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Topological impact of negative 
links on the stability 
of resting‑state brain network
Majid Saberi1, Reza Khosrowabadi1*, Ali Khatibi2, Bratislav Misic3 & Gholamreza Jafari1,4

Stability is a physical attribute that stands opposite the change. However, it is still unclear how the 
arrangement of links called topology affects network stability. In this study, we tackled this issue 
in the resting-state brain network using structural balance. Structural balance theory employs the 
quality of triadic associations between signed links to determine the network stability. In this study, 
we showed that negative links of the resting-state network make hubs to reduce balance-energy and 
push the network into a more stable state compared to null-networks with trivial topologies. In this 
regard, we created a global measure entitled ‘tendency to make hub’ to assess the hubness of the 
network. Besides, we revealed nodal degrees of negative links have an exponential distribution that 
confirms the existence of negative hubs. Our findings indicate that the arrangement of negative links 
plays an important role in the balance (stability) of the resting-state brain network.

The brain has assumed as a complex network that its regions are structurally or functionally connected. The non-
trivial characteristics of the complex brain network enable it to process and communicate neural information 
efficiently and produce cognitive functions and complex behaviors1–4.

In recent years, brain researchers applied the state of the art of physics to study complex brain networks. For 
instance, Dante R. Chialvo showed that the large-scale resting-state networks are located at critical states which 
means they always stay close to the phase transition5,6. Besides, Enzo Tagliazucchi et.al. also discovered that loss 
of consciousness pushes the networks from the critical states to stable states7.

In general, a system is called critical when it tends to make transitions between different states. Criticality 
is the opposite side of stability. According to the principle of minimum energy, a physical system loses energy 
and leaves the critical state toward a stable state. Also, a physical system remains stationary in a stable state with 
minimum energy level until receiving external energy.

To explore the stability of the functional brain networks, scientists usually divide regional brain activations 
into shorter temporal segments, extract functional connectivity of each segment, then explore the variability of 
functional connections over the segments and consider the inverse of them as the stability8–10. In the following, 
we explain two major weaknesses of this procedure.

First, as fMRI time courses have a low signal-to-noise ratio, when we divide them into shorter time segments, 
the validity of extracted functional connections can be questionable8. Moreover, the correlation coefficient as a 
common measurement of the functional connection is also vulnerable to low numbers of time points11,12. So the 
observed temporal variations of the functional connections may be a consequence of systematic errors.

Second, the process ignored the emergent property of complex brain networks and mainly determines the 
stability of each functional link separately then aggregates them to explain network stability. The emergent prop-
erty describes that parts of a complex system don’t work individually and belong to a whole13 and the whole is 
greater than the sum of the parts14. Therefore, we have to consider the links interrelatedly and simultaneously as 
a whole to respect the complexity of the brain network.

To overcome the above-mentioned shortages, we decided to employ the structural balance theory to assess 
the stability of functional brain networks. The structural balance is a well-known approach to investigate the 
stability of complex social networks15–17. It does not restrict us to segment time courses and has no conflict with 
the emergent property of the brain network. Actually, balance theory investigates the association between two 
entities in presence of a third-party, this is in agreement with emergent property.
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The structural balance theory refers to Fritz Heider’s researches on personal interrelations18. The theory clas-
sified the quality of relationships between three entities as balanced and imbalanced (Fig. 1a). Balance triads: "a 
friend’s friend is a friend" and "an enemy’s enemy is a friend"; Imbalanced triads: "a friend’s friend is an enemy" 
and "an enemy’s enemy is an enemy"19. Entities of an imbalanced triad are frustrated about their conditions and 
try to change their relationships to reach one of the balanced conditions. This is analogous to the transition of 
an unstable physical system toward a stable state with a lower energy level based on the principle of minimum 
energy. Accordingly, it can be assumed that a balanced (stable) triad situates stationary in a low-level energy 
state despite an imbalanced (unstable) triad that tries to solve its frustrations to reduces its energy and moves 
to the stable states20.

Also, structural balance can be investigated in a signed network where positive and negative links represent 
friendship and hostility, respectively21. Consequently, the balance of a signed network is determined by counting 
the number of balanced and imbalanced elements. In this way, we encounter a large number of triads, quartets, 
and higher-order cyclic relations and their balances15. Since the tension of a frustrated cycle is reduced by increas-
ing its length, we can derive a first-order approximation of the balance by considering only the triadic relations 
of a signed network. In this regard, Marvel et.al. introduced the concept of energy of the signed network22. They 
formulated the balance-energy of a signed network as the difference between the number of balanced and the 
number of imbalanced triads. In this context, the topology of signed links represents the network state and a state 
is stable if and only if all of its triads are balanced. A stable network has the least energy and remains stationary 
since there is no dynamic demand to change link signs due to the presence of imbalanced triads.

