
1. Introduction
As anthropogenically-caused climate change worsens, built and natural environments are expected to see increas-
ingly detrimental consequences from natural disasters, including wildfires (IPCC, 2022). Climate change is creat-
ing conditions favorable to wildfires through increased temperatures and drier conditions, as well as a shift in the 
precipitation regime toward more rain falling on fewer days per year (Abatzoglou & Williams, 2016; Richardson 
et al., 2022). The last several consecutive fire seasons in the western United States (US), specifically in California, 
have been the worst in recorded history. The increased number and magnitude of wildfires due to climate change 

Abstract Wildfires constitute a growing source of extremely high levels of particulate matter that is less 
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generated from wildfires may have a greater health burden than PM2.5 generated from other pollutant sources. 
This study examined the impact of PM2.5 on hospitalizations for respiratory diseases in California between 
2006 and 2019 using a health impact assessment approach that considers differential concentration-response 
functions (CRF) for PM2.5 from wildfire and non-wildfire sources of emissions. We quantified the burden of 
respiratory hospitalizations related to PM2.5 exposure at the zip code level through two different approaches: 
(a) naïve (considering the same CRF for all PM2.5 emissions) and (b) nuanced (considering different CRFs for 
PM2.5 from wildfires and from other sources). We conducted a Geographically Weighted Regression to analyze 
spatially varying relationships between the delta (i.e., the difference between the naïve and nuanced approaches) 
and the Centers for Disease Control and Prevention's Social Vulnerability Index (SVI). A higher attributable 
number of respiratory hospitalizations was found when accounting for the larger health burden of wildfire 
PM2.5. We found that, between 2006 and 2019, the number of hospitalizations attributable to PM2.5 may have 
been underestimated by approximately 13% as a result of not accounting for the higher CRF of wildfire-related 
PM2.5 throughout California. This underestimation was higher in northern California and areas with higher 
SVI rankings. The relationship between delta and SVI varied spatially across California. These findings can be 
useful for updating future air pollution guideline recommendations.

Plain Language Summary Climate change is leading to an increase in the frequency and intensity 
of extreme weather events, including wildfires. Wildfire smoke is a large source of particulate matter (i.e., 
fine inhalable particles) that could have a greater health burden than particulate matter from other sources 
(e.g., vehicle or industrial emissions). We aimed to quantify the burden of respiratory hospitalizations related 
to all particulate matter exposure in California for the years 2006–2019 with and without considering the 
differential health burden of wildfire smoke. We then compared these two approaches to quantify the number 
of respiratory hospitalizations that may have been underestimated in the past by not taking into account the 
higher health burden of wildfire smoke. We found that throughout California, between 2006 and 2019, we may 
have underestimated the number of respiratory hospitalizations attributable to particulate matter exposure by 
approximately 410,000 (13%). This underestimation was higher in northern California and in vulnerable  areas. 
These results may be helpful for updating recommendations in upcoming air pollution guidelines and for 
protecting communities at higher risk from wildfire smoke.
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brings increased exposure to wildfire smoke (A. P. Williams et al., 2019). Within the western US, northern Cali-
fornia is one of the regions likely to suffer the highest exposure to wildfire smoke in the future (Liu et al., 2016).

Wildfire smoke is a large source of particulate matter, including fine inhalable particles with a diameter of 2.5 μm 
or less, known as PM2.5. Wildfire smoke, by recent estimates, has accounted for up to 25% of PM2.5 across the 
US, and up to half in some western regions (Burke et al., 2021). Exposure to wildfire-related PM2.5 can lead to 
negative impacts on human health, and is known to cause and/or exacerbate respiratory illness in particular (Chen 
et al., 2021; Johnston et al., 2012). Wildfire smoke pollution is associated with both respiratory morbidity and 
mortality (Aguilera, Corringham, Gershunov, & Benmarhnia, 2021; Aguilera, Corringham, Gershunov, Leibel, 
& Benmarhnia, 2021; Chen et al., 2021; Henderson & Johnston, 2012; Liu et al., 2015; O’Dell et al., 2021). 
Fine particles can induce respiratory issues through pulmonary inflammation and weakened pulmonary immune 
response (Hoek et al., 2013; Kurt et al., 2016). Repeated evidence supports the fact that smoke exposure can 
aggravate respiratory issues such as chronic obstructive pulmonary disorder (COPD) (Reid et al., 2016a, 2016b) 
and asthma (Arriagada et al., 2019; Malig et al., 2013; O’Dell et al., 2021; Ostro et al., 2016), and cause stress, 
especially oxidative, on the respiratory tract (Y. H. Kim et al., 2018; Wegesser et al., 2009).

