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Mediation analysis has been extensively used to identify potential pathways between
exposure and outcome. However, the analytical methods of high-dimensional mediation
analysis for survival data are still yet to be promoted, especially for non-Cox model
approaches. We propose a procedure including “two-step” variable selection and indirect
effect estimation for the additive hazards model with high-dimensional mediators. We first
apply sure independence screening and smoothly clipped absolute deviation
regularization to select mediators. Then we use the Sobel test and the BH method for
indirect effect hypothesis testing. Simulation results demonstrate its good performance
with a higher true-positive rate and accuracy, as well as a lower false-positive rate. We
apply the proposed procedure to analyze DNA methylation markers mediating smoking
and survival time of lung cancer patients in a TCGA (The Cancer Genome Atlas) cohort
study. The real data application identifies four mediate CpGs, three of which are
newly found.
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1 INTRODUCTION

Lung cancer continues to be the most common cancer type worldwide with the highest (18%) death
rate among all malignant tumors (Wild et al., 2020). Zeilinger et al. (2013) found that tobacco
smoking has an extensive genome-wide influence on DNA methylation. Meanwhile, Tsou et al.
(2002) discovered that DNAmethylation has a strong relationship with lung cancer. It is of interest to
study how DNA methylation mediates the causal pathway between smoking and lung cancer
patient’s survival.

Mediation analysis, for potential indirect effects (IEs) detection, was first applied to psychological
theory and research (Baron and Kenny, 1986). Then this idea was generally applied to sociological
and biomedical fields (Kahler et al., 2017; Lapointe-Shaw et al., 2018; Vansteelandt et al., 2019; Arora
et al., 2020; Song et al., 2020). The mediation model can be expressed in the following equations:

Y � c + cX + ε (1)

M � cm + αX + ε (2)

YM � cy + c′X + βM + ε, (3)

where Y and YM are the outcomes, M is the mediator, and X is the exposure. Eq. 1 is the original
regression model. Eq. 2models the X’s effect onM, and Eq. 3models the X’s effect on Y adjusting for
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M. Estimation and inference of IE are essential to mediation
analysis, which includes (MacKinnon et al., 2002) the causal steps
tests (Judd and Kenny, 1981; Baron and Kenny, 1986), the
coefficients difference tests (Freedman and Schatzkin, 1992),
and the coefficients product tests (Sobel, 1987). Mediation
analysis has been extended from univariate to multivariate or
even high-dimensional mediators. Meanwhile, the outcome could
be continuous, binary, longitudinal data (Selig and Preacher,
2009), as well as survival data (VanderWeele, 2011).

While the Cox model serves a purpose to survival data
analysis, the additive hazards model becomes more and
more common now, which could model the time-varying
effect directly (Aalen, 1989). Lin and Ying (1994) studied a
semiparametric method by mimicking the Cox proportional
hazards model estimation method. Yin and Cai (2004)
proposed an estimated method for multivariate failure
time data and demonstrated its convergence properties.
Mediation analysis has been applied to the additive
hazards model. The early study for natural IE estimation
was presented by Lange and Hansen (2011). Then, the study
has been extended to multiple mediators (Taylor et al., 2008;
Huang and Yang, 2017), and time-dependent mediators
(Deboeck and Preacher, 2016; Aalen et al., 2020).

In recent years, scientists utilized the additive hazards model
to analyze high-dimensional time-to-event data. Lin and Lv
(2013) compared five penalized regularization methods and
found that SCAD (smoothly clipped absolute deviation (Fan
and Li, 2001)), MCP (minimax concave penalty (Zhang,
2010)), and SICA (smooth integration of counting and
absolute deviation (Lv and Fan, 2009)) have better
performance. Chen et al. (2019) proposed a screening method
based on a sparsity-restricted pseudo-score estimator for
ultrahigh-dimensional sparse data with an additive hazards
model. On the other hand, extensive works have been done in
high-dimensional mediation analysis. Zhang et al. (2016) applied
high-dimensional mediation analysis to investigate DNA
methylation sites mediating the causal pathway from smoking
to reduced lung function. Latent variables, Cox model, nonlinear
mediators, and sparse PCA are also discussed for high-
dimensional mediation analysis (Derkach et al., 2019; Loh
et al., 2020; Luo et al., 2020; Zhao et al., 2020), as well as IE
testing methods (Djordjilović et al., 2019; Gao et al., 2019; Dai
et al., 2020; Liu et al., 2021).

