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Internalization and degradation of live Bb within phagosomal compartments of monocytes,
macrophages and dendritic cells (DCs), allows for the release of lipoproteins, nucleic
acids and other microbial products, triggering a broad and robust inflammatory response.
Toll-like receptors (TLRs) are key players in the recognition of spirochetal ligands from
whole viable organisms (i.e., vita-PAMPs). Herein we will review the role of endosomal
TLRs in the response to the Lyme disease spirochete.
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INTRODUCTION
Borrelia burgdorferi (Bb), the causative agent of Lyme disease
(Radolf et al., 2012) is the most prevalent vector-borne disease in
North America (Levi et al., 2012). In nature, Bb persists asymp-
tomatically in rodent reservoirs, such as the white-footed mouse
Peromyscus leucopus (Barthold and Philip, 2010). Infection in
humans is incidental, and probably represents a dead-end for the
bacterium, as the spirochete is not well adapted to the human
host.

Bb contains a complex bacterial genome (Fraser et al., 1997),
and is composed of different strains and genospecies with dif-
ferences in infectivity, host range, and tissue tropism (Schutzer
et al., 2011; Yang et al., 2013). Different from gram-negative
bacteria, Bb does not contain LPS (Takayama et al., 1987), and
instead it has a number and variety of lipoproteins, many of them
embedded on the spirochete’s outer membrane (Bergstrom and
Zückert, 2010). A number of well-known borrelial lipoproteins
(e.g., OspA) are preferentially expressed at particular stages of the
enzootic cycle (Radolf et al., 2012).

Bb also lacks any toxigenic molecules, thus, the clinical
manifestations associated with Lyme disease are thought to result
from the host’s innate and adaptive immune response to the
invading spirochete (Radolf et al., 2012). A great amount of
research has been done trying to elucidate the mechanism by
which Bb causes inflammation, which in some Lyme Disease
patients manifests as severe arthritis, carditis, and/or central
nervous system disorders (Radolf and Samuels, 2010). Initial
studies focused on the role of Borrelia’s abundant lipoproteins,
which are capable of binding CD14 and Toll-like receptor (TLR)
2/TLR1 heterodimers on the surface of phagocytic cells to
induce the production of inflammatory cytokines (Weiss, 2010;

Radolf et al., 2012). However, we and others have shown that
internalization and degradation of live Bb by monocytes and
macrophages within phagosomal compartments, allows for the
release of lipoproteins and other microbial products, including
RNA and peptidoglycan, eliciting a broader and more complex
inflammatory response that can possibly take place on the cell
surface of innate immune cells (Salazar et al., 2009; Cervantes
et al., 2011). We have called this process “phagosomal signaling.”

TLRs are transmembrane receptors which can recognize var-
ious pathogen-associated molecular patterns (PAMPs), includ-
ing spirochetal lipoproteins and nucleic acids. The interaction
between spirochetal PAMPs and the TLRs triggers a variety of
intracellular signaling pathways leading to the production of
various cytokines, including type I interferons (Salazar et al.,
2009; Cervantes et al., 2011). This review focuses on the role of
endosomal TLRs in Bb-mediated phagosomal signaling.

B. BURGDORFERI INFECTION AND THE INNATE IMMUNE
RESPONSE
While studies have shown that neutralizing antibodies are impor-
tant in host defense against Bb infection, the innate immune
system is now known to have a critical role in spirochetal recog-
nition and clearance from infected blood and tissues (Barthold
et al., 1992). Monocytes, dendritic cells, macrophages, Natural
Killer cells (NK-cells), NK-T cells, and polymorphonuclear cells
(PMNs), all contribute to generate a coordinated and robust
response to Bb infection (Salazar et al., 2003; Moore et al., 2007).
We have proposed a model, where this response is initiated
through recognition of specific Bb ligands during phagocytosis,
primarily by the activation of endosomal TLRs (Moore et al.,
2007; Petzke et al., 2009; Salazar et al., 2009; Cervantes et al.,
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2011). In this section we will briefly describe the role of NKT
cells, PMNs, monocytes/macrophages and DCs in spirochetal
recognition.

NATURAL KILLER T (NKT) CELLS
NKT cells play an important role in the regulation of the
inflammatory response during Bb infection (Lee et al., 2010). In
one study, Bb-infected NKT-depleted-mice had greater inflam-
mation in infected joint tissues, as well as decreased pathogen
clearance (Tupin et al., 2008). This finding is not surprising, given
that Antigen-presenting cells (APCs) activate NKT cells through
presentation of a diacylglycerol glycolipid (Olson et al., 2009).
Upon activation with Bb, NKT cells upregulate of IFNγ to acti-
vate and differentiate macrophages (Olson et al., 2009). It is not
know whether NKT cells have a role in the pathogenesis of Lyme
arthritis in humans.

