig 4 shows the averages for all test runs, including both the actual measurements and esti-

mates of core body temperature. The mean error was -0.007˚C, while the mean error rate was

-0.02%. The maximum error was 0.457˚C in the test run in which the estimated value was

Fig 3. Poincaré plot. The Poincaré plot is defined by the lengths of the short side (SD1) and long side (SD2) of an

ellipse drawn by RRI(k) and RRI(k+1). In the RRI, SD1 is an index showing rapid change, while SD2 shows subtle

change.

https://doi.org/10.1371/journal.pone.0270626.g003
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largest when compared to the actual measured value (S1A Fig), while the maximum error was

-0.445˚C in the test run in which the estimated value was the smallest (S1J Fig).

Estimation model validation

The validity of the model was tested using the Bland-Altman method on 415 estimates of data

obtained from the 16 trials. The overall bias was 0.023 ± 0.13˚C, and the LoA was ±0.26˚C. Fig

5 shows the Bland-Altman plot of the estimation error (estimated–actual measured) against

the mean of actual measured value, and the histogram of the estimation error. The results

demonstrate that 387 (93.3%) out of 415 points in all trials were within the LoA range, indicat-

ing a high agreement rate (Table 4). The Bland-Altman plots and LoA for each participant are

shown in S2 Fig.

Discussion

First, we discuss the features and advantages of our estimation model in comparison with pre-

vious studies. Niedermann et al. [25] suggested that heat flux measurements need to be incor-

porated to accurately predict rectal temperature. In this context, rectal temperature has been

considered by several researchers as the main predictor of core body temperature [8, 26, 27].

Buller et al.’s estimation model for core body temperature using heart rate has been variously

validated in studies with a large number of participants [26] and improved versions have been

reported [27]. Their model is based on the Kalman filter, which provides a robust estimation

algorithm. They have validated this estimation model by considering experimental conditions

such as wearing explosive ordnance disposal protective clothing and during recovery [28]. The

heat strain decision aid (HSDA) core body temperature prediction model [29] is used for

training purposes in the United States military and is currently being improved through multi-

ple studies; specifically, it is being applied to predict safe work continuation times, suitable

rest/water intake times, and even the risk of heatstroke, to help develop preventive measures

against it. The HSDA includes environmental conditions, clothing, and metabolic heat pro-

duction as the three important elements mutually attributable to core body temperature; for

each participant, rises in core body temperature resulting from exercise are estimated based on

individual characteristics (e.g., body height), clothing, the environment (e.g., ambient temper-

ature), and activity status. In this study, demonstrating the close relationship between heart

rate and core body temperature quantitatively, we developed a very simple core body tempera-

ture estimation model using ECG signals rather than individual characteristics, such as age.

Eggenberger et al. [30] verified the validity of two novel multi-parameter models that predict

core body temperature during exercise and rest under two clothing conditions, in a hot and

moderately humid environment. They found that the "Min-Input Model," which relies on the

two most relevant predictors in multiple linear regression analysis, has almost equivalent pre-

dictive validity as the "Max-Input Model," which requires six or more input parameters. Their

validation suggests that our estimation model for core body temperature using only ECG mea-

surement may provide useful results under other conditions.

Some companies have implemented employee health-management programs that involve

monitoring biodata using wearable sensors that use the Internet of Things technologies. This

promotes preventive behavior initiated based on real-time warnings in cases where physical

conditions are poor and/or the risk of heatstroke is higher. As discussed by Lin et al. [31], how-

ever, it is unlikely that verification and proof-of-concept experiments based on physiological

characteristics are sufficient for proving the efficacy of such systems. While biometric informa-

tion is easy to obtain using wearable devices, there are also several limitations in terms of the

required resources (e.g., power consumption, calculation power, and memory capacity) and
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communication status, which cannot always be addressed. In addition, power is needed to

accomplish so-called “synchronous” real-time processing, which simultaneously measures

multiple biomarkers. Hence, it is important to study estimations that use as few biometrics as

possible. From a practical standpoint, the estimation model used in this study is advantageous

because of the use of initial core body temperature values and ECG signals without the need

for information pertaining to individual characteristics (e.g., the environment or clothing).