However, the analytical approach for high-dimensional
mediators based on the additive hazards model is still
lacking. We aim to establish a procedure for additive
hazards model and investigate DNA methylation markers
with IE between tobacco smoking and lung cancer patient’s
survival. The main idea of the proposed procedure is to
reduce high-dimensional mediators by the “two-step” sure
independence screening (SIS)–SCAD method and identify
positive mediators by the Sobel test. We apply SIS in the first
step for its oracle property and large-scale dimensionality
reduction studied by Fan and Lv (2008), who also
demonstrated that combining SIS and SCAD can perform
the variable selection and parameter estimation
simultaneously. SIS has been extended to survival analysis

with Cox proportional data (Zhao and Li, 2012) and additive
hazards model (Gorst-Rasmussen and Scheike, 2013). We
apply the SCAD penalty in the second step with the
utilization of the R package “haza” (Gorst-Rasmussen and
Scheike, 2012).

The rest of this article proceeds as follows. In the next part, we
present methodological materials involving notations,
assumptions, and detailed procedures. Then, we provide
simulation studies to evaluate the proposed procedure’s
performance and a factual data application to identify mediate
CpGs between smoking and lung cancer patients’ survival time.
Conclusion and discussion are then included at last.

2 MATERIALS AND METHODS

2.1 Notation and Models of the Proposed
Procedure
For each individual i � 1, 2, . . ., n, Ti � min(Di, Ci) denotes the
observed survival time, where Di is the time from beginning
to the event and Ci is the censoring time. δi � I(Di ≤ Ci) is the
failure indicator, and I(·) is the indicator function. When Di >
Ci, the participant is said to be right-censored, which we
consider more in this article. Censoring rate, representing the
rate of participants whose information is not available due to
loss to follow-up or nonoccurrence of the interested event
within the trial duration, is significant to survival analysis
(Prinja et al., 2010).

Figure 1 is a direct acyclic graph showing the relationship
between exposure, outcome, covariates, and high-dimensional
mediators. X is the exposure. M � {M1,M2, . . . ,Mp}T denotes
the high-dimensional mediators, and p ≫ n. Y is the survival
outcome. Z represents covariates. The additive hazards model
with mediators is:

λi t|Xi,Mi, Zi( ) � λ0i t( ) + cXi t( ) + θTZi t( ) +∑p
k�1

βkMki

i � 1, 2, . . . , n, (4)

Mki � ck + αkXi t( ) + ϑTZi t( ) + eki k � 1, 2, . . . , p. (5)

Eq. 4 is an additive hazards model showing individual’s hazard
rates. λi is associated with exposure, covariates, and high-
dimensional mediators. λ0i(t) indicates the time-varying
intercept. Eq. 5 describes the way how exposure and

FIGURE 1 | Direct acyclic graph with the exposure, outcome, and high-
dimensional mediators.
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covariates linearly influence mediators. ck is the intercept and eki
is random error.

2.2 Assumptions
To obtain a causal inference conclusion from the mediation
analysis, we make some assumptions about mediators and
confounders. Here, T(x, M1, M2, . . ., Mp) denotes that the
survival time depends on X and Mk(k � 1, 2, . . ., p). Mk(x*)
represents the mediators with different exposure values. The
consistency assumption matters to the proposed procedure
requiring to hold the outcome once the exposure and
mediators were set (VanderWeele and Vansteelandt, 2009;
Rehkopf et al., 2016). Based on Luo et al. (2020) and Huang
and Yang (2017), the assumptions for the proposed procedure are
as follows:

1) X ⊥ T(x, m1, m2, . . ., mp)|Z; there is no unmeasured
confounding effect between X and T conditional on Z.

2) For any k � 1, 2, . . ., p,Mk ⊥ T(x,m1,m2, . . .,mp)|X, Z; there is
no unmeasured confounding effect between Mk and T
conditional on X and Z.

3) For any k � 1, 2, . . ., p, X ⊥ Mk|Z; there is no unmeasured
confounding effect between X and Mk conditional on Z.

4) For any k � 1, 2, . . ., p,Mx*
k ⊥T(x,m1, m2, . . . , mp)|Z; there is

no X-induced factor confounding the pathway from M to T
conditional on Z, where x* is intervention for X with different
value than x.

