
Research Article
Prediction of Apoptosis Protein Subcellular Localization with
Multilayer Sparse Coding and Oversampling Approach

Xingjian Chen , Xuejiao Hu, Wenxin Yi, Xiang Zou, andWei Xue

College of Information Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China

Correspondence should be addressed to Wei Xue; xwsky@njau.edu.cn

Received 19 September 2018; Revised 4 January 2019; Accepted 20 January 2019; Published 30 January 2019

Academic Editor: Xudong Huang

Copyright © 2019 Xingjian Chen et al.This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The prediction of apoptosis protein subcellular localization plays an important role in understanding the progress in cell
proliferation and death. Recently computational approaches to this issue have become very popular, since the traditional biological
experiments are so costly and time-consuming that they cannot catch up with the growth rate of sequence data anymore. In order
to improve the prediction accuracy of apoptosis protein subcellular localization, we proposed a sparse coding method combined
with traditional feature extraction algorithm to complete the sparse representation of apoptosis protein sequences, using multilayer
pooling based on different sizes of dictionaries to integrate the processed features, as well as oversampling approach to decrease
the influences caused by unbalanced data sets. Then the extracted features were input to a support vector machine to predict the
subcellular localization of the apoptosis protein. The experiment results obtained by Jackknife test on two benchmark data sets
indicate that our method can significantly improve the accuracy of the apoptosis protein subcellular localization prediction.

1. Introduction

As a basic constituent of organisms, proteins play a critical
role in life activities such as metabolism, breeding, growth,
and development, especially for the apoptosis protein, which
are crucial in the proteomics. Since the functions of an
apoptosis protein are closely related to its subcellular location
and different kinds of apoptosis proteins can only function
in specific subcellular location, it is important to predict the
subcellular location of certain apoptosis protein by existing
methods, which could not only help us to understand the
interactions and properties of apoptosis proteins but also
realize the biological pathway involved [1–3]. With the appli-
cation of high-throughput sequencing techniques and the
explosion of sequence data volumes, developing an accurate
and reliable computational method to predict apoptosis
protein subcellular location has been a great challenge for
bioinformaticians, accordingly promoting the development
of machine learning in this field [4–8].

By the analysis of research status, the improved directions
of using machine learning to predict apoptosis protein sub-
cellular location in the past decade can be roughly categorized
into two classes: sequence feature extraction and prediction

model [5–10]. Currently the widely used methods for feature
extraction are amino acid composition (AAC) [11, 12], pseudo
amino acid composition (PseAAC) [13, 14], gene ontology
(GO)[15, 16], position specific scoring matrix (PSSM)[17, 18],
feature fusion [19, 20], and so on. For example, Zhou et al.
used the covariant discriminant function based on Maha-
lanobis distance and Chou’s invariance theorem; combining
with traditional AAC feature to predict apoptosis protein
subcellular location, the prediction result by Jackknife test on
data set ZD98 achieved about 72.5% [21];Wan et al. proposed
GOASVM algorithm based on the information of GO term
frequencies and distant homologs to represent a protein in
general form of PseAAC and got a high accuracy [22]; Chen
et al. used the increment of diversity to fuse N-terminal,
C-terminal, and hydrophobic features of apoptosis protein
sequences, and the accuracies on ZD98 and CH317 were
90.8% and 82.7%, respectively [23]; Zhao et al. combined the
bag of words model with PseAACmethod, using K-Means to
construct the dictionary of sequence features, and obtained a
great predictive effect [24]. At the same time, there are also
many efforts for the development of prediction model. For
example, Wan et al. proposed an adaptive-decision support
vectormachine classifier through the annotation information
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of GO database and realized the prediction of membrane
proteins as well as their multifunctional types [25]; Ali
et al. extracted the PseAAC features of protein sequences,
combining with location voting, k-nearest neighbor and
probabilistic neural network to predict the subcellular local-
ization of membrane proteins [26]. Besides, there are also
some other prediction models used in this filed such as
logistic regression, bayesian classifiers, and long short-term
memory [27–29].