Until here we described the importance of brain network stability and offered balance theory as a proper 
assessment approach for it. Now, let’s address the main question of this research. In recent years, brain scientists 
have devoted a lot of effort to investigate the topological aspects of brain networks and found that topological 
properties are the key factors in brain functions and affect behavioral and cognitive functionalities23–26, but there 
is no outstanding research to explore the effect of topology on the brain stability. So we decided to study how the 
topology affects the balance of resting-state networks. It should be mentioned that our results can be generalized 
to any signed networks and will be interesting for complex network scientists.

Figure 1.   Triadic associations in balance theory. (a) Possible triad types of a signed network. Blue and red 
colors denote positive and negative links. (b) Formation of a triadic relation in the brain. Activity pattern of 
three brain regions (left) correlate together (middle) and build a balanced triangle (right). The selected regions 
of interest are colored violet, green, and orange that belong to Default Mode Network, Dorsal Attention 
Network, and Visual network of the brain, respectively. R Pearson correlation coefficient.
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In this study, we hypothesized that the functional signed connections of the brain tend to make hubs mainly 
by negative links and form a specific non-trivial signed topology that pushes the network toward more stable 
states with greater numbers of balanced triads. In this regard, we introduced some global measures to clarify 
the impact of topology on the balance, then investigated them in resting-state signed networks and brought out 
a mechanism based on the results. Moreover, we studied the emergent behavior of the brain regions in terms of 
negative degree distributions.

Results
We summarized the procedure of the study in Fig. 2. We employed the structural balance to assess network 
stability. The research question was whether the signed network topology (independent variable) can affect the 
balance (dependent variable) of the resting-state signed network. To answer it, we used a matched-pairs design 
to compare the balance of actual network (resting-state functional networks) with the balance of null-networks. 
The null-networks were constructed from shuffled regional activations and had the same node and link size and 
the same positive to negative link ratio as the actual networks but they had trivial signed link arrangements. Since 
balance theory works based on signed links and considering the fact that the number of positive and negative 
links differ in balanced and imbalanced triads (Fig. 1a), we regarded the equality of positive to negative link ratio 
to control confounding effects of signed links percentages. Also, we used the matched-pairs design to increase 
internal validity and decrease the chance of occurring selection bias.

The research procedure is abstractly described as follows. We used publicly shared images of the Autism 
Brain Imaging Data Exchange (ABIDE)27 to construct actual networks. Then we only selected 57 right-handed, 
young male adults to exclude the covariate effect of age, gender, and handedness, and increase the validity of the 
relationship between independent and dependent variables. After standard preprocessing of functional images, 
we extracted time-series of regional cerebral cortex activities using Schaefer’s Local–Global parcellation28. Then 
we made functional connectivity for each subject separately and binarized its functional connections to + 1 and 
− 1 to formed the resting-states signed network (Fig. 1b). On the other hand, we created an ensemble of signed 
networks with trivial topology for each subject whereas their positive to negative link ratio was equivalent to the 
positive to negative link ratio of the subject’s actual network. Subsequently, we calculated the balance metrics 
of actual networks and null-networks, compared the balance metrics of the actual network with the ensemble 
average of balance metrics of the null-networks, then used individual differences for group-level analysis. Since 
these two types of networks only differ in topology, we imputed the difference between their balances to the 
topology of the signed links.  

Effect of topology on the network balance.  To investigate the effect of topology on the network bal-
ance, we compared the balance of actual networks with the balance of null-networks. The null-networks were 
similar to actual networks but have trivial signed link arrangements. As we wanted to perform a paired analysis, 
we created a set of null-networks matched to each actual network where the matched networks had the same 
positive to negative link ratios. Afterward, we compared the balance-energy of each actual network and the 
ensemble average of balance-energies of correspondent null-networks, then we examined the differences for 

Figure 2.   Procedure of the study.
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group-level analysis (Fig. 3.a). Since extracted balance metrics of the signed networks did not follow a normal 
distribution (p-valueShapiro-Wilkoxon < 0.005) and their paired differences around the median were also asymmet-
ric (p-valueMiao-Gel-Gastwirth

29 < 0.001) (Supplementary Fig. 1), we decided to use the non-parametric Sign test for 
the group-level matched-pairs analysis. Figure 3a shows that balance-energies of resting-state networks were 
significantly lower than balance-energies of their paired null-networks (p-valueSign-test < 0.001, effect size = 0.79 
(large)). We also compared the percentages of each triad type separately. Figure 3b shows that actual networks 
have significantly a greater number of balanced triads and a little number of imbalanced triads as against null-
networks (p-valueSign-test < 0.001, effect size = 0.78 (large)). As actual networks and null-networks differ in signed 
link arrangement, these results highlight the effect of topology on the balance of the signed networks and indi-
cate that resting-state topology provides balance (stability) for the network.