2.3 Proposed Procedure
Referring to the counting process notation,Ni(t) � I(Ti ≤ t, δi � 1)
represents the observed failure counting process, where δi � I(Di

≤ Ci). Yi(t) � I(Ti ≥ t) is the at-risk indicator. And

Mi t( ) � Ni t( ) − ∫t

0
Yi s( )

λ0i s( ) + cXi s( ) + θTZi s( ) + βTMi s( ){ }ds
is the additive martingale process. Let P � (c, θ, β) andQi � (Xi, Zi,
Mi). Then the martingale could be simplified as Mi(t) � Ni(t) −∫t

0
Yi(s){λ0i(s) + PTQ}ds.
According to Lin and Ying (1994), the pseudo-likelihood score

function of the proposed model is:

U P( ) � ∑n
i�1

∫∞

0
Qi t( ) − �Q t( ){ } dNi t( ) − Yi t( )PTQi t( )dt{ },

where �Q(t) � ∑n
j�1Yj(t)Qj(t)/∑n

j�1Yj(t). Referring to Lin and
Lv (2013), we can write the score function into

U P( ) � b − VP,

where

b � 1
n
∑n
i�1

∫∞

0
Qi t( ) − �Q t( ){ }dNi t( ),

V � 1
n
∑n
i�1

∫∞

0
Yi t( ) Qi t( ) − �Q t( ){ }⊗2dt,

and a⊗2 � aaT. Then the least-squares type loss function of the
proposed model is:

L P( ) � 1
2
PTVP − bTP. (6)

However, the maximum likelihood estimation is not
feasible when p ≫ n. To identify the true-positive
mediators, we consider the “two-step” method for
dimension reduction. First, we apply SIS to reduce
dimension from an ultrahigh level to a moderate one (Fan
and Lv, 2008). Then we perform the regularization method
with SCAD penalty for the SIS-selected subset. The Sobel test
is applied to identify true mediators in SCAD-selected subset.
Figure 2 shows the overall workflow of the proposed
procedure. We will introduce details below.

Step 1. (Screening) Using SIS to reduce candidate mediators
from p dimension to d dimension, we identify a subset S1 �
{Mk: 1 ≤ k ≤ p}. Here we select d � [2n/ log(n)] mediators
instead of [n/ log(n)] recommended by Fan and Lv (2008) to
contain more positive mediators in subset S1, because
mediators are related to exposure and outcome
simultaneously.

Step 2. (SCAD-penalized selection) Further selection with
SCAD penalty for the subset S2 � {Mk: β̂k ≠ 0} based on Mk ∈
S1 is applied by minimizing the following objective function with
penalty:

Q β( ) � L β( ) +∑p
j�1

pλ βj
∣∣∣∣∣ ∣∣∣∣∣( ),

where L(β) has been shown in Eq. 6, and

pλ
′ |β|( ) � λI |β|≤ λ( ) + aλ − |β|( )+

a − 1
I |β|> λ( ) a> 2 λ> 0.

FIGURE 2 | Overall workflow of the proposed procedure.
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Here we choose the regularization parameters by 5-fold cross-
validation. Gorst-Rasmussen and Scheike (2012) implemented
the SCAD penalized method for additive hazards model in R
package ahaz.

Step 3. (Effect decomposition and IE test) Referring to the
single mediator (Lange and Hansen, 2011) and two mediators
based on the additive hazards model (Huang and Yang, 2017),
we use the counterfactual hazard difference to measure the
effect difference when exposure changes from x to x*.
Counterfactual hazard difference, also named total effect
(TE), includes two parts: direct effect (DE) and IE. DE
represents the exposure directly caused effect. And IE
expresses the effect caused by exposure through mediators
indirectly.

Defining Mx
k and Mx*

k as the mediator value with different
exposure value x and x* separately, we have the following
decomposition of TE (for more details see Supplementary
Appendix):

TE � λ T x*,M1 x*( ), . . . ,Mp x*( )( ); t|Z( ) − λ T x,M1 x( ), . . . ,Mp x( )( ); t|Z( )
� λ T x*,M1 x*( ), . . . ,Mp x*( )( ); t|Z( ) − λ T x*,M1 x( ), . . . ,Mp x( )( ); t|Z( )
+λ T x*,M1 x( ), . . . ,Mp x( )( ); t|Z( ) − λ T x,M1 x( ), . . . ,Mp x( )( ); t|Z( )