In hot environments, the first physical response to heat exposure is dermal vasodilation,

which dissipates heat outside the body by increasing the heat transfer rate of the body’s surface

through an increase in dermal blood flow. Although this biological response is an efficient and

effective response in mildly hot environments, excessive external heat is applied to the body

under harsher temperature conditions, thus hindering the heat dissipation function. The

blood also tends to accumulate in the extremities because of vasodilation, which causes a drop

in both blood pressure and cerebral blood flow, the latter of which may result in dizziness, nau-

sea, and fainting. The body maintains its blood pressure by increasing the heart rate and car-

diac output. In other words, heart rate is closely related to the thermoregulatory mechanism.

Table 3. Multiple regression analysis results.

Coefficient of Regression Standard Error t-value p-value

Intercept 0.953 0.134 7.13 < .001

SD2 -0.078 0.004 -19.37 < .001

ΔSD2 0.005 0.001 6.60 < .001

^Temp -0.022 0.004 -6.22 < .001

The amount of change in core body temperature is shown in the SD2, ΔSD2, and previously estimated core body temperature; the adjusted coefficient of determination

was R2 = 0.460 (p < .001).

https://doi.org/10.1371/journal.pone.0270626.t003

Fig 4. Actual measurements and estimates of core body temperature (average of all test runs). The dotted line

shows actual measured values, while the solid line shows estimated values. The mean error was -0.007˚C, while the

mean error rate was -0.02%. See S1 Fig for actual measurements and estimates from all 16 test runs.

https://doi.org/10.1371/journal.pone.0270626.g004
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In hot environments, changes in heart rate have been shown to be closely related to changes in

rectal temperature [32]. Although it is possible to measure core body temperature directly

using ingestible temperature sensors, Hunt et al. [33] confirmed that approximately 10% of

Fig 5. Bland–Altman plot for all participants indicating the bias (solid line) and ±1.96SD (dashed line). (A) Bias ± SD = 0.023 ± 0.13. Different scatter plot

markers were used for each participant. (B) Normalized histogram of developed model error for all validation data.

https://doi.org/10.1371/journal.pone.0270626.g005

Table 4. Agreement rate against overall LoA range for each participant.

Within LoA Range Outside LoA Range Agreement Rate (%) Range of Estimation Error

Act. > Est. Act. < Est.

S02-A 24 0 3 88.9 -0.01~0.44

S03-A 13 11 0 54.2 -0.33~0.05

S04-A 16 0 0 100.0 < .001~0.21

S05-A 23 4 0 85.2 -0.28~0.03

S06-A 24 0 0 100.0 -0.03~0.27

S07-B 27 0 0 100.0 0.03~0.14

S08-A 27 0 0 100.0 -0.05~0.08

S08-B 27 0 0 100.0 0.01~0.17

S09-A 27 0 0 100.0 -0.02~0.14

S09-B 20 7 0 74.1 -0.46~0.06

S10-A 27 0 0 100.0 -0.12~0.08

S10-B 27 0 0 100.0 < .001~0.25

S11-A 24 0 3 88.9 0.03~0.33

S11-B 27 0 0 100.0 -0.20~0.16

S12-A 27 0 0 100.0 -0.09~0.10

S12-B 27 0 0 100.0 -0.01~0.08

Total 387 22 6 93.3 ----

The two columns under outside LoA range indicate the negative side (Actual measured values > Estimated values)

and positive side (Actual measured values < Estimated values).

https://doi.org/10.1371/journal.pone.0270626.t004
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them require correction to ensure accuracy. Constantly fluctuating data, such as those pertain-

ing to physical activity volumes, are ideally collected in real time using noninvasive wearable

devices, which are suitable for daily use and do not greatly restrict movement. Noninvasive

skin, oral, and tympanic temperatures during exercise are easy to measure, but it has been

reported that these are strongly affected by two common occurrences, namely, wind and sweat

[34]. We indicated that the main disadvantages of using heart rate for the assessment of heat-

stroke are that it is sensitive to various stimuli, such as mental stress, and that it uses a single

criterion when several homeostatic mechanisms are involved simultaneously. However, this is

not a major problem, as changes in heart rate due to exercise in a hot environment, such as in

our study, are likely to be stronger and longer lasting than changes due to mental stress.