POLYMORPHONUCLEAR CELLS (PMNs)
The neutrophil is an essential element of the inflammatory
response to the Lyme disease spirochete in both skin and joints

(Salazar et al., 2003; Radolf and Samuels, 2010). Indeed, PMNs
have been shown to play a significant role in the development
of Lyme arthritis in experimentally infected mice (Nardelli et al.,
2008; Codolo et al., 2013). In humans, PMNs are the primary
cell type present in joint fluids from LD patients diagnosed with
acute arthritis. PMNs are responsible for the production of several
inflammatory cytokines, various chemokines, and stimulating
factors that are likely to contribute to inflammation in the joints
by inducing macrophage migration and differentiation and T-cell
activation (Georgilis et al., 1991; Brown et al., 2003; Mantovani
et al., 2011).

MONOCYTES
Monocytes are thought to have an important role in the
production of proinflammatory cytokines during Bb infection
(Salazar et al., 2009). Phagocytosis of Bb by human monocytes
activates signaling cascades, which induce transcription of
proinflammatory cytokines, including IL-6, TNF-α, and IL-12
(Salazar et al., 2003; Cruz et al., 2008; Salazar et al., 2009)

FIGURE 1 | Innate signaling cascade in response to Bb Phagocytosis:

Monocytes produce IL-12 to activate Th1 cells and IL6 and IL-1β to

activate Th17 cells. Monocytes differentiate into macrophages when
stimulated with IFN-γ (produced by Th1 cells) and M-CSF (produced by Th17
cells) and differentiate into dendritic cells when stimulated with IL-4 and
IFN-γ. M0 macrophages produce IL-18 to activate Th1 cells and IL-6 and IL-1β

to activate Th17 cells, as well as several PMN recruitment chemokines. They
also differentiate into M1 macrophages when stimulated with GM-CSF and
IFN-γ. Dendritic cells produce IL-6, IL-1β, and TGF-β to activate Th17 cells.
Th17 cells produce IL-17, which is a strong PMN attractant. Part of images
from Motifolio drawing toolkit (www.motifolio.com) were utilized in the figure
preparation.
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(Figure 1). IL-6 activates T helper cells and induces Th17
differentiation, which in turn can recruit PMNs through IL-17
production (Burchill et al., 2003). TNF-α has the ability to
increase vascular permeability at the infection site, resulting in
increased infiltration of PMNs and other innate immune cells. IL-
12 production by the monocytes is likely to induce Th1 differen-
tiation and increased secretion of IFNγ (Biswas and Mantovani,
2010). IFNγ plays an important role in M1 macrophage differen-
tiation at infection sites (Mosser and Edwards, 2008). Monocytes
also upregulate pro-IL-1β in response to Bb (Cruz et al., 2008),
which when cleaved into IL-1β by caspase-1 can also induce Th17
differentiation (Chung et al., 2009). Bb is also known to induce
monocyte inflammatory cell death through an intrinsic signal-
ing pathway (Cruz et al., 2008), a mechanism which possibly
leads to the recruitment of other immune cells to Bb-infected
tissues.

MACROPHAGES
Bb phagocytosis by macrophages results in increased transcrip-
tion of IL-1β, IL-6, TNF-α, and type I IFNs (Strle et al.,
2009). Bb-infected macrophages also produce a number of PMNs
chemoattractants, including CCL3, CCL4, CCL5, CXCL9, and
CXCL10 (Gautam et al., 2012). Macrophages also produce IL-
18 in response to Bb infection (Dennis et al., 2006; Oosting
et al., 2011), which in turn induces IFNγ production by Th1
cells, driving M1 macrophage polarization (Mosser and Edwards,
2008). M1 macrophages upregulate iNOS and reactive oxy-
gen species (Biswas and Mantovani, 2010), which are essential
in clearance of Bb (Boylan et al., 2008). Phagocytosis of Bb
by macrophages results in significant production of the anti-
inflammatory cytokine IL-10, to mediate resolution of the already
initiated cytokine response, a phenomenon which may play
a critical role in Lyme disease severity and arthritis develop-
ment (Lazarus et al., 2008; Gautam et al., 2012; Chung et al.,
2013).

DENDRITIC CELLS (DCs)
DCs are enriched in early Lyme disease skin lesions (erythema
migrans) (Salazar et al., 2003) and are amongst the first immune
cells to come into contact with Bb in the skin (Mason et al., 2014).
Phagocytosis of Bb activates DCs by inducing expression of CD83
and upregulating expression of CD40, CD80, CD86, and HLA-
DR (Suhonen et al., 2003) and lead to increased transcription
of proinflammatory cytokines, including IL-6, IL-1β, and TNF-
α (Petzke et al., 2009). TGF-β is also produced by DCs after Bb
infection, a cytokine which in turn induces Th17 differentiation
(Chung et al., 2009). The PMN chemotactic factor IL-8 (Dennis
et al., 2006), as well as a number of other PMN chemoattrac-
tants (Hartiala et al., 2007) are produced by DCs following Bb
infection. Upon contact with Bb in the skin, DCs migrate to the
lymph nodes where they present antigens to T cells and induce
adaptive immune responses (Mason et al., 2014). Similarly to Bb-
stimulated macrophages, IL-10 is also elicited from Bb-infected
DCs (Chung et al., 2013). IL-10 down-regulates macrophage acti-
vation, decreases the production of proinflammatory mediators,
and suppresses phagocytosis-associated events that are important

for mediating both innate and adaptive immune responses by
APCs (Chung et al., 2013).