� c x* − x( ) + α1β1 +/ + αpβp( ) x* − x( )
� DE + IE

Then we apply the Sobel mediation significance test to subset
S2 to pick out true-positive mediators from candidates by
significant IE. According to Sobel (1987), we have the null
hypothesis H0: αkβk � 0 and following p value calculating
formula:

Praw,k � 2 1 − ϕ
|α̂kβ̂k|
σ̂αkβk

( ){ }, (7)

where σ̂αkβk �
�����������
α̂2kσ̂

2
βk
+ β̂

2

kσ̂
2
αk

√
is the estimated standard error, and

α̂k is the estimator of αk, β̂k is the estimator of βk, σ̂
2
αk

is the

estimated variance of αk, and σ̂2βk is the estimated variance of βk.

3 RESULTS

3.1 Simulation Studies
This section demonstrates the simulation results of the proposed
procedure with high-dimensional mediator’s selection and IE
estimation in a series of simulation studies.

3.1.1 Simulation Design
We generate hazard rate of survival outcome based on
additive hazards model λi(ti|Xi, Zi, Mi) � 5t +Xi + 0.4Z1i +
0.4Z2i +∑p

k�1βkMki and high-dimensional mediators based
on linear model Mki � ck + αkXi + 0.4Z1i + 0.4Z2i + eki. The
simulation data are generated according to the following
parameter settings with different sample size (n � 500,
1,000) and mediator dimensions (p � 10,000, 20,000,
50,000, and 100,000). The censoring time follows the
uniform distribution as U(0, c). By adjusting constant c, we
control the censoring rate from 15% to 50% with a 5% gap to

see the level of sensitivity of the proposed procedure with
different censoring rates. For each scenario, we generate 500
replicates.

• Xi ∼ B(1, 0.6) is the exposure.
• ck ∼ U(0, 0.5) is the intercept and eki ∼ N(0, 1) is the
random error.

• αT � (1, 1, 1, 1, 0.5, 0.5, 0, 0, 0, . . . , 0︸���︷︷���︸
9992

) and
βT � (1, 1, 1, 1, 0, 0, 0.5, 0.5, 0, . . . , 0︸���︷︷���︸

9992

).
• Zi1 ∼ B(1, 0.3), Zi2 ∼ U(0, 1).

Candidates with nonzero IEs are positive mediators, and zero
IEs are negative mediators. We use TPR (true-positive rate), FP
(false-positive number), and FDP to evaluate mediator’s
selection. And we use estimated IE, coverage probability,
estimated standard error, and empirical standard error to
evaluate IE estimation. To control the multiple hypothesis test
error, we apply the BH (Benjamini and Hochberg, 1995) method
to adjust the estimated p value. However, the BHmethod assumes
independent hypotheses, which are not satisfied in some cases.
We also consider the BY (Benjamini and Yekutieli, 2001) method
for dependent situations. We apply both BH method and BY
method for adjusting to compare their performance under
different scenarios.

3.1.2 Simulation Results
We demonstrate the proposed procedure’s performance with
simulation results summarized in Tables 1, 2, visualized in
Figures 3, 4. Figure 3 and Table 1 both show the accuracy of the
mediator’s selection with censoring rates ranges from 15% to
50%, 10,000 mediators, and sample sizes of 500 and 1,000
respectively. In general, selection performs better in sample
size 1,000 than 500, and the BH method (shown at the first
line) performs better (higher TPR and acceptable FDP) than
the BY method (shown at the second line). Considering the
mediator’s independence assumption, we adopt the BH
method into the proposed procedure. Under the
adjustment of the BH method, the lowest TPR equals
0.5485 with sample size of 500 and censoring rate of 50%.
TPR rises near 1 with the increase of sample size and decrease
of censoring rate. The scenario with 1,000 samples and a 30%
censoring rate has the highest FP (0.3340) and FDP (0.0617)
simultaneously. The naive method estimates the IE for each
mediator separately and applies multiple hypothesis
adjustments to all candidate mediators without variable
selection. Simulation results demonstrate the proposed
procedure has better selection performance than the naive
method.