In the last decade or so, a recent review [30] pointed that
a number of web-servers were developed for predicting the
subcellular localization of proteins with both single site and
multiple sites [31–36]. In general, proteins can simultaneously
exist in multiple sites. In this study, given that the num-
ber of multilabel proteins in the existing apoptosis protein
database is not large enough to construct a benchmark data
set meaningfully in statistics and for the case of multiple
locations, the sequence information is more complex and
various than single locations, using oversampling approach to
copy sequence feature may generate the inaccurate results, so
here we did not consider the situation of multilabel proteins.

To summarize the previous research results, it is not
difficult to find that the prediction accuracy is relatively low
if merely using simple method such as AAC or PseAAC to
extract sequence features for classification; as for the other
feature extraction methods, like PSSM or feature fusion,
though the prediction effect is better, the extraction process
is too complicated and time-consuming for practical appli-
cation. Given that many former researches have proved that
support vector machine is one of the best classifiers for the
prediction of protein subcellular localization [5, 9, 10, 14, 17,
22], in this study, we focus on obtaining a higher prediction
accuracy on the premises of simple feature extraction method
and support vector machine to predict the subcellular local-
ization of the apoptosis protein, therefore, finding an efficient
approach to optimize the traditional sequence-based feature
is the key problem to be solved in this paper.

In the study, we proposed a sparse coding method
combined with traditional sequence feature extraction algo-
rithm to extract low-level features of the apoptosis protein
sequence, using multilayer pooling based on different sizes of
dictionaries to integrate the local and holistic features of the
sparse representation. Then the support vector machine was
used to complete the final prediction. Given that our adopted
benchmark data sets are unbalanced which may influence
the classification effects of support vector machine [37], we
used an oversampling approach to balance the data sets in
the study. Compared with other experimental results with
the same support vector machine classifier, the experimental
results show that the proposed method can not only simplify
the feature extraction process and reduce the time and space
complexity of the classifier but also reflect the sequence
featuresmore comprehensively and improve the classification
performance. The detailed descriptions are shown in the
following sections.

2. Materials and Methods

2.1. Datasets. Two widely used benchmark data sets are
adopted in this study: ZD98 and CH317, respectively.The data

Table 1: Numbers of protein sequences in different class of 2
datasets.

Dataset Number of sequences in each class Total

ZD98 Cy Me Mi Other
43 30 13 12 98

CH317 Cy En Me Mi Nu Se
112 47 55 34 52 17 317

set ZD98 was constructed by Zhou and Doctor [21]. There
are 98 apoptosis protein sequences divided into four kinds
of subcellular locations, which are cytoplasmic proteins (Cy),
mitochondrial proteins (Mi), membrane proteins (Me), and
other proteins (Other). The data set CH317 was constructed
by Chen and Li [23] and contains a total of 317 apoptosis
protein sequences, in 6 classes of subcellular locations that
are secreted proteins (Se), nuclear proteins (Nu), cytoplas-
mic proteins (Cy), endoplasmic reticulum proteins (En),
membrane proteins (Me), and mitochondrial proteins (Mi).
Considering that the above data sets are old, we update
ZD98 and CH317 data sets with reference to Wang et al.
[38] and remove some of the duplicates and error sequences.
The specific method is not repeated here. After processing,
there were 96 protein sequences remaining in ZD98 data set
and 314 protein sequences remaining in CH317 data set. All
protein sequences in the above two data sets are from the
latest version of the UniProt database (Release 2018 12), and
the number of protein sequences in each class of 2 data sets is
shown in Table 1.