Recent toxicologic studies have found that wildfire PM2.5 can have a higher toxicity effect on the lung than the 
same mass of PM2.5 from other sources (Y. H. Kim et al., 2018; Wegesser et al., 2009). Specifically, the lungs 
of mice exposed to wildfire PM2.5 showed significant damage when compared to the lungs of mice that were 
exposed to doses of normal ambient air PM2.5 that were 10 times greater (Wegesser et al., 2009). A 2021 epide-
miologic study found increases in respiratory hospitalizations ranging from 1.3% to 10% with a 10 μg/m 3 increase 
in wildfire specific PM2.5, compared to a 0.67%–1.3% increase associated with the same amount of non-wildfire 
PM2.5 (Aguilera, Corringham, Gershunov, & Benmarhnia, 2021). This difference may be explained by the differ-
ences in PM chemical composition. Wood smoke generated from wildfires contains a large number of harmful 
components including a high level of organic carbon, polycyclic aromatic hydrocarbons, and water-soluble trace 
metals (Adetona et al., 2016; Danielsen et al., 2011; Karthikeyan et al., 2006). It also has a smaller particle size 
in comparison to PM from ambient air (Danielsen et al., 2011). Wood smoke PM may have a greater potential 
to cause inflammation and oxidative stress in the lung than urban ambient PM (Black et al., 2017; Danielsen 
et al., 2011; K. M. Williams et al., 2013).

The increasing frequency, duration, and intensity of wildfires with climate change constitutes a growing source 
of PM2.5 emissions. Indeed, in the US, wildfire PM2.5 has been increasing due to increasingly aggressive fire 
seasons, while PM2.5 from other sources (e.g., vehicle emissions, coal-burning power plants, and industrial emis-
sions) has been mostly decreasing due to progressing air quality standards (McClure & Jaffe, 2018). Statistical 
models of PM2.5 concentration support the pattern of increasing PM2.5 in the Northwest US due to wildfires, 
while PM2.5 decreases anywhere else in the US (McClure & Jaffe, 2018). Current air quality standards written 
by the World Health Organization (WHO) and US Environmental Protection Agency (EPA) do not differentiate 
between PM2.5 sources of emission (US EPA, 2021; WHO, 2021). Considering PM2.5 from wildfires and other 
sources to be equally harmful to human health may lead to significant underestimation of the burden of fine 
particles in areas that are increasingly exposed to wildfire smoke.

Some subgroups could face even higher risks of health effects from wildfire smoke (Kondo et al., 2019; Reid 
et al., 2016a, 2016b). Socioeconomic status (SES) or other demographics characteristics can be associated with 
exposure, adaptive capacity, and level of resilience. Recent work has found evidence that lower SES groups face 
a higher wildfire smoke-related health burden than high SES groups (Liu et al., 2017; Rappold et al., 2012; Reid 
et al., 2016b). Better identification of vulnerable communities that are most impacted by wildfire smoke, and 
communities most likely to need assistance before, during, and after a wildfire, can help inform the design of air 
quality policies and provide useful information for developing community resilience strategies.

The present study quantified the impact of PM2.5 on hospitalizations for respiratory diseases in California from 
2006 to 2019, using a health impact assessment (HIA) that considered differential concentration-response func-
tions (CRF) for PM2.5 from wildfire and non-wildfire sources of emissions. We quantified the burden of respira-
tory hospitalizations related to PM2.5 exposure at the zip code level through two different approaches: (a) naïve 
(considering the same CRF for all PM2.5) and (b) nuanced (using different CRFs for PM2.5 due to wildfires and 
PM2.5 from other sources). We analyzed the spatial variability of the difference (delta) between the naïve and 
nuanced approaches and whether such deltas were associated with the area's social vulnerability.
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2. Materials and Methods
2.1. Wildfire and Non-Wildfire PM2.5 Exposure