MURINE vs. HUMAN
The development of a murine model to study Lyme disease has
greatly advanced our understanding of the cellular and humoral
responses to Bb. All inbred stains of laboratory mice are sus-
ceptible to Bb infection, although each strain differs in their
disease severity. C3H/He and Balb/c mice are more susceptible
while C57BL/6 and SJL mice tend to be more resistant to Bb
infection (Barthold and Philip, 2010). Differences in the arthri-
tis severity of these two strains might not involve discrepancies in
bacterial clearance mechanisms, as both harbor similar numbers
of spirochetes within their ankle joints (Ma et al., 1998). C3H cells
have been reported to produce higher levels of NFκ-B cytokines
than C57BL/6 upon stimulation with purified borrelial lipopro-
teins (Ganapamo et al., 2003). However, differences in acquired
immune responsiveness after whole Bb infection are still not well
understood. Furthermore, studies on the role of NFκB-dependent
cytokines in arthritis development have yielded conflicting results
(Wooten and Weis, 2001). The susceptible strains produce higher
IgG titers and tend to have more severe arthritis and carditis with
similar manifestations to human infection (Barthold and Philip,
2010; Weiss, 2010). Importantly, no mouse strain develops the
hallmark skin lesion erythema migrans caused by the inflamma-
tory response elicited by the spirochetes, nor neurological disease,
making the murine Lyme model an imperfect model for human
Lyme disease. Rhesus monkeys infected with Bb develop neu-
roborreliosis and erythema migrans in addition to arthritis, thus
making the disease most similar to human infection. Costs and
difficulties in genetic manipulation make the murine model more
commonly used over the primate model (Barthold and Philip,
2010; Radolf et al., 2012).

Lyme carditis is caused primarily by the infiltration of mono-
cytes and macrophages in Bb infected mice (Weiss, 2010).
The genetic background of the experimentally infected murine
model influences the susceptibility to the development of cardi-
tis, although the root of the diversity remains unknown. IFNγ

has been shown to locally modulate Lyme carditis and enhance
the phagocytic capacity of macrophages (Olson et al., 2009).
Macrophages are a critical part of the response to Bb, especially
for the control of spirochetal numbers in the heart (Behera et al.,
2006; Olson et al., 2009). In humans, symptomatic Lyme cardi-
tis is rare and usually resolves with antibiotic therapies (Krause
and Bockenstedt, 2013), although recently it has been shown to
be associated with mortality rates higher than previously reported
(CDC, 2013).

The field of Lyme arthritis has gained much insight from
the use of C3H mouse models due to the robust phenotype
that mimics much of human Lyme disease arthritis complica-
tions (Barthold and Philip, 2010). However the spectrum of
pathology observed in humans is not observed in the murine
model (Steere et al., 1987). It has also been reported that there
is a lack of T cell involvement in mice, which is contradictory
to the observations of some human patient reports, suggesting
the importance of Th1 and γ/δ T cells (Duray, 1989; Vincent
et al., 1996; Gross et al., 1998; Roessner et al., 2003). A select
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group of Lyme arthritis patients experience persistent arthri-
tis even following an appropriate course of antibiotic therapy
(Shin et al., 2007). Investigation of this cohort of patients’ syn-
ovial fluid suggests there is a possible dysregulated inflammatory
response that presents with increased IL-1β, IL-6, and IFNγ (Shin
et al., 2007) and chemokines CXCL9 and CXCL10 (Shin et al.,
2007). IFN-responsive genes have been reported to be strongly
up-regulated within the joints of Bb-infected C3H mice, but
not in mildly arthritic C57BL/6 mice (Crandall et al., 2006).
Nevertheless, bone marrow-derived macrophages from both C3H
and C57BL/6 mice induce IFN-responsive genes following Bb
stimulation (Miller et al., 2008a), and this expression appears to
require a functional type I IFN receptor (Miller et al., 2008b). The
arthritis observed in C57BL/6 mice is modulated by the produc-
tion of IL-10 from CD4+ T cells and macrophages (Lazarus et al.,
2008). IL-10 regulates the expression of IFNγ and production of
CXCL9 and CXCL10 (Lazarus et al., 2008; Sonderegger et al.,
2012), and produce a similar phenotype of persistent arthritis
patients (Shin et al., 2007).

TLR expression varies slightly between humans and mice, with
ten human TLRs, and twelve murine functional TLRs identified
to date (Gosu et al., 2012). TLR1-9 are conserved between the
two species (Kawai and Akira, 2010). TLR8 is non-functional in
mice because it lacks five amino acids (Liu et al., 2010). However,
recently, a murine model expressing functional human TLR8
on a C57BL/6 background has been generated (Guiducci et al.,
2013). TLR10 is also non-functional in mice due to a retrovirus
insertion (Gosu et al., 2012). TLR11-13 are present in mice, but
absent in humans (Kawai and Akira, 2010). In humans, TLR7
is mainly co-expressed with TLR9 on B cells and plasmacytoid
DCs and TLR8 is nearly absent in this cell line; whereas TLR8 is
highly expressed on monocytes/macrophages and myeloid DCs
(Hornung et al., 2002; Cervantes et al., 2012). Differences in
the inflammatory responses to Bb observed between human
and mice, could be explained by variations in TLR- signal-
ing (Petnicki-Ocwieja et al., 2013). Newly generated humanized
mouse models would allow for future studies regarding the role of
human TLRs in Lyme disease clinical manifestations and severity
of disease.