2.2. Feature Extraction. In order to set up a more accurate
mapping relationship between each protein sequence and its
corresponding feature vector, multilayer sparse coding was
introduced in this study to find the most essential feature of
original protein sequence based on simple feature extraction
method. The algorithm mainly includes the following steps:
local feature extraction, sparse coding, and pooling. And
the process of sparse coding is divided into 2 sections:
dictionary learning and sparse representation. Firstly, the
protein sequence is segmented into some fragments, and
the traditional protein feature extraction algorithm will be
used to extract the features of these fragments, which could
be applied for the step of dictionary learning. Then these
local features are trained to construct a dictionary and
the feature representation of original sequence would be
sparsely reconstructed by it. The mean pooling is used to
reduce the dimensions of the feature matrix, and finally the
pooled vectors based on different dictionary sizes would be
integrated as the ultimate features of protein sequences. The
flow chart of extraction progress is shown in Figure 1.

2.2.1. Local Feature Extraction. Before the step of sparse
coding, it is necessary to extract the local features of protein
sequence to constitute a training sample set for dictionary
learning. Since every protein sequence has the different
length and the critical features may be distributed in different
positions of the sequence, in this paper, we adopted sliding
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Figure 1: The flow of feature extraction process.

window segmentation method inspired by Noor to cut all the
protein sequences into pieces [39], generating a number of
sequence fragments afterwards. The size of sliding window
represents the segment length of each protein sequence, and
the reference formula is

𝐿𝑚𝑖𝑛 = min {𝐿1, 𝐿2, . . . , 𝐿𝑛𝑢𝑚} ,
𝐿𝑚𝑖𝑛
2 ≤ 𝑠 ≤ 𝐿𝑚𝑖𝑛, 𝑚 ∈ 𝑍

(1)

where 𝐿1, 𝐿2, . . . , 𝐿𝑛𝑢𝑚 represent the length of each protein
sequence in the whole data set, 𝐿𝑚𝑖𝑛 is the shortest sequence
of it, and 𝑠 is the size of sliding window, which indicates
that the value of segment length is between 𝐿𝑚𝑖𝑛/2 and 𝐿𝑚𝑖𝑛,
and the exact value will be selected by the experimental
experience.

After the step of segmentation, the existing sequence
feature extraction method is used to statistically analyze
the component information of sequence fragments and to
transform the character sequences into numerical vectors as
the local features of the protein. Effective feature extraction
method can remarkably increase the final prediction accu-
racy. Nakashima and Nishikawa [47] firstly associated the
amino acid composition (AAC)with the prediction of protein
subcellular location in 1994. The AAC coding method was
proposed to count the occurrence frequency of each amino
acid in the protein sequence, described as follows:

𝑃𝐴𝐴𝐶 = [𝑓1𝑓2𝑓3 . . . 𝑓20]𝑇 (2)

where 𝑓1, 𝑓2, 𝑓3, . . . , 𝑓20 represent the number of each amino
acid in the protein sequence, respectively and the specific
explanation is

𝑓𝑢 = 1𝐿
𝐿

∑
𝑖=1

𝐹𝑖, 𝐹𝑖 = {{
{
1, if 𝑅𝑖 = 𝐴 (𝑢)
0, if 𝑅𝑖 ̸= 𝐴 (𝑢)

(3)

𝐿 represents the length of each protein sequence, that is,
the total number of all the amino acid residues contained.
Firstly, 20 amino acids are numbered from 1 to 20, and
𝑓𝑢 (𝑢 = 1, 2, 3, . . . , 20) describes the frequency of corre-
sponding number appeared in the sequence. 𝑅𝑖 represents
each amino acid residue in original sequence, and 𝐴(𝑢)
represents the amino acid residue which corresponds to the
number 𝑢.

By using AAC to calculate the fragment features of
protein sequence P, we can obtain a feature matrix for each

original protein sequence constituted by all the AAC features
of corresponding fragments. The matrix is shown in

𝑉 =
[[[[[[
[

V11 V1𝑛 . . . V1𝑛
V21 . . . . . . V2𝑛
... . . . . . . ...