We used wildfire and non-wildfire PM2.5 data over the period 2006–2019 previously estimated by Aguilera 
et al. (2023). These exposures were assessed from daily concentrations of PM2.5 estimated by zip code using 
24-hr daily means sampled and analyzed by the US EPA Air Quality System (AQS) (https://www.epa.gov/aqs), 
which represent fine particulate matter concentrations from all sources (i.e., including both non-wildfire and 
wildfire sources). Aguilera et al. used an ensemble machine learning model with high model prediction capabil-
ities (R 2 of 0.86) to estimate daily PM2.5 at each population-weighted zip code centroid in California (Aguilera 
et al., 2023). Briefly stated, the authors fit a series of machine learning models (including gradient boosting, 
random forest, and deep learning models) using PM2.5 concentrations from AQS monitors and a wide range 
of predictors for PM2.5, such as aerosol optical depth, land cover, and meteorological conditions, and used the 
ensemble of such models to improve PM2.5 prediction. Using a multiple imputation approach based on chained 
random forest models, the authors estimated the non-wildfire PM2.5 concentrations on zip code days covered 
by smoke plumes (identified using Hazard Mapping System's Smoke Product; Brey et  al.,  2018), which was 
then subtracted from the estimated PM2.5 from all sources to obtain wildfire-specific PM2.5 concentrations. 
This new ensemble-based statistical approach to estimate daily wildfire-specific PM2.5 at the zip code level has 
been previously described in detail (Aguilera et al., 2023). Such approach includes the following assumptions: 
(a) First, this approach assumes that HMS products are good proxy for ground-level exposure; this assumption is 
likely to be minor as we found a high correlation between HMS smoke density (for the period 2010–2020) and 
wildfire-specific PM2.5 (see Figure S5 in Aguilera et al., 2023). In addition, unless, another event generating 
increases in PM2.5 levels concomitant to the wildfire smoke event occurs on the same day and zip code, the 
proposed imputation approach would assign a value of 0 on a given day if the smoke levels on the ground are null 
and the estimated wildfire-specific PM2.5 value would be null as well. (b) Second, this approach assumes not 
intra-daily variability as the focus is on daily mean wildfire-specific PM2.5.

2.2. Hospitalization for Respiratory Diseases

We used daily hospital admission data for respiratory diseases provided by the California Department of Health-
care Access and Information (HCAI). We used patient discharge data from 2006 to 2019. The Patient Discharge 
Data set consists of a record for each inpatient discharge from a California-licensed hospital. Respiratory hospi-
talizations correspond to ICD 9 codes 460:519, which include pulmonary diagnoses such as asthma (493), COPD 
(490–496), and pneumonia (480–486). All data were aggregated at the daily level by zip code.

2.3. Health Impact Assessment

We conducted a HIA to quantify the burden of PM2.5 exposure on respiratory hospitalizations. The steps of the 
HIA calculation are described in Figure S1 in Supporting Information S1. We used differential CRFs for PM2.5 
from wildfire and non-wildfire sources of emissions. First, we conducted a naïve approach that considered the 
same CRF for all PM2.5 (wildfire and non-wildfire). Second, we performed a nuanced approach that considered 
differential CRFs for PM2.5 from wildfire and from other non-wildfire sources. We used CRFs from Aguilera 
et al.’s multiple imputation approach, due to the flexibility of the imputation method to isolate wildfire PM2.5 
from other sources compared to alternative methods (Aguilera, Corringham, Gershunov, & Benmarhnia, 2021). 
After converting the values from percent change to relative risk (RR), the CRFs for all (wildfire and non-wildfire) 
PM2.5, non-smoke PM2.5, and wildfire-specific PM2.5 were 1.0076, 1.0072, and 1.10, respectively, with a refer-
ence exposure concentration of 10 μg/m 3. These CRFs were used to calculate the new RR exposure difference, 
the population attributable fraction (PAF), and the attributable number (AN) of respiratory hospitalizations due 
to PM2.5 exposure. The RR measures the increased response in relation to increased PM2.5 exposure. The PAF 
measures the proportion of hospitalizations associated with a given PM2.5 concentration. Finally, the AN value 
measures the health burden of PM2.5 exposure in terms of the number of preventable respiratory hospitalizations 
due to this pollutant. AN was estimated by multiplying the PAF by the number of respiratory hospitalizations. 
Hospitalizations for the whole population (i.e., all gender and age groups) were used for this HIA.