PHAGOCYTOSIS OF B. BURGDORFERI
Phagocytosis is an important component of innate immunity to
the Lyme disease spirochete. Uptake and degradation of the bac-
terium results in the induction of intracellular signals leading to
the generation of cytokines, antigen processing and presentation,
which ultimately leads to the development of acquired immunity
(Greenberg and Grinstein, 2002; Moore et al., 2007).

Delivering individual PAMPs in experimental systems fails to
mimic the natural processes of innate immune activation by TLRs
in response to a live organism. In the case of endosomal TLRs,
ligands are usually delivered in a complex with a cationic poly-
mer such as polyethylenimine or DOTAP (Cervantes et al., 2013;
Love et al., 2014). The natural agonists for endosomal TLRs are,
however, an integral part of live pathogens and as such, are not
directly accessible to receptors but after the whole organism has
been degraded in the endolysosomal compartment (Vance et al.,
2009). The immune system responds more robustly to viable

microorganisms than it does to dead organisms. Blander and col-
leagues found that viable bacteria, but not killed ones, contain a
class of PAMPs which they coined as vita-PAMPs (Sander et al.,
2011). These vita-PAMPs, such as mRNA, signify microbe viabil-
ity to the innate immune system (Sander et al., 2011). Pathogen
and host cell-derived material associated with pathogen nucleic
acids have to be taken up into the endolysosomal compartment,
where degradation allows the nucleic acids to become available
for TLR binding. The detection of vita-PAMPs and conventional
PAMPs could interact with multiple PRRs within the phago-
some and/or the cytosol and have a crucial role in antimicrobial
immunity (Sander et al., 2011).

Professional immune phagocytes, such as monocytes,
macrophages, DCs (Benach et al., 1984a; Filgueira et al., 1996;
Moore et al., 2007) as well as other various cell types (ex.
murine microglia, chondrocytes, synovial, and L929 fibroblast)
have been demonstrated to internalize Bb (Franz et al., 2001;
Kuhlow et al., 2005; Behera et al., 2008; Chmielewski and
Tylewska-Wierzbanowska, 2010). The initiation of phagocytosis
requires interaction of phagocytic receptors (other than CD14
and TLRs) located on the surface of innate immune cells with
surface molecules of Bb innate immune cells (Shin et al., 2008;
Sahay et al., 2009), and internalization of Bb by murine, rat
and rabbit macrophages can occur in the presence (Fc-mediated
phagocytosis) (Figure 2A) or absence of opsonic antibodies
(Figure 2B) (Benach et al., 1984b; Montgomery et al., 1994). Bb
is able to activate both the classical and alternative complement
pathways (Kochi and Johnson, 1988). C3b can either bind to the
surface of bacteria and facilitate internalization of the spirochete
by opsonization or C3b or proceed to membrane attack complex
formation and lysis of the bacteria by depositing downstream
components into the cell wall. The spirochete has evolved
mechanisms that enable them to evade complemented-mediated
lysis (Fraser et al., 1997), such as expression of complement
regulator-acquiring surface proteins (CRASPs). CRASPs act as
binding sites for the complement inhibitor factor H and factor
H-like protein (Hellwage et al., 2001; Kraiczy et al., 2001, 2004)
and cleave bound serum complement protein C3b into the serum
opsonin inactivated C3b (iC3b) (Figure 2A).

Complement Receptor 3 (CR3) (integrin αMβ2,
CD11b/CD18) was demonstrated to directly bind Bb and the
presence of complement enhanced spirochetal binding (Cinco
et al., 1997; Garcia et al., 2005). ICAM-1, iC3b and fibrinogen,
known CR3 protein ligands, have been shown to interact with the
I-domain of CR3 (Humphries, 2000). Only recently, Hawley et al.
identified CR3 to be a phagocytic receptor in murine macrophage
and human monocyte (Figure 2B). This study revealed that CR3
requires cooperation of the GPI-anchored protein, CD14 for
the internalization of unopsonized Bb and that CR3-mediated
phagocytosis of Bb occurs in a Myeloid differentiation primary
response gene 88 (MyD88)-independent manner, thus suggesting
the involvement of additional receptors in MyD88-dependent
Bb phagocytosis (Hawley et al., 2012). CD14 is involved in
translocation of CR3 to the lipid rich microenvironments known
as lipid rafts following interaction with live Bb (Hawley et al.,
2013). The findings suggest that CD14 interacts with the C-lectin
domain of the integrin to induce crosslinking of the integrin and
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FIGURE 2 | Phagocytosis of B. burgdorferi : (A) Opsonic-mediated

phagocytosis—complement factors, such as C3b and iC3b, bound to the

surface of Bb can interact with complement receptors and mediate

phagocytosis. Additionally, the immune cells Fc-receptors have the ability to
bind to the opsonic antibodies that coat Bb and internalize the pathogen. (B)