V𝑚1 V𝑚2 ⋅ ⋅ ⋅ V𝑚𝑛

]]]]]]
]

(4)

where𝑚 represents the number of fragments cut by a protein
sequence, 𝑛 is the feature dimension processed by AAC
algorithm, and V𝑚𝑛 represents the probability of occurrence of
different amino acid residues. At this time, 𝑛 is 20. Each rowof
thematrix represents the feature vectors of different sequence
fragments in a protein sequence. Generally we choose some
of the fragment features as the local features to construct
the dictionary, in this paper; since the number of fragments
obtained is not very large, in order to get a better feature
representation in spar coding, we chose the local features
of all the sequence fragments to form a training sample set
𝑋 = [𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑁] for dictionary learning, where 𝑥𝑖 ∈𝑅𝑛 (𝑖 = 1, 2, 3, . . . , 𝑁), 𝑥𝑖 represents the feature vector of
different protein sequences, that is, the vector in each row in
𝑉, and 𝑁 is the number of fragments belonged to all of the
protein sequences in the data set.

2.2.2. Sparse Coding. Sparse coding is a branch of deep neural
networks, and it contains 2 main steps: dictionary learning
and sparse representation, respectively [48]. It can extract the
detailed features of original data set and decompose the input
sample set into a linear combination of multiple primitives.
The coefficients of the primitives are the features of input
sample. The description can be formulated as

𝑋 = 𝑈𝐷 (5)

where 𝑋 is the matrix of training sample composed by
fragment features; 𝐷 = [𝑑1, 𝑑2, 𝑑3, . . . , 𝑑𝐾] ∈ 𝑅𝐾∗𝑛 is the
primitive matrix named the dictionary, 𝑑𝑖 represents the
feature elements of dictionary, 𝐾 is the size of dictionary, 𝑛
is feature dimension 20 processed by AAC algorithm,; 𝑈 =
[𝑢1, 𝑢2, 𝑢3, . . . , 𝑢𝑁] ∈ 𝑅𝑁∗𝐾 is the sparse representation of
original sample, and 𝑢𝑖 represents the sparse coefficient of
the i-th feature block in the sparse feature space, that is, the
projection of 𝑥𝑖 in sparse feature space. 𝑁 is the number of
fragments belonged to all of the protein sequences in the data
set. The solution of dictionary 𝐷 can be expressed as

min
𝐷,𝑈

𝑁

∑
𝑖=1

𝑥𝑖 − 𝐷𝑢𝑖22
𝑠.𝑡 𝑢𝑖0 ≪ 𝑇0, 𝑖 = 1, 2, 3, . . . , 𝑁.

(6)

where ‖ ∙ ‖2 represents 𝐿2 norm of a vector and ‖ ∙ ‖0 is 𝐿0
norm of a vector. The constraint in formula above means
that the number of nonzero elements in 𝑢𝑖 needs to be less
than or equal to 𝑇0, which is preset and related to the sparse
rate. Equation (6) is essentially a nonconvex optimization
problem. There are mainly two common solutions for it: the
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first is to transform it into a convex optimization problem to
relax the constraint of equation and then transforms it into
the following form:

min
𝐷,𝑈

𝑁

∑
𝑖=1

(𝑥𝑖 − 𝐷𝑢𝑖22 + 𝜆 𝑢𝑖1) . (7)

where 𝜆 is the balance factor and ‖ ∙ ‖1 represents 𝐿1 norm
of a vector. Equation (7) can usually be solved by regression
algorithm, such as LASSO [49]. The second is to solve it by
using the heuristic greedy algorithm [50].The algorithms for
the second solution are MOD and K-SVD [51]. In this study,
in view of the efficiency and operability of the algorithm,
we choose K-SVD as our solution to learn the dictionary;
that is, the second solution.K-SVD is an expansion of K-
means algorithmproposed byAharon andElad [52]. It adopts
the method of iterative alternating learning and uses the
singular value decomposition to perform 𝐾 times iterations
to optimize the primitives of dictionary, which can better fit
the original data. K-SVD is mainly divided into the following
steps:

(1) Initialize the dictionary 𝐷, and set the terminal
condition of iteration;

(2) Fix𝐷, solve the sparse representation 𝑈;
(3) Fix 𝑈, solve the dictionary 𝐷;
(4) Perform steps (2) and (3) alternately until the end of

the iteration.