We found that the amount of change in core body temperature, rather than the absolute

value, has a stronger relationship with heart rate (RRI). Although its absolute value has been

defined as one of the factors for the diagnosis of heatstroke, core body temperature, like nor-

mal body temperature, has individual and diurnal variations. Naturally, as heart rate also has

individual variations, the risk of error may increase when estimating the absolute value of the

core body temperature from heart rate. Consequently, the change in core body temperature or

the rate of increase are important factors for managing individual physical conditions. We

consider that our estimation model, which calculated the initial value of core body tempera-

ture and its changes separately, allows to easily propose various risk factors. If system efficacy

is ensured through this proposal, it may be proactively used in high-risk workplaces as an

effective countermeasure against heatstroke. Further, the use of various biometric sensors can

not only prevent major health disorders resulting from heatstroke but should also facilitate a

wide range of other precautionary and health measures, including the prevention of industrial

accidents resulting from reduced concentration and increased mental stress, daily health man-

agement, and elder care support.

Next, we contend that the selected independent variables in our estimation model are valid,

based on psychophysiological knowledge. The Poincaré plot analysis can calculate the nonlin-

ear analysis indexes SD, SD1, and SD2 through a scatter diagram of the adjoining RR intervals.

The area of the ellipse valued at the SD (total HRV) correlates with baroreflex sensitivity, LF,

HF, and root mean square of successive differences between normal heartbeats (RMSSD). The

standard deviation in the short axial direction of the ellipse is referred to as SD1. This index

demonstrates the short-term HRV of the rapid RRI change and is the same as the RMSSD

[35]. It has been reported that SD1 is related to cardiac vagus nerve function and may be used

to indicate exercise intensity (endurance drop) [36]. In contrast, SD2 demonstrates long-term

HRV and is considered to be correlated with LF and baroreflex sensitivity [37]. Although

reports have shown that SD2/SD1 and log (SD1×SD2) are useful indexes of sympathetic and

parasympathetic nervous activity, respectively [20], the practical application of these indexes

should be assessed both physiologically and mathematically. In this study, the RRI fluctuation

was extreme, as it was used as verification in the exercise load test. The SD2 index more notice-

ably captured RRI fluctuations compared to the amount of change in SD1. However, SD1

remains meaningful in cases where there is little overall change in the RRI (e.g., desk work or

light labor) or if the heart rate recovers in a short period of time. Furthermore, the low contri-

bution of BMI to the estimation might indicate that individual characteristic indexes are

needed for minor adjustments in relation to individual differences in the RRI, if the RRI value

is to be used as an index for estimating core body temperature.

The HRV index obtained by frequency analysis is widely known as an indicator of auto-

nomic nervous system activity, as in the Poincaré plot index. Although some studies have

investigated the response to exercise stressor [37, 38], it should be interpreted with caution

because the HF component is composed of respiratory sinus arrhythmias derived from
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respiratory activity. It is important to note that most previous studies using this index have

been validated by physiological measurements taken during desk work or in the context of

standing up from the supine position, not during exercise [39–41]. Some negative findings

regarding this index also exist [42], so there is room for debate about the measurement condi-

tions and other issues. These indexes were also used as candidates for independent variables in

this study, but we were able to verify that both the LF and HF components disappeared during

exercise loads, during those in which RRI becomes noticeably short with rapid respiration.

The HRV components probably shifted to outside the defined frequency bands. While the

well-known HRV index based on frequency analysis is now popular in simple stress measure-

ment applications, it is crucial to ensure proper handling based on appropriate mathematical/

physiological findings.

The validity of the estimation model was verified by the Bland-Altman method, but the

absolute error is also a crucial issue when targeting heatstroke prevention. It is necessary to

avoid estimated values that tend to be lower than the actual measurements. Although the

allowable range for the core body temperature estimation error is difficult to determine, a limit

on the order of 0.5˚C is probable if the properties of core body temperature are considered.

Examining S09-B (Table 4 and S1J Fig), the largest outlier on the negative side of the LoA

range was a participant who was a strong athlete with an exercise intensity of 157 W (on par

with hard labor) and maximum oxygen intake of 60%; this participant was evidently accus-

tomed to exercise (as gathered from the interview survey after the experiment). During exer-

cise, the heart rate rises to supply oxygen to the body; however, physical training increases

cardiopulmonary function, thus allowing the same exercise to be performed at a lower heart

rate. In addition, as post-exercise heart rate recovery (HRR) is correlated with the physical

activity Baecke score, HRR is reportedly a useful index for exercise habits [43]. Although a pre-

vious study among athletes found a correlation between post-1-min HRR and age [44], it is

possible to use a post-3-min recovery index to evaluate exercise adaptability. Considering daily

exercise habits, S09 appears to have experienced different HRV and HRR trends than other

participants; his Poincaré plot index also exhibited markedly gentle RRI changes. As such, the

difference in this heart rate response trend is thought to have caused the estimation error.