For the naïve approach, we used the CRF of 1.0076 for all (wildfire and non-wildfire) PM2.5. In contrast, for 
the nuanced approach, we applied two different CRFs specific to the source of PM2.5. We calculated two PAFs 

https://www.epa.gov/aqs
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separately, one for non-wildfire PM2.5, which used the CRF of 1.0072, and another for wildfire-specific PM2.5, 
which used the CRF of 1.10. We then calculated the AN for each source and added them together. This nuanced 
approach calculation accounted for the differential health burden of PM2.5 from wildfires by including a specific 
and higher dose response only for this specific source of PM2.5.

For both the naïve and nuanced analyses, we estimated the sum of attributable hospitalizations for each year over 
the study period (2006–2019). In parallel, the AN values were summed per zip code, and then divided by the total 
population per zip code and multiplied by 100,000 to obtain standardized estimates across zip codes per 100,000 
people. Zip code population values were obtained from the 5-year total population estimates (2009–2013) from 
the American Community Survey. We then calculated the delta between the two approaches by subtracting the 
AN of the naïve approach from the AN of the nuanced approach for each zip code. The delta value can be inter-
preted as the number of unaccounted for attributable respiratory hospitalizations due to PM2.5 exposure from all 
sources by not taking into account the differential CRF of wildfire-specific PM2.5.

Finally, in order to determine the total AN of respiratory hospitalizations (over the study period and across 
California) that are unaccounted for when not considering the differential impact of wildfire smoke PM2.5, we 
totaled the number of hospitalizations over the study period over the state of California both for the naïve and the 
nuanced approach and calculated the delta between the two values.

In supplementary analyses, we used the same steps of the HIA described above but with different CRFs for 
the nuanced approach. For this supplementary analysis, we used the CRFs obtained by Aguilera, Corringham, 
Gershunov, and Benmarhnia (2021) using the seasonal interpolation method to segregate wildfire smoke PM2.5 
from other sources of PM2.5 (Aguilera, Corringham, Gershunov, & Benmarhnia, 2021). The CRFs for non-smoke 
PM2.5 and wildfire-specific PM2.5 in this analysis were 1.013 and 1.030, respectively.

2.4. Social Vulnerability Index

To investigate relationships between the delta and population vulnerability, we used the Social Vulnerability 
Index (SVI), a metric developed by Centers for Disease Control and Prevention (CDC) and Agency for Toxic 
Substances and Disease Registry (CDC, 2021). The SVI determines the social vulnerability of each census tract 
based on 15 US census variables including SES, household composition, race/ethnicity/language, and housing/
transportation characteristics. The SVI measures the ability of a community to adapt to natural or human-caused 
disasters. It is measured on a scale of 0–1, with 1 being the most socially vulnerable. As SVI was provided at the 
census tract level, census tracts were aggregated into zip codes using data from the U.S. Department of Housing 
and Urban Development crosswalk files (https://www.huduser.gov/portal/datasets/usps_crosswalk.html#data).

First, we fitted a univariate linear regression model to estimate the association between the delta between the naïve 
and nuanced approach (i.e., the difference in AN of hospitalizations between the two approaches) and the level of 
SVI, per interquartile range (IQR) increase in SVI level (IQR = 0.35). We used IQR for our main contrast of interest 
for simplifying the interpretability of our coefficient given the distribution of the SVI level. Indeed, by default, the 
contrast is set to a change of 1 which corresponds to a substantial and unrealistic change. Second, we used a bivariate 
map to display the delta and SVI on a single map to visualize the spatial distribution of these two variables and the 
geographical concentration of their relationship. Furthermore, we conducted a Geographically Weighted Regression 
(GWR), which allows us to explore spatially varying relationships. The GWR does not assume the relationships 
between the delta and SVI are constant across California. Instead, it allows the relationships to vary by geographical 
location (Fotheringham et al., 2002; Wheeler & Páez, 2010). By allowing local variations in rates of change, this 
method provides a set of coefficients specific to a location (in our case, the zip code). GWR generates a separate 
regression equation for each observation using a different weight in accordance with its proximity (i.e., higher weights 
for close observations and lower weights for distant ones). The GWR allows us to produce detailed maps of spatial 
variations in relationships. A spatially varying association suggests that one unit change in SVI induces different 
levels of change in the delta in different California zip codes (i.e., spatial non-stationarity) (Brunsdon et al., 1996). 
The GWR model was fitted with a Gaussian covariance structure using the spgwr package in R (Bivand et al., 2020), 
with the delta between the two approaches as the outcome and the median SVI as the independent variable.