After obtaining the dictionary, the orthogonal matching
pursuit (OMP) algorithm is used to complete the sparse
representation of the fragment features of the original protein
sequence [53].The basic theory of OMP is to select one of the
most matching primitives from the dictionary to perform a
sparse approximation with the primitives of original samples
and to obtain the residual between them. Then, it continues
to select the next proper primitive which is best matched with
this signal residual and iterates in this way over and over
until the residual and sparse rate meets the fixed terminal
conditions. Samples can be approximately presented by a
linear combination of these derived primitives. All primitives
selected in each process must be orthogonalized first, which
would make the convergence speed faster [54]. Constituting
the sparse features of all the encoded fragments, we can
obtain an 𝑚 ∗ 𝐾 sparse matrix 𝑍 to represent the feature of
each protein sequence, where 𝑚 is the number of sequence
segments in each sequence and 𝐾 is the size of dictionary,
that is, the sparse representation of a protein sequence.

2.2.3.Multilayer Pooling. Thedimension of the featurematrix
obtained by sparse coding is very high, if we expand it
directly, the huge data volume will cause redundant space
and time complexities of classification, and it is prone to
overfitting.Therefore, it is necessary to reduce the dimensions
of the feature matrix. The method of pooling can map the
collection of feature vectors into a single vector. There are
two different common pooling methods that are the max
pooling and mean pooling, respectively. The aggregation

Z
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Figure 2: The progress of multilayer pooling.

statistics of features in different positions can extract the
effective information and reduce the calculated amount of
numerical matrix [55]. Max pooling takes the maximum
value of the feature points in the neighborhood and retains
the edge information of the feature matrix more, while
mean pooling takes the average value of the feature points
in the neighborhood and more to extract the background
information [56]. Given that the characters of sequence data
are different from images, we chose the mean pooling as the
final dimension-reduced method. The formula is shown as
follows:

𝑍 = [𝑧1, 𝑧2, 𝑧3, . . . , 𝑧𝐾]𝑇
𝑧𝑖 = 𝑚𝑒𝑎𝑛 {𝑧𝑖1 , 𝑧𝑖2 , 𝑧𝑖3 , . . . 𝑧𝑖𝑚}

(8)

where 𝑖 = 1, 2, 3, . . . 𝐾, 𝑧𝑖 being obtained by averaging
the 𝑚 elements in the i-th row of the matrix 𝑍. After
being processed by mean pooling, each protein sequence is
represented as a𝐾 dimensional feature vector,𝐾 is the size of
dictionary.

In order to obtain a more overall feature representation
of original protein sequence, multilayer pooling based on
different sizes of dictionary is performed, and several pooling
results will be integrated to help extract the local and holistic
features severally. The specific description is as follows: in the
process of sparse coding, the values of dictionary sizes are
set to 𝐾1, 𝐾2, and 𝐾3 respectively; thus 3 different levels of
dictionary could be obtained by K-SVD algorithm. Then the
OMP algorithm is used to complete the sparse representation
of fragment features based on different dictionary sizes, and
the sparse features are combined to obtain the feature matrix
of original sequence. Finally the sparse matrix will be mean
pooled to extract different levels of feature vectors. The
vectors in each pooled block are concatenated together to
obtain a𝐾1 + 𝐾2 +𝐾3 dimensional vector as the final feature
representation. In this paper, the values of𝐾 were set to 30, 50,
and 70, respectively, generating a 150 dimensional vector to be
selected by principal component analysis (PCA) and sent to
the classifier for prediction. The general descriptions of spare
coding and pooling can be shown in Figure 2.
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Table 2: Numbers of protein sequences in different class of 2
datasets.