It should be pointed out that we obtained the explained results based on consideration of the fully connected 
topology. So we applied several thresholds to the functional connections to make partially connected networks 
then compared the balance-energies to explore the external validity of the results. Supplementary Fig. 2 shows 
that group-level differences remain significant only for some ranges of the thresholds even after the thresholding 
process. Nevertheless, the sign of differences switched several times by increasing the threshold. The balance-
energy of the resting-state is lower than the balance-energy of the random network from zero to 0.08, higher 
from 0.14 to 0.22, and again lower from 0.32 to 0.4. 

Hubness of functional negative links.  In the previous section, we indicated that the actual network and 
null-networks that were only varied in signed topology had different balance-energies. So we decided to explore 
the centrality of the network topology. In this regard, we introduced a global hubness measure entitled "Ten-
dency to Make Hub (TMH)" and compared signed TMH of actual networks and null-networks (see “Method” 
section for further details).

Figure 4a shows a matched-pairs comparison between negative TMH scores of actual networks and ensemble 
average of negative TMH scores of null-networks. Since negative TMHs of networks had non-normal distributions 
(p-valueShapiro-Wilkoxon < 0.001) and their paired differences distributed symmetry (p-valueMiao-Gel-Gastwirth = 0.71) 
(Supplementary Fig. 3), we used Wilcoxon signed-rank test to explore group-level paired differences. The test 
revealed that actual networks have larger negative TMH or negative hubness than their correspondent null-
networks (p-valueWilcoxon signed-rank test < 0.01, effect size = 0.84 (large)).

Negative hubness and network balance.  In the last sections, we indicated that the actual networks 
have greater negative hubness and lower balance-energy compared to the null-networks. The question arises that 
is there any relations between signed hubness and network balance. To answer it, we generated some set of fully 
connected random signed networks (see “Method” “Creating null-networks” for more details) then explored the 
relation of negative TMH and balance-energy. The generated networks were constrained to have 10% negative 
links but there was no restrictions on signed links arrangements. Figure 4b shows a negative correlation between 
negative TMH and balance-energy (R = − 0.67). It means that signed networks with higher signed hubness are 
more stable.

Figure 3.   Matched-pairs comparison of balance metrics. (a) Balance-energies. (b) Percentages of triad types. 
Violet and green colors denote actual-networks and null-networks, respectively. Circles correspond to the signed 
networks. The boxes indicate median and interquartile ranges. The blue lines also connect the paired points of 
the actual and ensemble average of null-networks. P-values and effect sizes are related to the Sign test.
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Description of the effect.  In the previous section, we indicated that signed networks with larger negative 
TMH have lower balance-energies. So, we decided to explore the effect of topology on the network balance in 
a descriptive manner. Figure 5a represents three different topologies of a fully connected signed network with 
8 nodes and 4 negative links. The topologies have similar positive to negative link ratios. From left to right, the 
network topology changes in a way that the negative links tend to gather together and make negative hubs. 
Mutually, this happens for the positive links moderately, it does not seem significant hence the majority of the 
links are positive. Increasing negative TMH as a global hubness measure quantifies the hub formation. Also, 
the balance-energy of the signed network is reduced as a consequence of increasing the number of balanced 
triads and decreasing the number of imbalanced triads. Additionally, Fig. 5b schematically describes how the 
explained mechanism pushes the signed network into a more stable state. 

Collective properties of negative links.  Although minor of resting-state functional connections are 
anti-synchronous (negatively correlated) (Supplementary Fig. 4), their collective behavior has the most magnifi-
cent effect on the network balance. Figure 5 also confirms this fact. Therefore we decided to explore the collective 
behavior of resting-state negative links.

So we decided to explore the distribution of nodal negative degrees. Figure 6a shows the logarithm of the 
negative degree distribution of all the subjects. Linear functionality of the logarithmic distribution denotes 
that negative degrees distribute exponentially. We used the Maximum Likelihood Estimation to assess the rate 
parameter of the exponential distribution (λresting-state network = 0.14). The figure also represents the negative degree 
distribution of the null-networks. The difference between the right tail of distributions highlights the presence 
of negative hubs in actual networks despite null-networks.