To verify the preponderance of the proposed procedure, we
compare it with the joint method, the lasso method, and the Cox
model method. The joint method uses the joint significant test in
place of the Sobel test; meanwhile, the “two-step” variable
selection is the same as the proposed procedure. The FP and
FDP of the proposed procedure are much lower than the joint
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method. The comparison of the proposed procedure and the
joint method is shown in Supplementary Table S1. The lasso
method replaces the SCAD penalty with the lasso penalty in
the regularization step. For both lasso- and SCAD-penalized
selection, we apply 5-fold cross-validation to optimize the
regularization parameters. The TPR of the proposed
procedure is higher than the lasso method. The comparison
of the proposed procedure and lasso method is accessible at
Supplementary Table S2. The Cox model method fits the Cox
proportion hazards model instead of the additive hazards
model in regularization and IE estimation parts. In
penalized step, we apply 5-fold cross-validation to optimize
the regularization parameters for both Cox and additive
hazards models. The TPR of the proposed procedure is
higher than the Cox model method. The comparison of the
proposed procedure and Cox model method is shown in
Supplementary Table S3.

We also inspect the performance of the proposed procedure
with more mediators like 20,000, 50,000, and 100,000. Under
these circumstances, TPR hardly changes, whereas FP and FDP
raise slowly with the increase of mediators dimension. Results of

moremediators selected by the proposed procedure are available at
Supplementary Table S4. To make simulations closer to the real
world, we set the dependent mediators in another scenario. Results
show that with the increase of mediator’s correlation, TPR
decreases, and FP and FDP increase. The assumption of the BH
method is not satisfied with dependent mediators. We pick the BY
method to adjust the dependent p value. The dependent mediator’s
variable selection results are available at Supplementary Table S5.
We also look over the selection performance of the proposed
procedure under four different coefficients, and the results are
shown in Supplementary Table S6.

In addition, we evaluate the IE estimation performance. We
show the results of 10,000 mediators and sample sizes 500 and
1,000 in Figure 4 and Table 2 (results of censoring rate equal to
15%, 25%, 35%, and 50% are in Table 2, and the rest shown in
Supplementary Table S7). In summary, the estimation performs
pretty well and improves with the increase of sample size. The
estimated IE is close to the true value with a slight bias. The
coverage probabilities are approximately 0.95. The estimated
standard error and empirical standard error are close to
each other.

TABLE 1 | Select accuracy of the proposed procedure compared with naive method.

Censoring rate Sample size Proposed procedure Naive method

TPR FP FDP TPR FP FDP

15% n � 500 0.9105 0.2380 0.0471 0.0830 <0.001 < 0.001
0.8345 0.0160 0.0038 0.0230 <0.001 < 0.001

n � 1,000 0.9980 0.2400 0.0447 0.7100 <0.001 < 0.001
0.9950 0.0200 0.0040 0.4735 <0.001 < 0.001

20% n � 500 0.8765 0.1980 0.0402 0.0645 <0.001 < 0.001
0.7915 0.0160 0.0036 0.0130 <0.001 < 0.001

n � 1,000 0.9975 0.2600 0.0488 0.6230 <0.001 < 0.001
0.9890 0.0360 0.0072 0.3815 <0.001 < 0.001

25% n � 500 0.8455 0.2160 0.0448 0.0410 <0.001 < 0.001
0.7290 0.0240 0.0061 0.0095 <0.001 < 0.001

n � 1,000 0.9945 0.2760 0.0512 0.5350 <0.001 < 0.001
0.9855 0.0200 0.0041 0.3005 <0.001 < 0.001

30% n � 500 0.7855 0.2180 0.0493 0.0280 <0.001 < 0.001
0.6550 0.0140 0.0036 0.0045 <0.001 < 0.001

n � 1,000 0.9885 0.3340 0.0617 0.4630 <0.001 < 0.001
0.9725 0.0220 0.0044 0.2210 <0.001 < 0.001

35% n � 500 0.7480 0.1740 0.0420 0.0240 <0.001 < 0.001
0.6115 0.0200 0.0059 0.0025 <0.001 < 0.001

n � 1,000 0.9820 0.2380 0.0446 0.3480 <0.001 < 0.001
0.9575 0.0200 0.0040 0.1560 <0.001 < 0.001

40% n � 500 0.6885 0.1680 0.0425 0.0120 <0.001 < 0.001
0.5475 0.0160 0.0060 0.0015 <0.001 < 0.001

n � 1,000 0.9650 0.3200 0.0602 0.2700 <0.001 < 0.001
0.9285 0.0180 0.0037 0.1110 <0.001 < 0.001