Dataset Number of sequences in each class Total

ZD98 Cy Me Mi Other
43 30 26 24 123

CH317 Cy En Me Mi Nu Se
112 47 55 51 52 51 368

2.3. Oversampling Method. Since the data sets used in this
paper are not balanced, which may cause the low accuracy
of prediction, we referred to some similar papers used the
oversampling to balance the data set [16, 30, 43]. In order
to further illustrate the effect of our method, a simple over-
sampling method called synthetic minority oversampling
technique (SMOTE) was applied in the study to decrease the
imbalance of our data set. SMOTE is a classical oversampling
method proposed by Chawla et al. [57]. It is widely used for
its good classification effect and simple operation. The basic
principle of SMOTE algorithm is to synthesize new minority
samples between a few neighbouring samples and to reduce
the imbalance of the data distribution. The details are as
follows:

(1) For each sample 𝑋 in the class of smaller number
of data set, calculate the Euclidean distance from other
samples in theminority class to obtain the𝐾 nearest neighbor
samples.

(2) Assuming that the sampling magnification is 𝑁, for
each of the few classes of samples 𝑋, 𝑛(𝐾 > 𝑛) samples are
randomly selected from their𝐾 nearest neighbor samples and
these 𝑛 samples are recorded as 𝑦1, 𝑦2, 𝑦3, . . . , 𝑦𝑛.

(3) According to the following, combine each sample 𝑋
with 𝑛 samples to perform random interpolation operations
to synthesize 𝑛 interpolated samples 𝑃𝑖:

𝑃𝑖 = 𝑋 + rand (0, 1) ∗ (𝑦𝑖 − 𝑋) , 𝑖 = 1, 2, 3, . . . , 𝑛 (9)

where rand(0, 1) represents a random number within (0, 1)
and 𝑦𝑖 represents the i-th nearest neighbor sample of 𝑋.

(4) Finally, the interpolated sample 𝑃𝑖 is added to the
original sample set to form a new sample set.

The imbalance degree of the data set determines the value
of 𝑁, and the imbalanced level (IL) between majority and
minority of the data set is calculated according to

𝑁 = 𝑟𝑜𝑢𝑛𝑑 (𝐼𝐿) (10)

where 𝑟𝑜𝑢𝑛𝑑(𝐼𝐿) represents the value obtained by round-
ing up IL. Through the above interpolation operation, the
majority and theminority samples can be effectively balanced
to improve the accuracy of classification. In this study, the
minority classes of 2 data sets are balanced by SMOTE, and
the processed results after are as Table 2.

2.4. Classifier and Performance Measures. In order to facili-
tate the comparison with other feature extraction algorithms,
we used support vector machine (SVM) as the classification
model in this study. After the feature extraction of protein
sequences, the universal package of LIBSVM developed by
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Figure 3: The prediction accuracy based on different lengths of
sequence fragments.

Lin was applied to construct the SVM multiclass classifier
[58]. The Jackknife test was also adopted to examine the
effectiveness of classifier in our experiment. Jackknife test
has the least arbitrary that can always yield a unique result
for a given benchmark dataset [59]. Furthermore, in order
to have a more comprehensive evaluation, sensitivity (Se),
specificity (Sp),Matthew’s correlation coefficient (MCC), and
the overall accuracy (OA) over the entire data set are applied
as the evaluation index [20, 21, 60]. These parameters are
detailed in

𝑆𝑒 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁 (11)

𝑆𝑝 = 𝑇𝑁
𝑇𝑁 + 𝐹𝑃 (12)

𝑀𝐶𝐶
= 𝑇𝑃 ∗ 𝑇𝑁 − 𝐹𝑃 ∗ 𝐹𝑁
√(𝑇𝑃 + 𝐹𝑁) ∗ (𝑇𝑃 + 𝐹𝑃) ∗ (𝑇𝑁 + 𝐹𝑁) ∗ (𝑇𝑁 + 𝐹𝑃)

(13)

𝑂𝐴 = ∑
𝑘

𝑖=1 𝑇𝑃𝑖
𝑁 (14)

where TP, TN, FP, and FN are the number of true positives,
true negatives, false positives, and false negatives, respec-
tively; 𝑁 is the total number of protein sequences and 𝑘 is
the class number.