In fact, when we study exponential distributions in logarithmic form, the sharpness of degree distribution 
is associated with the hubness of the network. Therefore, we explored the relation between the negative TMH 
of the actual networks and the rate parameters of the negative degree distribution of the actual networks. We 
found a negative correlation between the logarithm of rate parameters and the logarithm of negative TMHs 
(R = − 0.96) (Fig. 6b). This result indicated that actual networks with lower rate parameters and lower sharpness 
of distributions have higher negative hubness.

Emergence of brain regions.  Since investigating the collective behavior of functional negative links 
brought out interesting results, we decided to explore the existence of emergent behavior between brain regions 
in terms of negative degree distribution. Emergence is a property of complex systems that occurs when individu-
als behave in a different manner as compared to the whole. Each brain region has a distribution that contains 
negative degrees of subjects. We compared the negative degree distribution of each region with the negative 
degree distribution of the whole brain using the Kolmogorov–Smirnov test. Statistical tests indicated that nega-
tive degrees of some cortical regions differently distribute than the whole. Figure 7 represents significantly dif-
ferent ROIs after a multiple comparison correction using the False Discovery Rate (FDR) method (corrected 
p-value < 0.05). The significant ROIs locate at right and left precuneus/posterior cingulate of default mode net-
work, left frontal operculum of the insula, left median of ventral attention network, and right frontoparietal 
control network. Please see Supplementary Table 1 for details. Supplementary Fig. 5 also displays the results 
without multiple comparison correction.

Figure 4.   Negative hubness and balance-energy. (a) Matched-pairs analysis of negative TMHs between actual 
networks and their correspondent null-networks. Vertical boxes indicate median and interquartile ranges and 
blue lines connect paired points. P-value and effect size of Wilcoxon signed-rank test are reported in the figure. 
(b) A negative correlation between the negative TMHs and the balance-energies of simulated networks. Circles 
denote simulated signed networks and the violet line indicates the linear fitted function to them. TMH tendency 
to make hub, R Pearson correlation coefficient.
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Discussion
In brief, we indicated that functional negative links of the resting-state network formed an especial topology to 
push the network toward more balance (stable) states. In this regard, we compared actual networks and null-
networks with trivial topologies and the same positive to negative link ratio. We showed that the actual networks 
have lower balance-energy as compared to the null-networks. We also introduced a global measure of hubness 
entitled Tendency to Make Hub (TMH) and showed that the actual networks have higher negative TMH against 

Figure 5.   Effect of changing signed topology on the stability of the signed network. (a) Descriptive table. Rows 
demonstrate corresponding metrics of each topology. Positive and negative links of networks are indicated with 
blue and red curved lines, respectively. The size of green circles displays negative degrees of nodes. (b) Schematic 
diagram.  TMH tendency to make hub.
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Figure 6.   Collective behavior of resting-state negative functions. (a) Semi-logarithmic negative degree 
distribution of actual networks and null-networks. (b) A negative correlation between the logarithm of negative 
TMH and the logarithm of the rate parameter of negative degree distribution. Each circle corresponds to the 
signed network of a subject. TMH tendency to make hub, R Pearson correlation coefficient; λ rate parameter of 
the exponential degree distribution.

Figure 7.   Emergence property of regions of interest. Colored portions of the brain images show regions 
that their negative degree distributions significantly differ from the whole-brain negative degree distribution 
(multiple comparisons corrected). Various colors denote that each region belongs to which large-scale cortical 
networks. The brain maps were created using BrianNet Viewer toolbox30 of the Matlab (http://www.mathw​orks.
com/produ​cts/matla​b/).

http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/matlab/
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the null-networks. According to the results, we brought out a mechanism to describe how signed hubness causes 
network stability. Since we found that negative links of the brain have an influential role in network stability, 
we decided to explore the collective behavior of them. We discovered functional negative links of resting-state 
networks distribute exponentially and the rate parameter of the distribution negatively correlates with the nega-
tive TMH. Also, we affirmed the emergence of brain regions in terms of negative degree distribution where some 
brain regions do not follow the behavior of the whole-brain.

Definition of brain energy.  In recent years, some studies have defined the energy of neuroimaging data 
at a particular moment using brain regional activations at that moment multiplied by long-term coactivations 
between regions31–35. Since they used momentary activations and considering the fact that fMRI signals have low 
signal-to-noise-ratio, the validity of calculated energies may be questionable. Since we used long-term coactiva-
tion in calculating energy we kept away from this issue.