Conventional phagocytosis—the direct interaction of surface receptors with
Bb, such as integrins and C-type lectins, allows for tether of the spirochete to
the cell surface. Various PRRs induced signal cascade initiates formation of
the phagocytic cup and spirochete engulfment. (C) Coiling phagocytosis—the

preferred mechanism of spirochete internalization in which the phagocytic
cell uses filopodial protrusions that capture Bb. The filopodial enwrap the
spirochete and convert into coiling pseudopods. During this dynamic process
FMNL1, mDai1 Arp2/3 complex, and WASP are involved in actin
rearrangement of the cell, which then facilitates subsequent phagocytosis of
Bb. Following internalization of Bb, the spirochete is degraded within the
phagosome thus exposing additional PAMPs to PRR with in the phagosome.
The phagosomal signals initiated by Bb generates a robust inflammatory
response, including the induction of pro-inflammatory genes and Type I IFNs.

efficient internalization of Bb. Additionally, MyD88-independent
inflammatory pathways have been reported following interaction
of the spirochete with the integrin α3β1 on primary human
chrondrocytes and may be a mechanism directly relevant to
the development of arthritis (Behera et al., 2008). Moreover,
urokinase receptor (uPAR, CD87) has been shown to facilitate
clearance of Bb (Figure 2B), and provides an area for additional
investigation as to the mechanistic involvement in bacterial
clearance (Hovius et al., 2009).

Scavenger receptors comprise a group of unrelated transmem-
brane surface molecules with relatively promiscuous ligand bind-
ing such as scavenger receptor A (SR-A), MARCO (Macrophage
receptor with Collagenouse structure) and CD36 (Areschoug and
Gordon, 2009). This promiscuity allows scavenger receptors to
mediate uptake of a wide range of pathogens including bacteria
(Peiser et al., 2000; Thelen et al., 2010), yeast, viruses and para-
sites (Mukhopadhyay and Gordon, 2004), as well as removal of
dead cell material by both macrophages and DCs (Brencicova
and Diebold, 2013). Little is known about their natural ligands
and the structural basis for ligand binding of bacteria. CD36 and
MARCO can interact with TLR2 and CD14, regulating NFκ-B

cytokine responses (Bowdish et al., 2009; Jordo et al., 2011).
MARCO expression appears to be MyD88 dependent in mice, and
MARCO mediated phagocytosis of Bb seems an important mech-
anism for TRIF signaling (Petnicki-Ocwieja et al., 2013). The
mannose receptor has been demonstrated to bind to Bb (Cinco
et al., 2001), but its role in Bb phagocytosis has not yet been
investigated. Unlike the mannose receptor or CR3 that recon-
stitute phagocytosis in non-phagocytic cells, expression of SRA
or MARCO confers only binding, without significant internal-
ization of Gram positive or Gram negative bacteria (Underhill
and Ozinsky, 2002). In macrophages, the scavenger receptors
MARCO and SR-A are involved in uptake of CpG ODN and influ-
ence TLR9-mediated IL-12 induction with MARCO enhancing its
production (Jozefowski et al., 2006).

Coiling phagocytosis is the preferred mechanism of Bb
uptake, accounting for approximately 60 to 70% of phagocytosis
(Rittig et al., 1992, 1998; Naj et al., 2013). Coiling phagocy-
tosis was first described as the phagocytic mechanism used to
internalized Legionella pneumophila (Horwitz, 1984) where a uni-
lateral pseudopod bends around the bacteria in a hook like
fashion. Phagocytosis is a complex mechanism where F-actin
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polymerization occurs to reorganize the membrane to internalize
Bb (Chimini and Chavrier, 2000; Cruz et al., 2008). The Rho
GTPases, Cdc42 and Rac1 regulate the actin dynamics (Chimini
and Chavrier, 2000; Linder et al., 2001). WASP (Wiskott-Aldrich
syndrome protein) and the Arp2/3 complex are mostly involved
in branched actin network, to reorganize to the pseudopod
intertwining Bb (Amann and Pollard, 2001; Higgs and Pollard,
2001; Linder et al., 2001) (Figure 2C). The formins, FMNL1 and
mDia1, are actin nucleating proteins that influence formation of
unbranched actin filaments and regulate coiling phagocytosis of
Bb by primary human macrophages (Naj et al., 2013). In neu-
trophils, mDia1 is required for both CR3-mediated and FcγR-
mediated phagocytosis (Shi et al., 2009).

Much focus has been directed to the downstream signals ini-
tiated by TLRs following internalization of Bb, especially those
involving the adaptor molecule MyD88. Mice deficient in MyD88
have increased bacterial burdens but normal antibody produc-
tion in comparison to wild-type (WT) mice infected with Bb
(Liu et al., 2004). MyD88 deficient macrophages have a significant
defect in their phagocytic ability of Bb, roughly 50% reduction
compared to the WT macrophages, supporting observations with
phagocytosis and killing of bacteria, rather than a previously
suggested defect in degradation in phagolysosome (Blander and
Medzhitov, 2004; Yates and Russell, 2005; Shin et al., 2009).