The GWR model can be written as follows:

𝑦𝑦𝑖𝑖 = 𝛽𝛽0(𝑢𝑢𝑖𝑖, 𝑣𝑣𝑖𝑖) + 𝛽𝛽1(𝑢𝑢𝑖𝑖, 𝑣𝑣𝑖𝑖)𝑥𝑥𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖 
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where yi is the dependent variable (i.e., delta), β0(ui, vi) and β1(ui, vi) are 
the spatially varying coefficients associated with the intercept and independ-
ent variable (i.e., SVI), xik are the values of the independent variable, (ui, vi) 
represent the geographical coordinates, and εi is the error term.

A cross-validation procedure was employed to choose a bandwidth for the 
model. Our GWR model provided β estimates for every zip code across Cali-
fornia, per IQR increase in SVI level. Outlier estimates due to very small 
population sizes (such as rural areas) are not displayed in the results but are 
still accounted for in the model fit. The GWR β estimates were truncated 
and plotted between the first and third quartiles of the regression to visualize 
variations in the coefficients. We used the median estimate value of the GWR 
model as the midpoint. Lastly, we calculated the prediction accuracy of the 
model, which describes the difference between the calculated AN of hospi-
talizations and the number of hospitalizations that the model predicts. This 
difference gives a visual representation of the goodness of fit of the model.

3. Results
Spatial distribution of PM2.5 from all sources and wildfire-specific PM2.5 
in California, over the period 2006–2019, are shown in Figures S2 and S3 in 
Supporting Information S1, respectively.

3.1. Attributable Respiratory Hospitalizations: Naïve Versus Nuanced 
Approach

Table 1 displays the sum of the attributable hospitalizations per year over 
the study period for the naïve approach, nuanced approach, and the delta 
between the two. We found that considering a differential CRF of PM2.5 due 
to wildfires and from other sources leads to the AN of the rate of hospitaliza-
tions in the nuanced approach remaining consistently higher than in the naïve 

approach, except for the years 2010 and 2011, in which the opposite is the case (Table 1). Negative delta values 
were only observed in 2010 and 2011 due to the lower levels of PM2.5 from wildfire during these years. The year 
with the maximum number of attributable hospitalizations due to PM2.5 exposure in the study period was 2008. 
In 2008, across California, the sums of attributable respiratory hospitalizations due to PM2.5 for the naïve and 
nuanced approaches were 257,869 and 370,894, respectively. The delta of the two approaches yielded a value of 
113,025 attributable hospitalizations. For the period of 2006–2019, the highest delta value was observed in 2018, 
with a difference between the two approaches of 131,180 respiratory hospitalizations.

The spatial distribution of the AN of respiratory hospitalizations per zip code for both nuanced and naïve 
approaches over the study period of 2006–2019 is shown in Figure 1. For the two approaches (and especially the 
nuanced approach), hotspots of the highest AN of respiratory hospitalizations are found in central and northern 
California. In Figure 2, we display the delta of the values between the nuanced and naïve approach. We found that 
the largest delta values occur most heavily in northern California, with some of the high and moderate values also 
seen in central California. Southern California mostly contains low delta values.

The delta of the sum of the AN of hospitalizations between the two approaches (during the period 2006–2019 and 
over the state of California) yielded a result of approximately 410,108. This number corresponds to the AN of 
respiratory hospitalizations due to all sources of PM2.5 that go unaccounted for when not considering a different 
CRF for wildfire smoke PM2.5. This value yields a percentage of total unaccounted for hospitalizations due to 
PM2.5 exposure of 13.1% when the differential CRF of wildfire smoke is not considered.