45% n � 500 0.6220 0.1900 0.0485 0.0055 <0.001 < 0.001
0.4655 0.0080 0.0034 0.0005 <0.001 < 0.001

n � 1,000 0.9420 0.2080 0.0393 0.2035 <0.001 < 0.001
0.8975 0.0200 0.0042 0.0705 <0.001 < 0.001

50% n � 500 0.5485 0.2080 0.0593 0.0055 <0.001 < 0.001
0.4145 0.0100 0.0050 0.0005 <0.001 < 0.001

n � 1,000 0.9235 0.2420 0.0474 0.1340 <0.001 < 0.001
0.8545 0.0140 0.0031 0.0465 <0.001 < 0.001

Each scenario has two results, the first line represents the BH-adjusted p value, and the second line is the BY-adjusted p value; TPR, percentage of correctly selected positive mediators;
FP number, number of incorrectly selected negative mediators; FDP, percentage of FP mediators among all selected. The results are an average of 500 replications.
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In a word, the proposed procedure has good performance in
high-dimensional mediation analysis based on the additive
hazards model with high selected accuracy and exact
estimation performance. Therefore, we apply it to the TCGA
(The Cancer Genome Atlas) lung cancer data.

3.2 Application
Lung cancer is still the most fatal cancer worldwide with many
pathogenic factors such as tobacco smoking and air pollution;
80% to 85% of lung cancers were caused by smoking (Wild
et al., 2020). Nicotine in tobacco may result in genetic

TABLE 2 | Indirect effect estimation of the proposed procedure.

Mediation Estimation cen = 15% cen = 25% cen = 35% cen = 50%

n = 500 n = 1,000 n = 500 n = 1,000 n = 500 n = 1,000 n = 500 n = 1,000

Est. 0.9973 0.9795 1.0114 0.9763 1.0355 0.9854 1.1351 1.0051
M1 CP 0.9509 0.9500 0.9534 0.9559 0.9626 0.9539 0.9524 0.9690
(1,1) � 1 Emp.SE 0.2937 0.1910 0.3175 0.2113 0.3354 0.2243 0.3909 0.2590

Est.SE 0.2907 0.1997 0.3166 0.2174 0.3481 0.2389 0.4086 0.2806
Est. 1.0171 0.9854 1.0355 0.9848 1.0866 0.9962 1.1713 1.0086

M2 CP 0.9351 0.9400 0.9662 0.9520 0.9727 0.9556 0.9661 0.9568
(1,1) � 1 Emp.SE 0.2978 0.2022 0.3123 0.2213 0.3169 0.2354 0.3460 0.2781

Est.SE 0.2924 0.1991 0.3192 0.2167 0.3511 0.2384 0.4124 0.2796
Est. 1.0387 0.9860 1.0678 0.9970 1.0877 0.9913 1.1984 1.0156

M3 CP 0.9430 0.9440 0.9556 0.9380 0.9581 0.9499 0.9523 0.9591
(1,1) � 1 Emp.SE 0.3131 0.2028 0.3275 0.2204 0.3554 0.2400 0.3868 0.2714

Est.SE 0.2926 0.2003 0.3184 0.2186 0.3489 0.2395 0.4094 0.2816
Est. 1.0510 0.9845 1.0539 0.9875 1.0706 0.9978 1.1842 1.0259

M4 CP 0.9390 0.9520 0.9459 0.9540 0.9667 0.9480 0.9522 0.9654
(1,1) � 1 Emp.SE 0.3051 0.1969 0.3198 0.2162 0.3329 0.2428 0.3547 0.2699

Est.SE 0.2941 0.1995 0.3190 0.2174 0.3499 0.2390 0.4137 0.2805
Est. 0.2354 0.0916 0.3143 0.1348 0.3465 0.1302 0.3417 0.1423

M5 CP 0.6071 0.3571 0.4231 0.3684 0.5333 0.3529 0.6500 0.5455
(0.5,0) � 0 Emp.SE 0.2106 0.2029 0.1076 0.1883 0.1281 0.2490 0.2653 0.2662

Est.SE 0.1473 0.1000 0.1634 0.1091 0.1732 0.1240 0.2073 0.1389
Est. 0.0985 0.1518 0.0599 0.2226 0.2380 0.2593 0.3769 0.2927

M6 CP 0.5263 0.7000 0.4706 0.3750 0.5263 0.2500 0.2308 0.3529
(0.5,0) � 0 Emp.SE 0.3193 0.1412 0.3669 0.0725 0.2928 0.0587 0.3874 0.0546