Low energy resting‑state signed network.  Figure 3a showed that the balance-energy of the resting-
state network is negative and it posits near the absolute stable state. It not only depends on the topology but also 
is a consequence of positive and negative link appearance. Exploring this issue may disclose why most brain 
regional interactions are synchronous, not anti-synchronous.

Null‑network formation.  As we explained, we hypothesized that the special topology of signed links 
affects the stability of the resting-state network. To test the hypothesis, we compared the balance of actual net-
works with the balance of null-networks. Considering the validity of statistical inference highly depends on 
null-network selection, we innovated a null-network formation procedure to control confounding variables. 
In addition to equality of node size and link size, null-networks had positive to negative link ratios similar to 
actual networks and they were extracted from shuffled regional brain activations to remain signal distributions 
consistent. As the null-networks only varied in signed link arrangement, we attributed the difference between 
the balance of actual networks and the balance of null-networks to the topology.

Since two balanced triads totally have greater numbers of positive links and two imbalanced triads totally have 
greater numbers of negative links (Fig. 1a), we had to regard the condition of equality of positive to negative link 
ratio to control confounding factor of sign link presence. Although there are various approaches to construct 
null-networks36, since none of them focused on the signed networks and balance theory works based on signed 
links interactions, we decided to create our procedure to form proper null-networks.

In our null-network creation procedure, we used signals to construct null-networks, not signed links. It 
enabled us to apply adjusting signals and form null-networks with desired positive to negative link ratios.

It is also necessary to point out another benefit of using signals. As we investigated triadic interactions of brain 
regions and considering the fact that dual relations of a triadic relation in the brain are not independent, genera-
tion of null-networks from signed links disregarding constraints on triadic interrelations could be problematic. 
In other words, a correlation between region A and region B and a correlation between region A and region C 
restrict correlation between B and C which was not considered when we only assigned signed links to a network.

Thresholding functional connections.  Network neuroscientists usually apply thresholds on the cor-
relation coefficients to remove specious connections and magnify key topological features of the networks37. 
Since the impact of positive links and negative links on the balance of the resting-state network were not equal, 
we claimed that the negative weak correlations should not be ignored when we study network balance, so we 
decided to consider signed networks fully-connected. Nevertheless, we employed a thresholding process on the 
connections and obtained significant differences between the balance-energies of actual networks and balance-
energies of null-networks in some range of thresholds (Supplementary Fig. 2). We also observed that sign of 
group-level differences switches by increasing the threshold. It reveals the importance of further investigation in 
the effect of the thresholding process on the signed network balance.

Effect of topology on the balance.  After more than half a century since the appearance of Heider’s 
balance theory, there is no research work to clearly describe the origin of the balance in the signed networks. 
Typically, network balance is determined by counting the triad types. It seems more an observative fact than a 
causal effect. So, it is not still clear what emerges the triad types? In this study, we concluded that the network 
topology plays an influential role in triad type appearance. We described that gathering sign links around the 
nodes and making signed hubs increases the number of balanced triads and decreases the number of imbalanced 
triads (Figs. 4b and 5).

Exponential negative degree distribution.  Network neuroscientists usually regarded both positive 
functional connections and negative functional connections as links and construct brain network without con-
sidering signed of functional connections37. In addition, sometimes they ignored negative connections due to 
the difficulties in the interpretation and justification of anti-correlated activations38. But in this study, we high-
lighted the role of functional negative links. In accordance with the work of Valerio Ciotti et al.39, we extracted 
positive and negative subnetworks and explored them separately. We studied the collective behavior of resting-
state functional negative links and found out that they distribute exponentially (Fig.  6a). Whereas previous 
works indicated a power-law distribution without any consideration on the sign of the links40–43, we assigned 
a new attribute to the collective behavior of functional negative links and emphasized the study on the anti-
synchrony in the brain functional network.
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Emergence of the resting‑state “signed” network.  Ordinarily, brain networks have been considered 
unsigned. They emerge complex properties such as small-worldness that facilitate the integration of informa-
tion and segregate brain functions24. Based on our knowledge, there is no outstanding research that regards the 
brain as a signed network. Since we considered brain network signed to determine network balance, we think it 
is necessary to explore the complexity of resting-state signed network regarding signed links. So we explored the 
emergence of brain regions in terms of negative degree distribution. Emergent property explained that individu-
als may work differently from the whole in a complex system44. We found that the negative degree distribution of 
some brain regions significantly differed from the degree distribution of the whole brain. It is in agreement with 
the emergent behavior of a complex system.