3.2. Burden of PM2.5 Exposure and Social Vulnerability

Figure 3 displays the spatial distribution of delta and SVI simultaneously and revealed that their relationship 
is not consistent across California, with particularly strong relationships in the central and northern part of the 

Year Naïve approach Nuanced approach Delta (nuanced-Naïve)

2006 235,290 240,694 5,404

2007 240,182 273,860 33,678

2008 257,869 370,894 113,025

2009 236,822 243,778 6,956

2010 228,386 221,501 −6,885

2011 208,899 203,839 −5,060

2012 183,081 186,285 3,204

2013 192,101 211,966 19,865

2014 171,682 175,953 4,271

2015 135,190 145,485 10,295

2016 152,771 179,729 26,958

2017 168,394 229,472 61,078

2018 176,697 307,877 131,180

2019 128,280 134,420 6,140

Note. The naïve approach considers the same concentration-response 
functions (CRF) for all PM2.5 whereas the nuanced approach considers 
different CRFs for PM2.5 due to wildfires and PM2.5 from other sources. The 
delta values represent the number of attributable respiratory hospitalizations 
due to PM2.5 exposure from all sources (wildfire or non-wildfire) that go 
unaccounted for by not considering the different CRF of wildfire-specific 
PM2.5.

Table 1 
Sum of the Attributable Number of Respiratory Hospitalizations Due 
To PM2.5 Per Year, Over the Study Period (2006–2019), For the Naïve 
Approach, Nuanced Approach, and the Delta of the Two Approaches
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state. This suggests that using a single model for the entire state might not adequately capture the complexity 
of this relationship. The number of PM2.5-attributable respiratory hospitalizations that go unaccounted for by 
not considering the differential CRF of wildfire-specific PM2.5 (i.e., the delta between the AN of the nuanced 
approach and the AN of the naïve approach) was significantly higher in zip codes with high SVI rankings (i.e., 
more vulnerable populations) (p-value = 0.013). Specifically, we observed an increase of 611 (CI 95% [132, 
1,091]) unaccounted for respiratory hospitalizations per 100,000 people for an SVI increase of 0.35. First and 
third quartiles of the GWR analysis are equal to −11 and 869, respectively. Thus, 50% of the values of the rela-
tionship between SVI and respiratory hospitalizations fall between −11 and 869 unaccounted for hospitalizations 
per a 0.35 unit increase in SVI. To help visualize the variation in the coefficients over the state of California, 
Figure 4 depicts the truncated values from the first to the third quartile. Figure 4 reveals spatial differences at the 
zip code level, with some areas (in red) indicating major associations between delta values and SVI (e.g., areas 
around San Francisco and Sacramento, the northernmost region of California, and San Bernardino County). 
Figure S4 in Supporting Information S1 depicts a plot of the difference between the true and predicted values of 
respiratory hospitalizations. In Figure S4 in Supporting Information S1, we can see random scatter of the resid-
uals, but there are higher magnitude errors in the north and center regions of the state. Coastal cities, which tend 
to have higher populations, tend to be more accurate (Figure S4 in Supporting Information S1).

Using CRFs from the seasonal interpolation method to segregate wildfire PM2.5 from other sources of PM2.5 
produced results consistent with those obtained with the CRFs from the imputation method (Figures S4 and S5 in 
Supporting Information S1). Major associations were found in Bay Area and San Bernardino region using both 
methods. However, larger associations were found in the far northern part of the state using the imputation method, 
while larger associations were found in the southern part of the state using the seasonal interpolation method.