2.5. Parameters Selection. There are two key parameters in
this study. One is the length of sequence fragment in the local
feature extraction.The shortest protein sequence length in the
data set is 50, and the fragment length is selected between 25
and 50. Figure 3 shows the prediction accuracy of the data
set ZD98 and CH317, respectively, when taking different slice
lengths.

As shown in Figure 3, when the sequence length is
between 35 and 40, the prediction accuracies on the data sets
ZD98 andCH317 are the highest and tend to be stable, and the
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Table 3: The experimental results of data sets.

Dataset Jackknife test(%)
Location Sn(%) Sp(%) MMC(%) OA(%)

ZD98

Cy 100 95.6 95.9

96.7Me 96.7 96.7 95.2
Mi 92.3 96.0 86.4

Other 95.9 95.8 90.5

CH317

Cy 95.5 93.8 90.9

94.8

Me 93.6 92.7 91.1
Mi 96.4 94.6 96.7
Se 94.1 92.3 83.4
Nu 94.2 92.5 89.6
En 94.1 90.5 91.5

Table 4: Comparison of the accuracy of ZD98 data set.

Methods Jackknife test(%)
Cyto Memb Mito Other OA(%)

DCC SVM [40] 93.0 86.7 92.3 75.0 88.9
OF SVM [41] 97.7 86.3 92.3 66.7 90.8
DE SVM [42] 95.4 93.3 76.9 83.3 90.8
BOW SVM [24] 97.7 92.9 76.9 83.3 91.7
GA SVM [17] 95.4 90.0 92.3 83.3 91.8
OA SVM [43] 95.3 88.9 97.4 91.7 93.2
Our 100 96.7 92.3 95.9 96.7

current length is the optimal value.The optimal values for the
two data sets used in this study are 35 and 40, respectively.

When using PCA to select the final feature vectors, the
setting of dimension D has an effect on the accuracy of
the entire algorithm. The more dimensions are selected and
the more features are included, but the training time of the
classifier may be too long. The smaller the dimension is,
the more likely it is to lose some truly meaningful features
and affect the classification effect. Therefore, an optimal 𝐷
needs to be sought through experiments. Figure 4 shows the
prediction accuracy corresponding to the different 𝐷 taken
by the data sets ZD98 and CH317 during the feature selection
of PCA.

As shown in Figure 4, when the dimension of the feature
vector is low, the prediction accuracy of two data sets is
relatively low. When the dimension is higher than a certain
value, the prediction accuracy is also reduced. When the
dimension is between 60 and 70, the prediction accuracies
on the data sets ZD98 and CH317 are the largest and tend
to be steady, and the current 𝐷 is the optimal value. The
optimal values for the two data sets used are 60 and 65,
respectively.

3. Result and Discussion

The prediction results of our experiments by Jackknife on
the data sets ZD98 and CH317 are listed in Tables 3, 4,
and 5. To further illustrate the effectiveness of our method,
the prediction results in each subcellular location of two
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Figure 4: The prediction accuracy based on different dimensions.

data sets are also listed in Tables 3–5, which are sensitiv-
ity, specificity, correlation coefficient, and overall accuracy,
respectively.

It can be seen from Table 3 that the method has obtained
good experimental results on both two data sets, and the
total accuracies rates are 96.7% and 94.8%, respectively. The
experiment proves that the method can effectively increase
the accuracy of the prediction of protein subcellular localiza-
tion. At the same time, in order to facilitate the comparison
with other methods, we have listed some experimental results
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Table 5: Comparison of the accuracy of CH317 data set.

Methods Jackknife test(%)
Cyto Memb Mito Secr Nucl Endo OA(%)

DCC SVM [40] 91.1 92.7 82.4 76.5 80.0 93.6 88.3
GA SVM [17] 92.9 89.1 82.4 76.5 84.6 93.6 89.0
BOW SVM [24] 94.6 87.3 82.4 82.4 84.3 91.5 89.2
IAC SVM [44] 96.4 94.5 82.4 76.5 80.8 93.6 90.5
EI SVM [45] 94.6 95.7 92.7 82.4 90.4 70.6 91.1
CF SVM [46] 96.4 90.9 92.3 95.7 82.4 64.7 91.5
Our 95.5 93.6 96.4 94.1 94.2 94.1 94.8

based on some improved algorithms of protein sequence
feature extraction in the past several years.