Metastability of resting‑state signed networks.  Metastability refers to a stable state other than the 
state of least energy (ground state). A metastable state has a shorter lifetime than the ground state and is the 
place that transition to other states is likely to occur45. Some studies indicated metastability of the brain regard-
ing brain dynamics46,47, but we observed it in a static manner. Figure 3a indicates that resting-state functional 
networks inhabit at a low energy level near the absolutely stable state, we claimed that is a metastable state.

Limitations and considerations.  We had to select our imaging data from various studies. Although most 
of the scan parameters including repetition time (TR) and the length of scanning were similar, other scanning 
parameters such as echo time (TE) might vary.

It has been shown that applying global signal regression may induce anti-synchronous activities and increase 
the number of negative links38,48,49. Considering the recent neuroimaging studies that suggest not remove the 
global signal50–53, we did not perform global signal regression in the preprocessing steps. Nevertheless, we per-
formed our analysis with global signal regression as well. The results were still valid and are presented in Sup-
plementary Fig. 6.

The main consideration of the current study is about the semantic of balance-energy. In this paper, the energy 
term does not refer to physical energy which roots in biological metabolic actions; but, it is a metaphor to explain 
the global behavior of a signed network. It should be considered that, to the best of our knowledge, there was no 
application of balance theory in neuroscience so far.

Conclusion and future directions.  In summary, we concluded that negative functional connections of 
the resting-state brain network make hubs to form an especially signed network topology and push the network 
toward more balance states with lower balance-energies. Negative links play an important role in the stability 
of resting-state networks, their collective behavior is not trivial, can expose the complexity of brain regions. So 
further researches are needed to investigate them.

Nevertheless, we only investigated the balance of resting-state networks in young adults. However, more 
investigation during the development and degeneration of the mature brain would be required in future works. 
Also, stability and phase transition of task-dependent and dynamic functional networks could be traced by the 
balance theory. We also expect that the balance-energy of functional brain networks in neurodevelopmental 
disorders such as autism falls into a jammed-state (metastable states) that restricts their behavioral performance. 
Lastly, we hope the introduced topological basis of balance could bring new solutions for escaping from that 
jammed-states.

Method
Neuroimaging data.  We selected 70 healthy male adults from 2226 available subjects of the ABIDE 
repository27. Figure 8 shows the subject selection process. All of the subjects were right-handed and aged from 
18 to 31. Each participant underwent a T1-weighted structural MRI and a resting-state fMRI scan in the same 
session. The high-resolution T1-weighted structural MRI was acquired using magnetization-prepared rapid. 
The resting-state fMRI was also acquired using a single-shot EPI sequence during eyes-open task-free condition 
with a repetition time (TR) of 2 s. We reported the demographics of the subjects and scanning parameters of the 
selected dataset in Supplementary Table 2. Finally, we eliminated some cases with destructive artifacts (move-
ment parameters more than one voxel size) to derive 57 subjects (age = 24 + − 4). 

Pre‑processing of resting‑state functional images.  We used a standard preprocessing pipeline that 
utilizes the FMRIB software library v5.0 (FSL: http://www.fmrib​.ox.ac.uk/fsl)54 and Analysis of Functional Neu-
roImages environment (AFNI: http://afni.nimh.nih.gov/afni)55. We deobliqued all of the structural images to 
FSL friendly spaces and extracted the brain. Then, we discarded the first five volumes of resting-state fMRI 

Figure 8.    Subject selection procedure.

http://www.fmrib.ox.ac.uk/fsl
http://afni.nimh.nih.gov/afni
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images to ensure the magnetization stability. Subsequently, we carried out slice time correction for interleaved 
acquisitions using Fourier interpolation. After that, we registered 3D volumes of functional images to their cor-
responding high-resolution structural images of native space using the least square algorithm (3 translational 
and 3 rotational variables were optimized). Then, we interpolated outlier time points using a continuous trans-
formation function and normalized each voxel to the average of its activities. We then applied spatial smoothing 
using a Gaussian kernel function with Full width at Half Maximum (FWHM) equal to 5 mm, and we performed 
temporal bandpass filtering (0.009–0.01 Hz) on the functional images. To prepare for group-level analysis, we 
nonlinearly registered 3D images to MNI152 standard space using optimizing 12 variables which were related to 
translation, rotation, scaling, and shearing. Then, we regressed out confounds of motion (3 translational and 3 
rotational parameters), white matter (WM) and cerebral spinal fluid (CSF). Finally, we checked whether move-
ment parameters of the functional images to be less than one voxel size and visually inspected the quality of brain 
extraction and segmentation in structural images. In this regard, 13 out of 70 subjects could not pass the imag-
ing criteria, so we removed them from further analysis. We have performed and checked the above-mentioned 
procedure in our previous works as well26,56,57.