4. Discussion and Conclusions
In this study, we found a higher AN of respiratory hospitalizations due to PM2.5 exposure when accounting for 
differential CRF for PM2.5 from wildfire and non-wildfire sources of emissions. The number of PM2.5-attributable 

Figure 1. Spatial distribution of the total number of respiratory hospitalizations attributable to all PM2.5 in California (wildfire and non-wildfire), per 100,000 people, 
per zip code, for the period 2006–2019, using naïve (a) and nuanced approaches (b). The naïve approach considers the same concentration-response functions (CRF) for 
all PM2.5, whereas the nuanced approach considers different CRFs for PM2.5 from wildfires and from other sources.
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respiratory hospitalizations that go unaccounted for by not considering the differential CRF of wildfire-specific 
PM2.5 was higher in Northern California compared to the rest of the state. Throughout California, between 
2006 and 2019, we found that previous analyses may have underestimated the number of respiratory hospitali-
zations attributable to PM2.5 exposure by approximately 13% by not accounting for the larger health burden of 
wildfire-specific PM2.5. This underestimation was higher in areas with high social vulnerability. These findings 
suggest that policies addressing PM pollution should consider emission sources in order to most effectively 
decrease any harmful health effects on the most vulnerable populations.

The nuanced approach of our HIA considered the fact that wildfire smoke PM2.5 can be more dangerous for 
respiratory diseases, in line with growing toxicologic and epidemiologic evidence (Aguilera, Corringham, 
Gershunov, & Benmarhnia, 2021; Y. H. Kim et al., 2018; Wegesser et al., 2009). As expected, we found that 
the AN of hospitalizations due to PM2.5 exposure increased when we considered a specific CRF for this expo-
sure. The highest AN of respiratory hospitalization values occurred in 2008, most likely due to the large fire 
season of that year. During the 2008 fire season, asthma hospital visits, asthma emergency department visits, 
and COPD flare ups were noted, especially in northern California, where most of the fires were located (Reid 
et al., 2016a, 2016b). The highest delta value was observed in 2018. This finding was expected, as the 2018 wild-
fire season was the most destructive wildfire season on record in California (CDFFP, 2018).

The most important finding of this study was the size and the spatial distribution of delta values, that is, the 
difference between the nuanced and naïve approaches. The highest delta values were observed in northern and 

Figure 2. Spatial distribution of the delta of the two approaches (naïve and nuanced) in California, per 100,000 people, per 
zip code, for the period 2006–2019. The delta values can be interpreted as the number of respiratory hospitalizations due to 
PM2.5 exposure from all sources that go unaccounted for by not considering the different concentration-response functions of 
wildfire-specific PM2.5.
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central California, presumably because of the higher proportion of PM2.5 coming from wildfires in those regions 
compared to others. Evidence from the literature and current observable trends suggest that the increasing 
frequency of drought conditions is making northern California, and the Sierra Nevada Mountain region (which 
spans northern and central California) more susceptible to fires (Kennedy et al., 2021). A 2004 model study 
projected that, with atmospheric carbon dioxide levels doubled, wildfires exceeding their containment limit could 
be expected to increase by 51% in the southern San Francisco Bay area and 114% in the Sierra Nevada region, 
as a best-case scenario (Fried et al., 2004). Large, damaging fires that have burned in the western US in the past 
few years, such as the Dixie fire in 2021 and the August complex fire of 2020, seem to provide evidence for this 
increasing trend in expansive wildfires (NASA, 2021). The large areas of forest present in northern California 
also contribute to the large areas burned by providing fuel for fires (NASA, 2021). Wind speed, relative humidity, 
and air temperature all influence the rate of spread (Sullivan, 2009). In southern California, Santa Ana conditions 
(i.e., low relative humidity and high wind speed) exacerbate the spread of wildfires, with one study finding a 
3.5–4.5 times larger burned area on Santa Ana days compared to non-Santa Ana days (Billmire et al., 2014). 
These fire-producing conditions are expected to get worse with increasing climate change (Fried et al., 2004; 
NASA, 2021).

Considering the disproportionate burden that some communities may face during extreme events, including wild-
fires, is imperative to minimize health inequalities. In this study, we found that a higher level of social vulnerabil-
ity at the zip code level was associated with a higher number of unaccounted for respiratory hospitalizations due 
to PM2.5 exposure. This result suggests that vulnerable communities experience higher PM2.5 exposure from 
wildfire. The inclusion of social vulnerability in planning efforts can help to identify at-risk groups that will be 
most burdened by wildfire. Although fine particulate emissions from wildfires are much more difficult to regulate 
than emissions from human sources, there is still room to improve the development of fire management strategies, 
disaster preparedness programs, and evacuation plans.