In Tables 4 and 5, DCC SVM comes from Liang
[40], by using detrended cross-correlation coefficient(2016);
OF SVM comes from Zhang [41], by using 𝜆-Order Factor
and principal component analysis(2017); DE SVM comes
from Liang [42], by fusing two different descriptors based
on evolutionary information(2018); BOW SVM comes from
Zhao [24], by using bag of words(2017); GA SVM comes
from Liang [17], by using geary autocorrelation and DCCA
coefficient(2017); OA SVM comes from Zhang [43], by using
oversampling and pseudo amino acid composition(2018);
IAC SVM comes from Zhang [44], by using integrating
auto-cross correlation and PSSM(2018); EI SVM comes
from Xiang [45], by using evolutionary information(2017);
CF SVM comes from Chen [46], by using a set of discrete
sequence correlation factors(2015); all the methods use SVM
as the final classifier.

It can be seen from Table 4 that the result on the
data set ZD98 has a maximum improvement of the overall
prediction accuracy, increasing by about 6 to 8 percentage
points compared with traditional protein sequence feature
extraction algorithms such as DCC SVM, OF SVM, and
DE SVM. In the subcellular class of cytoplasmic proteins,
the prediction accuracy rate is 100%, which means that all
the sequences in this class are predicted correctly, and the
overall prediction accuracy is better than other methods as
well. Compared the experimental results with other improved
feature extraction algorithms such as BOW SVM, GA SVM,
and OA SVM, the accuracy on the same data set is also
improved by about 3 to 5 percentage points. Experiments
show that the proposed method indeed provides a bet-
ter source of information for protein sequences and have
significant advantages than other similar feature extraction
methods. From the comparison in Table 5, we can see that
the prediction result on mitochondrial proteins of data set
CH317 is up to 96.4%, which is about 4.1% to 14% higher
than other algorithms. The accuracy rate in the class of
Nuclear has also increased by 14.2% maximally, improving
the total prediction accuracy by 3.3 to 4.3 percentage points
compared with the improved algorithms such as IAC SVM,
EI SVM, and CF SVM, which further demonstrates that
the method can optimize the underlying features of the
sequence and effectively improve the prediction accuracy of
apoptosis protein subcellular localization. Compared with

the traditional protein sequence feature extraction and their
improved methods, the time complexity of our algorithm
is not only low but can also achieve better results based
on the simple AAC feature. The background information
of the feature representation can also be extracted by mean
pooling and comprehensively reflect the distribution of
sequence featuresmore, aswell as improving the classification
accuracy.

4. Conclusions

Prediction of apoptosis protein subcellular localization has
always been the hotspot of bioinformaticians all over the
world. Based on the traditional protein sequence feature
extraction algorithm AAC, this paper introduced sparse
coding to optimize sequence features and proposed a feature
fusion method based on multilevel dictionary. The main
contribution includes firstly using sliding window segmenta-
tion to extract the sequence fragments of protein sequences,
and the traditional feature extraction algorithm was used
to encode them. Then the K-SVD algorithm was used to
learn the dictionary, and the sequence feature matrix was
sparsely represented by the OMP algorithm. The feature
representation based on different sizes of dictionaries is
mean-pooled to help extract the overall and local feature
information. Finally the SVM multiclass classifier is used to
predict the subcellular location of the proteins. Experiments
show that the proposed method can obtain better results in
the prediction success rate of most subcellular classes and
have important guiding significance for improving the feature
expression of traditional apoptosis protein sequence feature
extraction algorithms. Generally speaking, it is a relatively
effective method for predicting the subcellular localization of
apoptosis proteins.
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