Activity pattern of the brain regions.  We used MATLAB software to extract time courses of the brain 
regional activities. We chose Schaefer’s Local–Global atlas28 to parcellate the cerebral cortex into 100 homog-
enous regions of interest (ROIs). In this atlas, each parcel is located in one of Thomas Yeo’s canonical networks58. 
To extract the activity pattern of a region, we multiplied the binary mask of that ROI to 3D images and consid-
ered the average of BOLD signals in each 3D image as activity of ROI at that time point. In this way, we drew 
out 100 time-series from the fMRI image of each subject. The number of recorded 3D images (volumes) in the 
functional imaging determined the length of the time series. Considering that we used functional images from 
various imaging-sites with different numbers of recorded volumes, we peaked up the extracted times series 
equaled to the shortest ones. We carried out the equalization process because the length of time courses might 
affect the temporal correlations between regions and connectivity matrices.

Resting‑state signed networks.  Functional connectivity represents temporal synchrony between brain 
regional activations. The synchrony between two regions also is defined as the Pearson’s correlation coefficients 
of their temporal activations. In this way, activity patterns of the brain regions may be positively correlated 
(synchronous) or negatively correlated (anti-synchronous). The correlations are considered as elements of the 
functional connectivity matrix. Finally, we binarized the elements of connectivity matrices to + 1 and − 1 by 
considering the sign of correlation coefficients and built a resting-state signed network for each subject (Fig. 1b).

Structural balance.  Structural balance theory studies collective behavior and stability of signed networks 
based on triadic associations between entities. The theory is rooted in Fritz Heider’s researches on attitude 
change then applied to interpersonal relations18,59. According to the theory, if you are a friend of your friend’s 
friend or an enemy of your friend’s enemy, they are trivial and your triadic relation is balanced (stable); oth-
erwise, if you are an enemy of your friend’s friend or an enemy of your enemy’s enemy, your triadic relation 
is imbalanced (unstable)19. These 4 triadic relations can be modeled using signed links (Fig. 1a). It should be 
noted that an imbalanced triad is considered a frustrating condition and endures tension to change their links 
to become balanced.

We can explore the balance of a signed network where there are lots of triad types21. More balance networks 
have a larger number of balanced triads and less number of imbalanced triads. So, the balance-energy of a 
signed network defines as the difference between the number of balanced triads and the number of imbalanced 
triads22 as follows:

The summation is performed on the possible triads of the network. Sij denotes a signed connection between 
node i and node j. SijSikSjk also represents the multiplication of edge values in a triad where −SijSikSjk is balance-
energy of the triad and equal to either − 1 or + 1 for balanced or imbalanced triads, respectively. Minus sign 
behind the multiplication helps to better understand the equation from the physical energy perspective. 

(

3

N

)

 
also denotes the number of 3-combination from N elements which is equal to the number of possible triads in 
an N-node network. This term plays the role of normalization and confines balance-energy between − 1 and + 1.

The stability of a signed network is associated with the minimization of its balance-energy. Actually, the 
most stable state when all triadic relations are balanced has the lowest balance-energy equal to − 1, and the most 
unstable state when all triadic relations are imbalanced has the highest balance-energy equal to + 1.

Creating null‑networks.  We innovated a procedure to form null-networks to compare their balance met-
rics with the balance metrics of signed resting-state networks. We provided a set of null-networks matched to 
each actual network. The null-networks had the same number of nodes and links and positive to negative link 
ratio as the actual network but differed in signed link topology. We created a null-network corresponded to an 
actual network as follows:

At first, we shuffled time points of regional brain activations (which make the actual network) and built new 
signals. These shuffled signals had similar lengths and distributions to the actual regional activations. It is clear 
that if we wanted to construct connectivity from these shuffled signals, the connectivity matrix had an equal 
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number of positive and negative connections. It may conflict with the nature of brain functional connectivity 
where most of the connections are positive and is not appropriate for testing our hypothesis. Therefore, we 
decided to add a random signal to all of the shuffled signals before calculating the connectivity. The random 
signal had a normal distribution with “a mean and a variance” equal to “the mean and the variance of regional 
activations”. In this way, we could increase shared information between the shuffled signals and increase the 
number of positive connections (positive links). Actually, we multiplied the random signal by an adjusting coef-
ficient then added it to the shuffled signals. So, by changing the coefficient of summation we could adjust the 
number of positive and negative connections and make it similar to the actual brain network. In this way, we 
equalized the positive to negative link ratio of the null-network and the actual network. Figure 9 schematically 
describes the procedure.