Figure 3. Bivariate map of Social Vulnerability Index and delta values (i.e., the number of respiratory hospitalizations due to 
PM2.5 exposure from all sources that go unaccounted for by not considering the different concentration-response functions of 
wildfire-specific PM2.5).
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Our study has several limitations. First, we focused our analysis exclusively 
on the state of California. California is one of the regions of the US currently 
most impacted by wildfire smoke, and likely to suffer the most wildfire smoke 
under future climate change, but smoke produced by wildfires here can move 
long distances, including across state lines. Indeed, wildfire smoke can be 
transported across great distances by wind, with studies finding Western US 
wildfires impacting health on the East Coast (O’Dell et al., 2021). In Cali-
fornia, Santa Ana and Diablo winds typically drive the largest wildfires and 
fan embers across great distances beyond California (Aguilera et  al.,  2020; 
Westerling et al., 2004). A second limitation is that the CRFs from the multiple 
imputation approach were based on non-summer wildfires in southern Cali-
fornia and refer to the exposure being presence of fire upwind and strong Santa 
Ana winds (Aguilera, Corringham, Gershunov, & Benmarhnia, 2021). Despite 
this, we used these CRFs for the entire state of California. Additionally, these 
CRFs did not include lagged effects when assessing the impact of PM2.5 
exposure on respiratory health, but PM2.5 chemical constituents could have 
more delayed estimated effects on respiratory diseases (S. Y. Kim et al., 2012). 
Moreover, a wildfire episode is typically accompanied by an abrupt increase in 
particulate matter that can reach extremely high levels, which may increase the 
risk of acute respiratory reaction and hospitalization. The use of CRF assumes 
a linear relationship between PM2.5 and hospitalization, but this relationship 
may in reality not be linear, which could influence the calculation of attribut-
able burden. Furthermore, although it has been established that the effects of 
PM2.5 exposure can vary by age group (Ebisu et al., 2019), we did not conduct 
age-specific analyses. Concerning the GWR model, smaller areas such as indi-
vidual cities or counties, as opposed to entire zip codes, would have to be 
analyzed in order to see stronger or more detailed variation. Moreover, we 

focused our analysis on PM2.5, the main component of wildfire smoke that impacts public health, but wildfires 
produce elevated levels of other pollutants, including ozone (Bell et al., 2014; Jaffe et al., 2013). It would be inter-
esting for future studies to quantify the health impacts of wildfire-specific ozone, as well as the impact of wildfire 
smoke on other health events. Finally, according the CDC, the SVI was created “to help public health officials and 
emergency response planners identify and map the communities that will most likely need support before, during, 
and after a hazardous event” (CDC, 2021). However, the use of such indices in policy making or risk-reduction 
efforts is the subject of some debate in the literature. For example, a recent publication reported some problems 
with the theoretical and internal consistency of SoVI, another SVI similar to SVI (Spielman et al., 2020).

The results of this study show that the burden of fine particles on respiratory health has been widely underestimated 
in California, and therefore support the conclusion that stronger air quality guidelines are needed to account for 
the differential health impact of wildfire PM2.5 and to prevent respiratory issues during wildfire episodes. The 
∼410,000 (or 13%) of unaccounted for respiratory hospitalizations between 2006 and 2019 in California suggest 
that, by not considering the different CRF of wildfire PM2.5 in air quality standards, the leading regulatory and 
health agencies such as the WHO and the EPA may leave people more at risk of the detrimental health impacts 
of wildfire smoke PM2.5, especially in northern California and in areas of high social vulnerability. In a changing 
climate, where wildfires are anticipated to be an increasingly important source of PM2.5, the results of this study 
can help policy makers to better prepare for, respond to, and protect communities at higher risk from wildfire smoke.
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Figure 4. Spatial distribution of the associations between delta values and 
Social Vulnerability Index (SVI) across California (values between the first 
and third quartile of the Geographically Weighted Regression coefficients). 
The delta values can be interpreted as the number of unaccounted for 
respiratory hospitalizations due to PM2.5 exposure from all sources 
by not considering the differential concentration-response functions of 
wildfire-specific PM2.5. SVI measures the level of social vulnerability and the 
ability of a community to adapt to natural or human-caused disasters.
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