PHAGOSOMAL RECOGNITION OF B. BURGDORFERI
LIGANDS
Although there is plenty of evidence showing that formerly
“outer membrane-associated TLRs” such as TLR2 and TLR4
are also recruited to the endosome (McGettrick and O’Neill,
2010; Gangloff, 2012; Brandt et al., 2013), the classic “endoso-
mal nucleic acid-sensing TLRs” comprises TLR3, TLR7, TLR8,
and TLR9 (Brencicova and Diebold, 2013). TLR 7, TLR8, and
TLR9 depend on the endoplasmic reticulum (ER)-resident pro-
tein UNC93B1 for trafficking from the ER via the Golgi to
the endolysosomal compartment (Brinkmann et al., 2007; Kim
et al., 2008; Lee et al., 2013). UNC93B1 physically associates with
the endosomal TLR (McGettrick and O’Neill, 2010; Itoh et al.,
2011) and it appears to be essential for TLR8-mediated signal-
ing (Itoh et al., 2011). Other factors involved in endosomal TLR

trafficking are the ER chaperone GP96 and PRAT4A (McGettrick
and O’Neill, 2010; Lee et al., 2013). Furthermore, trafficking
of endosomal TLRs is also affected by recruitment of adaptor
protein complexes, which are not only TLR-specific (Lee et al.,
2013) but cell specific as well (Sasai et al., 2010; Henault et al.,
2012).

Although originally associated with the recognition viral
pathogens, endosomal TLRs are also able to sense bacterial
nucleic acids. The earliest evidence for such recognition was done
using TLR7 and TLR8-stably transfected HEK cell lines, show-
ing that Escherichia coli total RNA induced activation of TLR7
and TLR8 (Kariko et al., 2005). More recent experimental evi-
dence confirms that TLR7 is capable of sensing bacterial RNA in
both human and murine DCs, inducing the production of sev-
eral NFκ-B cytokines (Eberle et al., 2009; Mancuso et al., 2009).
A similar role for TLR8 activation, triggered by recognition of
borrelial RNA delivered to endosomal vacuoles in human mono-
cytes, was recently demonstrated by our group (Cervantes et al.,
2013). The role of TLR8 in nucleic acid sensing was initially
suggested by results from two previous studies reporting TLR8
upregulation after phagocytosis of Mycobacterium bovis (Davila
et al., 2008), and Helicobacter pylori by THP-1 cells (Gantier
et al., 2010). In our own studies we first showed that phagocy-
tosis of live Borrelia burgdorferi by human monocytes (Figure 3)
induces transcription of IFN-β (Salazar et al., 2009), and subse-
quently confirmed that this phenomenon was entirely dependent
on TLR8 (Cervantes et al., 2011), through IRF-7; a signaling path-
way traditionally associated with recognition of viral RNA (Boo
and Yang, 2010).

Type I interferon responses following phagocytosis of live Bb
are not restricted to IFN-β transcription by monocytes. In pDCs,
production of IFN-α involves recognition of Bb ligands by TLR7
and TLR9 (Petzke et al., 2009; Love et al., 2014). In this cell type,
IFN-responsive genes seem to be induced by Bb RNA through
TLR7 recognition (Love et al., 2014).

Bacterial ribosomal RNA appears to be the major PAMP
responsible for the production of IFN-α by human PBMCs
(Eberle et al., 2009). Transfer RNA from some bacteria may also
induce production of IFN-α through TLR7 activation (Jockel
et al., 2012). In the case of Gram positive bacteria, such as Group

FIGURE 3 | Borrelial RNA is confined to the phagolysosome. Live Bb whose nascent RNA has been stained with Click-iT (5 Uridine) (Green), seen internalized by
a human monocyte. Lysosome stained with Lysotracker Red (Red). Colocalization shown as white pixels of the green channel colocacalizing with the red channel.
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B Stretptococci, bacterial ssRNA is recognized in macrophages by
a TLR-MyD88-UNC93B1 complex (Deshmukh et al., 2011).

ENDOSOMAL TLR INVOLVEMENT IN AUTOIMMUNITY AND
Bb NUCLEIC ACID PERSISTENCE
Although the immune system has evolved mechanisms to pre-
vent stimulation by self-nucleic acids, nucleic acid-sensing TLRs
can trigger innate immune activation resulting in induction
of autoimmunity (Saitoh and Miyake, 2009; Brencicova and
Diebold, 2013). In fact TLR7, TLR8, and TLR9 are unable to
distinguish between pathogen and self-nucleic acids on the basis
of their molecular structures (Diebold et al., 2004; Heil et al.,
2004; Barbalat et al., 2011). Mouse TLR7, and human TLR7 and
TLR8 serve as PRR for single-stranded RNA (ssRNA), whereas
the functionality of mouse TLR8 is still somewhat obscure
(Cervantes et al., 2012). Presence of methylated nucleosides or
pseudouridines in mammalian tRNA may also prevent TLR7 and
TLR8 activation (Kariko et al., 2005). However, these nucleotide
modifications are less frequent in mammalian mRNA (Maden
and Hughes, 1997), which can become immunostimulatory when
delivered to the endosome in form of complexes with polycations
such as polyethylenimine (Koski et al., 2004; Kariko et al., 2005;
Diebold et al., 2006).