Finally, the future practicality of our model must be considered. The periorbital tissue

method [45] is innovative and useful in situations where psychological stress is targeted in a

space (e.g., a public facility) where a measurement device, such as a video camera, can be fixed.

In contrast, the use of wearable devices is essential in situations that do not depend on the

place of use, such as workplaces and venues of sports competitions. Negin et al. suggested the

possibility of predicting core body temperature from a wearable wrist device in daily life [46].

They noted that this research field is still emerging and undeveloped, and plan to continue

their work in the future by expanding the scope of diverse profiles and measurements such as

age, gender, health condition, higher body core temperature, and heart rate. Regarding ECG

signals, there are many other indexes apart from those investigated in this study [47]. For

example, such indexes include those that demonstrate vagus nerve activity in time regions

such as pNN50 and the regularity/complexity of time-series data (e.g., approximate entropy

and sample entropy) via nonlinear analysis [48–51]. Although these indexes do not necessarily

capture all the different types of phenomena, it is possible to identify relationships and differ-

ences by contemplating indexes from a mathematical perspective. In other words, it is possible

to achieve highly accurate estimation results through a diversified approach that decomposes

the same biodata into multiple indexes, which may then be compared based on their unique

differences and characteristics. It is also possible to add other physiological responses to phe-

nomena that cannot be captured by ECG signals. Thus, the findings of this study have a wide

range of applications, and we plan to conduct additional examinations.
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The model we developed in this study has some advantages: it has few errors, is highly prac-

tical, and is very simple and easy to understand. Although further validation is required, it con-

tributes to what may be a groundbreaking discovery. Furthermore, although this model is not

an immediate substitute for the direct measurement of core body temperature, we believe that

it is sufficient to provide an alert of risk in outdoor activities such as heavy labor and sports

under hot and humid conditions.

There are several limitations that should be noted in this study. First, the proposed estima-

tion model was targeted at core body temperature increases during exercise loads in hot envi-

ronments (35˚C, 50% humidity); thus, various other environmental conditions remain

unverified. In addition, this experiment set a core body temperature exceeding 38.5˚C as one

of the discontinuation criteria to ensure the safety of the participants, and thus it did not

involve extremely high core body temperatures. Therefore, caution should be taken when

interpreting the results. Second, the participants wore shorts when biometrics were assessed

during the experiment. However, previous investigations using the HSDA model have imple-

mented five types of protective clothing when engaging in treadmill exercises [52]. As differing

types of clothing can substantially affect core body temperature, future studies should verify

the proposed model under different conditions (e.g., different clothing types and room tem-

peratures). Third, our model requires an initial value of the core body temperature. Although

it has been reported that reliable tympanic (aural) measurements are difficult to obtain during

outdoor exercise in hot environments [11], it is possible to measure the initial value of core

body temperature using tympanic membrane temperature if it is the discontinuous value

before exercise [53, 54].

Conclusions

The most important feature of this study is that it quantitatively demonstrates the close rela-

tionship between heart rate and core body temperature, and the results are fitted to a model

that estimates rises (amounts of change) in core body temperature during exercise loads in hot

environments. In this context, the employed estimation model is characterized by its ability to

continuously estimate core body temperature using both its initial value and ECG signals with-

out the need for inputs related to individual characteristics (e.g., age and physique). However,

as the estimation error substantially increased in some test runs in the experiment, future

investigations should address physical conditions prior to engagement in exercise loads (con-

stituting the initial value) and consider preexisting exercise habits among participants. As our

basic estimation model has a wide range of applications, we plan to improve the model for

expanded usage (e.g., analyses of cases in which core body temperature drops). In future stud-

ies, we also intend to consider the effects of different clothing types and exercise loads, thus

demonstrating efficacy across a wider range of applications. We conclude that with the rapid

development of technologies such as wearable sensors and the Internet of Things systems, the

findings of this study will contribute to healthcare.

Supporting information

S1 Table. Before and after comparison by precise weight measurement. Body weight was

significantly reduced. The weight loss of 1.5% or more in 6 of all trials indicated the risk state

of heatstroke, according to the American Conference of Governmental Industrial Hygienists

[4].

(PDF)
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S1 Fig. Actual measured and estimated core body temperatures per individual. Dotted

lines show actual measured values, while solid lines show estimated values.

(PDF)

S2 Fig. Bland-Altman plot for each participant. Solid line and dashed line are indicated bias

and ±1.96SD, respectively.

(PDF)
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