Est.SE 0.1643 0.0988 0.1794 0.1043 0.1852 0.1196 0.2396 0.1451
Est. (—) 0.0097 (—) 0.0019 (—) 0.0647 (—) −0.0012

M7 CP (—) 0.3077 (—) 0.1667 (—) 0.2500 (—) 0.2000
(0,0.5) � 0 Emp.SE (—) 0.1225 (—) 0.1347 (—) 0.1207 (—) 0.1623

Est.SE (—) 0.0554 (—) 0.0616 (—) 0.0636 (—) 0.0769
Est. 0.0901 0.0772 0.0871 0.0802 0.0771 0.1376 0.0261 0.1526

M8 CP 0.8000 0.2500 0.5000 0.4000 0.7500 0.4286 1.0000 0.5000
(0,0.5) � 0 Emp.SE 0.1546 0.0944 0.1935 0.0952 0.1877 0.0145 0.1869 0.0155

Est.SE 0.0941 0.0547 0.1071 0.0587 0.1162 0.0649 0.1217 0.0754

The first column represents Mk(α, β), product of αβ is the real IE; cen, abbreviation of censoring rate; Est., the mean of coefficient estimation; CP, coverage probability, the proportion of
replicates which 95% confidence interval (CI) cover the true value of the coefficient; Emp. SE, empirical standard error, calculated standard error from the estimation of all replicates; Est.
SE, mean of estimated standard error among all replicates. (-) represents those mediators haven’t been selected among 500 replicates. The results are an average of 500 replications.

FIGURE 3 | Select accuracy of the proposed procedure. (A) shows TPR variation of the proposed procedure with different censoring rate and sample size, (B)
shows FP variation, (C) shows FDP variation.
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mutations. To find out whether smoking leads to lung cancer
by affecting the DNA methylation, we applied the proposed
procedure to the TCGA lung cancer cohort study involving
DNA methylation data (907 samples measured by Illumina
Infinium HumanMethylation450 platform), phenotype data
(1,299 samples), and survival data (1,145 samples) for lung
squamous cell carcinoma and lung adenocarcinoma. DNA
methylation values recorded via BeadStudio software were
continuous from 0 to 1 representing the intensity ratio.
Thus, a higher value represents a higher degree of
methylation, and so does the lower one.

After sample matching and data cleaning among the above
data sets, we obtained 833 patients; 41.2% (343) were female, and
68.4% (570) were smokers. The patients’ ages ranged from 33 to
90 years with a median of 67 years. The overall survival time
represented the days from first diagnosed to death or the last
follow-up date. The median survival time was 652 days
(1.79 years).

SIS based on the marginal correlation between tobacco
smoking status and DNA methylation was first applied to
reduce DNA methylation sites from 365,306 to 2n/log(n)
(�248). Then we applied the SCAD penalty for a further
dimension reduction and get a 25 sites subset. We applied the
Sobel test and BHmethod to that subset for IE hypothesis testing.

cg19757631, cg08636115, cg05147638, cg24720672, and
cg08530838 are significant DNA methylation sites with
adjusted p value < 0.05. We are interested in mediating DNA
methylation markers, which increase lung cancer patients’
survival hazards. Therefore, we focus on the CpG sites with
positive IEs (α̂kβ̂k > 0): cg19757631, cg08636115, cg05147638,
and cg24720672.

Table 3 shows mediated CpG sites with positive IE. The
estimated IE was represented by α̂β̂. The TE (effect between
exposure and outcome with covariates) of tobacco smoking on
lung cancer patients’ survival equaled 0.0137 (95% CI
� −0.0252–0.0526), and its DE (effect between exposure and
outcome adjusting for mediators and covariates) equals 0.0171
(95% CI � −0.0244–0.0585). The IEs of four significant mediated
CpG sites cg19757631, cg08636115, cg05147638, and cg24720672
are equal 0.0296 (95% CI � 0.0129–0.0464), 0.0263 (95% CI
� 0.0093–0.0433), 0.0185 (95% CI � 0.0047–0.0323), and
0.0269 (95% CI � 0.0100–0.0438), respectively.