TLR7 and TLR8 have already been shown to play a central
role for the recognition of self RNA in the immunopathogene-
sis of autoimmune diseases such as systemic lupus erythematosus
(SLE), psoriasis, rheumatoid arthritis, Sjögren’s syndrome and
others (Demaria et al., 2010; Zheng et al., 2010; Theofilopoulos
et al., 2011). Human TLR8 inhibits TLR7 and TLR9 activation
(Guiducci et al., 2013), and murine TLR8 also inhibits TLR7 acti-
vation (Wang et al., 2006). TLR8 deficiency leads to overexpres-
sion of TLR7 in murine DCs with increased NFκ-B activation and
development of autoimmunity (Demaria et al., 2010). In humans,
TLR7 and TLR9 are upregulated in patients with Sjogren’s syn-
drome (Zheng et al., 2010). Similarly, genetic modifications that
lead to a duplication of the TLR7 gene or over-expression of trans-
genic TLR7 are associated with exacerbated lupus-like symptoms
in murine models (Pisitkun et al., 2006; Deane et al., 2007). It
is worth noting that TLR7 is located on the X chromosome and
that females induce higher levels of IFN-α in response to TLR7
agonists (Berghofer et al., 2006), which could represent a major
factor responsible for the higher prevalence of SLE in women.

One of the more puzzling aspects of Lyme disease is the per-
sistence, in some patients, of musculoskeletal symptoms follow-
ing Bb infection, and their refractoriness to rapid improvement
despite proper antibiotic treatment (Bockenstedt et al., 2012).
While erythema migrans and Lyme carditis often present within
the first few weeks of intection, Lyme arthritis more often presents
several weeks after the initial infection in untreated patients and
can persist even after antibiotic treatment (Kean and Irvine,
2013). Since initial studies failed to detect spirochetal DNA in
human synovial fluid following antibiotic treatment in LD with
persistent arthritis, also called antibiotic-resistant Lyme arthritis,
it was considered an autoimmune disease (Benoist and Mathis,
2001; Steere, 2012), possibly mediated by shedding of borre-
lial outer surface lipoproteins (Osps) within the synovial fluid
(Batsford et al., 2004). However, in recent studies, investigators

were able to detect Bb DNA in joint fluid from Lyme arthri-
tis patients who received appropriate antibiotic therapy (Picha
et al., 2008; Li et al., 2011; Picha et al., 2014). Bb positive PCR
results have been reported to persist for as long as 11 months
in patients with antibiotic-refractory arthritis, although detec-
tion of Bb DNA did not translate into active joint disease (Li
et al., 2011). DNA and antigen deposits have been shown to per-
sist after antibiotic treatment in cartilage of mice deficient in
MyD88 (Bockenstedt et al., 2012). This mouse strain exhibits
more severe arthritis than WT (Bolz et al., 2004; Liu et al., 2004),
and presents higher levels of IFN-β in joint tissue after infection
(Petnicki-Ocwieja et al., 2013).

Naked pathogen-derived nucleic acids present in the extracel-
lular space upon release from damaged or disintegrated microbes
or the infected host cells, may be ultimately degraded by extra-
cellular DNases and RNases before they can access the endolyso-
somal compartment of other immune cells (Brencicova and
Diebold, 2013). If such degradation fails to occur, the pres-
ence of this remaining nucleic acid could potentially trigger
an autoimmune response. This has been shown to occur with
released self-DNA in SLE patients carrying mutations in DNase
I (Yasutomo et al., 2001), and in DNase I-deficient mice, which
develop a lupus-like disease (Napirei et al., 2000). It has been
hypothesized that the sensing of naked ssRNA and DNA, which
is not associated with pathogen-derived material including non-
nucleic acid PAMP, doesn’t allow for the discrimination between
pathogen-associated vs. self-nucleic acids and, therefore, has the
potential to lead to autoimmunity (Brencicova and Diebold,
2013). Mechanisms that aid in the discrimination between for-
eign (pathogenic) and self (cellular) nucleic acids, aim to inhibit
endosomal TLR activation, or prevent cellular nucleic acid to
bind to endosomal TLRs. These mechanisms include the pres-
ence of modified RNA species such as tRNA and rRNA in total
cellular nucleic acids (Kariko et al., 2005), sequestration of cellu-
lar nucleic acids through binding to cellular components, and/or
recruitment of nucleic acid-sensing TLR to the endolysosomal
compartment or their functional activation by cleavage, a process
that may be regulated by gatekeeper receptors with the abil-
ity to detect PAMP and/or DAMP absent from uninfected cells
(Brencicova and Diebold, 2013). Hence, any mechanisms that
allow for or promote the recognition of naked ssRNA and DNA
such as in the form of immune complexes should be regarded as
non-physiological events.