In general, we produced 1000 null-networks corresponded to each actual network, then compared the balance 
metrics of each actual network with the average ensemble of the balance metrics of corresponded null-networks, 
and finally used the calculated differences for group-level analysis (Figs. 3 and 4a). We also explained why we 
chose this procedure to construct null-networks in the discussion, at “Null-network formation” section. 

Tendency to make hub.  Measures of the complex networks are either local or global. The global measures 
assess the collective properties of the network and the local measures explain features of the network elements60. 
A hub is a local feature of a network that is assigned to the nodes with extremely connected links61. In this study, 
we introduced a novel global hubness measure and named it "Tendency to Make Hub (TMH)" to quantify the 
strength of link gathering around the nodes in the network from a global perspective. The TMH is defined for 
a networks as follows:

where Di denotes the degree of an individual node, and N represents the total number of nodes in the network. 
The TMH takes the value of 1 or above since the degrees of the nodes have values of 1 or above. In fact, the TMH 
has a higher value when the links have more tendency to assemble around the nodes and make more hubs. In this 
study, we were interested in the assemblage of the negative links; so, we defined sign-dependent TMH as follows:

where “positive TMH ( PosTMH )” demonstrates the tendency to make hub with positive links and “negative 
TMH ( NegTMH )” indicates the tendency to make hub with negative links. In this regard, we defined the number 
of connected positive links to a node as “positive degree ( PosD )” and the number of connected negative links to 
a node as “negative degree ( NegD )” of that node. “Signed degree distribution” also refers to the distribution of 
positive degrees or negative degrees.

Statistical analysis.  To perform a matched-pairs group analysis between balance-energies of resting-state 
networks and ensemble averages of balance-energies of random topology networks (Fig. 3a), initially, we tested 
group-level normality of the balance-energies using the Shapiro-Wilcoxon test. In this way, we found that the 
distribution of the balance-energies was far from normal and this finding led us to use non-parametric statistics. 
Then, we employed the Miao-Gel-Gastwirth test29 to check the symmetry of paired differences distribution. The 
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Figure 9.   Procedure of null-network formation.
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results showed that the differences were asymmetric, therefore, we utilized the Sign test which is a non-paramet-
ric statistical method for matched group-level analysis when the paired differences distribute asymmetrically. 
We also carried out this procedure for the percentages of the triad types (Fig. 3b).

Also, to compare the negative TMHs of actual networks and negative TMHs of null-networks (Fig. 4a), at 
first we applied Shapiro-Wilcoxon and Miao-Gel-Gastwirth tests. The Shapiro-Wilcoxon test showed the non-
normality of negative TMHs as similar to the balance-energies, but Miao-Gel-Gastwirth could not reject the 
null hypothesis of symmetry of the paired-differences distribution. In this situation, we had two choices for 
the non-parametric matched-pairs analysis, the Sign test and the Wilcoxon signed-rank test. So we chose the 
Wilcoxon signed-rank that provide greater statistical power.

We also applied Maximum Likelihood Estimation using Nelder-Mead algorithm62 to fit an exponential model 
to negative degree distribution of actual networks and extract correspondent rate parameter (Fig. 6).

Moreover, to explore the emergent behavior of brain regions from the aspect of negative degree distributions 
(Fig. 7), we compared the negative degree distribution of each ROIs to the negative degree distribution of the 
whole brain using Kolmogorov–Smirnov test. Subsequently, we corrected p-values from false positives caused 
by multiple comparisons using the False Discovery Rate (FDR) method developed by Benjamini & Hochberg 
algorithm63.

We used the R software64 and some of their packages65–69 for statistical analysis and creating graphical fig-
ures. We also created brain images (Fig. 7 and Supplementary Fig. 5) using BrianNet Viewer toolbox30 and drew 
diagrams (Figs. 2, 9, and Supplementary Fig. 7) by Draw.io free online diagram editor70.

In addition, we shared our codes on “https​://githu​b.com/majid​saber​i/NegLi​nkTop​oBala​nce”. So everyone 
can replicate and develop our work.
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