Bakulski et al. (2019) studied DNA methylation sites associated
with smoking exposure in TCGA lung adenocarcinoma tissue
samples and found cg19757631 is significant (FDR-adjusted p
value < 0.05). In their study, the estimated methylation change of
smokers versus never smokers is −12.28% (adjusted p value � 4.81E-
06), which is consistent with ours (β̂ � −0.2806). The experiment

FIGURE 4 | Indirect effect estimation of the proposed procedure. (A) is the estimated coefficients of four mediators with sample size 500 in simulation studies, (B) is
the coverage probability of four mediators with sample size 500, (C) is the empirical standard error and estimated standard error of four mediators with sample size 500.
(D), (E), (F) represent the same simulation results as (A), (B), (C) correspondingly with sample size 1000.
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results from Fei et al. (2019) about gene PRDM16 (cg08636115
located) suggest that PRDM16 is a metastasis suppressor and
potential therapeutic target for lung adenocarcinomas, which has
the same conclusion as ours (β̂ � −0.3811). Shtutman et al. (2011)
explained the operational mechanism of COPZ1 (cg05147638
located) in the tumor cell: the function-based genomic screening
identified COPZ1 gene is essential in different tumor cell types
instead of normal cells. Gene COPZ1 methylation is harmful.
This conclusion approves our results: β̂ � 0.4918. As for CpG site
cg24720672, we find some researches about leukemia—a kind of
cancer, and we infer it has the similar mechanism in tumor tissue as
lung cancer (Nair, 2016; Zhang et al., 2018; Jiang et al., 2020).

The real data application identifies four significant mediated
DNA methylation sites with positive IEs between tobacco
smoking and lung cancer patients’ survival. CpG site
cg19757631 is a mediator having a known relationship with
tobacco smoking (Bakulski et al., 2019). CpG sites cg05147638,
cg08636115, and cg24720672 are newly addressed mediators.
Besides, we also apply the naive method to the TCGA lung
cancer data set, but nothing has been identified.

4 DISCUSSION

High-dimensional data analysis methods are becoming increasingly
important with the development of sequence technologies.Mediation
analysis is effective for identifying potential pathways. High-
dimensional mediation models provide a new tool for biomarker
finding (e.g., identifying DNA methylation sites as the potential
mediator between smoking and cancer patient’s survival). In this
article, we propose an approach for high-dimensional mediation
analysis based on the additive hazards model, which identifies true
mediators and estimates IEs. We first use the “two-step” variable
selection method (contains SIS and SCAD-penalized method) to
reduce high-dimensionalmediators. Thenwe apply the Sobel test and
the BHmethod formultiple IE hypothesis testing. Besides, we also use
the BY method, a more serious adjusting method for dependent
multiple hypothesis, to see the results of unsuitable method (and the
results demonstrate it does bring a lower TPR). Simulation studies
show good performance of the proposed procedure. The real data
application identifies four DNA methylation sites with positive IEs
between smoking and lung cancer patient’s survival time. The
proposed procedure and its application results are valuable
theoretically and practically for high-dimensional mediation
analysis based on the additive hazards model.

High-dimensional mediation analysis is still at the early
stage and yet to be developed further. For example, the
proposed procedure for mediation analysis assumes no
unmeasured confounder effect. Potential confounders could
affect the IE estimation in many observational studies.
Methods to incorporate confounders in the high-
dimensional mediation model using propensity score or
other approaches are still under development. On the other
hand, we consider high-dimensional mediation analysis for
longitudinal or repeated-measures data. The IE estimation
methods for correlated high-dimensional mediators are also
of interest.
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TABLE 3 | Significant mediate CpG sites with positive indirect effect.

Est. IE 95% CI P(BH) P(BY) SE β̂ α̂ Chr Gene

cg19757631 0.0296 (0.0129–0.0464) 0.0112 0.0428 0.0086 −0.2806 −0.1056 chr1 SRM
cg08636115 0.0263 (0.0093–0.0433) 0.0152 0.0581 0.0087 −0.3811 −0.0690 chr1 PRDM16
cg05147638 0.0185 (0.0047–0.0323) 0.0422 0.1612 0.0070 0.4918 0.0376 chr12 COPZ1
cg24720672 0.0269 (0.0100–0.0438) 0.0151 0.0575 0.0086 −1.4889 −0.0181 chr15 LOC283663

Est. IE, the estimated IE (α̂β̂); P(BH), BH-adjusted p value; P(BY), BY-adjusted p value; SE, the estimated standard error; Chr, the chromosome where CpG is located in; Gene, the CpG
located or nearest gene.
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