TLR9 is another endosomal TLR that has been linked to
autoimmunity (Theofilopoulos et al., 2011), and a potential role
for TLR9 in recognition of Bb DNA may exist (data not shown).
Initially, it was thought that TLR9 is located in the ER in unstim-
ulated cells and is recruited to the endolysosomal compartment
only after uptake of TLR9 agonist (Latz et al., 2004). However,
there is evidence of steady-state low level of trafficking of nucleic
acid-sensing TLR via the Golgi to the endolysosomal compart-
ment which may initiate TLR recruitment upon stimulation with
nucleic acids (Brencicova and Diebold, 2013).

POTENTIAL ROLE OF TLR IN CLINICAL DISEASE SEVERITY
While TLRs are capable of sensing pathogenic materials, defec-
tive TLR signaling can hinder activation of the adaptive response.
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On the other hand, excessive response of TLRs and production of
cytokines may increase the disease state (Kean and Irvine, 2013).

Bb produces many symptoms within the human host, includ-
ing erythema migrans, systemic inflammation, Lyme arthritis,
Lyme carditis, and neuroborreliosis (Radolf et al., 2012; Kean
and Irvine, 2013). It is now known that lipoproteins can serve
as potent ligands for TLRs. Bb has many Osps that are capa-
ble of triggering the innate immune system through activation
of TLRs (Gondolf et al., 1994; Radolf et al., 2012). The three
major Osps of Bb include OspA, OspB, and OspC. Moreover,
the CD14/TLR2 complex be activated by these lipid moieties.
Using a rat model Batsford et al. showed that polymerized peptide
OspA produced a short lasting arthritis and that lipidated OspA
and OspA elicited severe arthritis (Batsford et al., 2004). Other
studies have demonstrated that macrophages play a direct role in
the induction of Lyme arthritis in hamsters (DuChateau et al.,
1999). These facts implicate TLRs as key players in the develop-
ment of Lyme arthritis and critical receptors for recognition of
vita-PAMPs.

Borrelia infection can also lead to Lyme carditis, a dangerous
condition that can in rare instances can lead to sudden death
(CDC, 2013). The mechanism of Lyme carditis has been shown to
involve invariant NKT cells (iNKT cells) (Olson et al., 2009). This
type of cell can be activated by bacterial infection through TLR4,
TLR7 and TLR9-driven maturation of dendritic cells (Brigl et al.,
2003). Mice deficient in iNKT cells developed significantly worse
inflammation in the heart following during Bb infection (Olson
et al., 2009). iNKT cells localize to the inflamed heart, enhanc-
ing macrophage phagocytosis through IFNγ leading to control of
infection (Olson et al., 2009).

With recent progress in DNA analysis, the extremely poly-
morphic genes of TLRs can finally be understood. The genetic
variability in TLRs can result in functional deficiency, which ulti-
mately leads to immunodeficiency syndromes. The TLR1 1602S
polymorphism, found predominantly in European-Caucasian
populations, has been correlated with low expression of TLR1
at the surface membrane (Kean and Irvine, 2013). This muta-
tion results in a diminished response to OspA due to the
decreased capability of TLR2 to couple with TLR1, thus leading
to an increased susceptibility to Lyme disease (Kean and Irvine,
2013). Individuals with mutations in the TLR2 gene, specifi-
cally Arg753Gln, are less responsive to PAMPs derived from Bb
(Schwartz and Cook, 2005).

TLR signaling alterations have been linked to more severe
clinical manifestations in response to bacterial, fungal and viral
infections (Frazao et al., 2013). For instance, single nucleotide
polymorphisms (SNPs) found within TLR7 have been associ-
ated with more severe Hepatits C viral infection (Lin et al.,
2012). Mutations in the TLR8 gene have been linked to increased
susceptibility to bacterial infections (Davila et al., 2008). Other
mutations can occur downstream of TLR-signaling. For example,
deficiencies in MyD88 and IRAK4 result in impaired produc-
tion of pro-inflammatory cytokines following TLR stimulation
(Cervantes et al., 2013), and increased susceptibility to bacterial
infections (Kenny et al., 2009; Netea et al., 2012).

It is important to note that despite the large number of TLR
gene mutations found in the general population, most affected

individuals will not suffer life threatening complications or even
more severe infections than their unaffected counterparts (Netea
et al., 2012). One explanation for the high rate of TLR poly-
morphism without increase in pathogen susceptibility is the
redundancy of the innate and adaptive immune system. The high
degree of nucleotide polymorphism seen in TLRs is consistent
with the constant “arms race” driven by the rapidly evolving
pathogens. Additionally, the lack of reproducibility among many
experiments, in conjunction with small sample sizes of people
with such phenotypes hints at the large genetic diversity among
TLRs (Lin et al., 2012).

Future studies will attempt to elucidate the relationship
between TLR mutations and the short and long-term outcome
of human Lyme disease, particularly as to changes in these key
innate immune receptors have a role in patients with prolonged,
antibiotic refractory Lyme disease.
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