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Abstract

RNA-sequencing (RNA-seq) is a widely used approach for accessing the transcriptome in biomedical research. Studies
frequently include multiple samples taken from the same individual at various time points or under different conditions,
correct assignment of those samples to each particular participant is evidently of great importance. Here, we propose taking
advantage of typing the highly polymorphic genes from the human leukocyte antigen (HLA) complex in order to verify the
correct allocation of RNA-seq samples to individuals. We introduce RNA2HLA, a novel quality control (QC) tool for
performing study-wide HLA-typing for RNA-seq data and thereby identifying the samples from the common source.
RNA2HLA allows precise allocation and grouping of RNA samples based on their HLA types. Strikingly, RNA2HLA revealed
wrongly assigned samples from publicly available datasets and thereby demonstrated the importance of this tool for the
quality control of RNA-seq studies. In addition, our tool successfully extracts HLA alleles in four-digital resolution and can
be used to perform massive HLA-typing from RNA-seq based studies, which will serve multiple research purposes beyond
sample QC.
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INTRODUCTION
The human leukocyte antigens (HLA) encoded by highly
polymorphic genes, located within the major histocompatibility
complex (MHC) in humans, play a crucial role in the adaptive
immune system. The genes of the HLA region are divided
into two main classes, Class I (HLA-A, HLA-B and HLA-C, and
others) and Class II (HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQB1,
HLA-DRA, HLA-DRB1 and others). HLA-typing is widely used in
the clinical medicine, for example, matching the HLA alleles
between the donors and recipients in the stem-cell or organ
transplantation [1].
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An extensive amount of single-nucleotide polymorphisms
(SNPs) within the sequences led to the development of special
nomenclature for the alleles encoding HLA genes, where the
four-digital resolution is a level of HLA-typing, used for clinical
purposes, as it defines a specific HLA protein, and further
precision in the typing only shows synonymous substitu-
tions within the coding DNA region. While IPD-IMGT/HLA
Database [2] currently contains over 25 000 sequences of
known HLA alleles, there are six HLA genes with the highest
number of variant alleles—HLA-A, HLA-B, HLA-C, HLA-DPB1,
HLA-DQB1, HLA-DRB1—comprising nearly 23 000 alleles in
total.
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Multiple laboratory-based techniques for HLA typing have
been established, including serotyping [3], polymerase chain
reaction (PCR) with sequence-specific primers (PCR-SSP) [4], typ-
ing based on Sanger sequencing (SBT) [5]. However, rapidly grow-
ing next-generation sequencing (NGS) technologies reveal the
possibility of using computational approaches to perform HLA-
typing by capturing HLA genotypes from the sequencing reads.

Nowadays, various computational tools allow HLA-typing
using NGS reads from genomic DNA sequencing [6, 7, 8]. RNA-seq
technologies produce shorter nucleic acid sequence reads com-
pared with the whole-genome sequencing platforms. Moreover,
the expression levels of genes play crucial role in their detection
and coverage in RNA-seq samples. Therefore, genotyping of
highly polymorphic HLA genes from RNA-seq is a particularly
challenging bioinformatics task, since the sequence differed by
only a few nucleotides lead to another allele variant. Multiple
algorithms have been developed over recent years addressing
this issue and high-resolution HLA-typing is now possible for
RNA-seq datasets [6, 8, 9, 10, 11, 12].

The enormous amount of possible alleles for each of HLA
genes leads to the almost unique combination of HLA alleles
for each individual, which explains the difficulty of coupling the
donors and recipients for tissue transplantation. 10/10 alleles
match (without taking into account HLA-DPB1 alleles) can be
found only for 50% of the patients across all the European
population [13].

Conversely, in the case of sequencing data, this reveals an
exclusive signature of each individual allowing precise alloca-
tion of each sequencing sample to a particular individual. A sam-
ple identity check is of particular importance for clinical studies,
such as in clinical trials or drug testing, which typically includes
multiple sequencing samples from the same study participant
taken at various time points or under changing conditions. An
extensive sample size of such studies, sometimes including
hundreds of participants, along with a complex sequencing pro-
cedure, frequently involving several different facilities, increases
the probability of mislabeling at any point during the sample
preparation, sequencing library construction, sequencing itself
or data transfer.

Taking together the advantage of the uniqueness of the
HLA allele combination for each individual, we propose high-
throughput HLA-typing as quality control (QC) for RNA-seq
studies, which can be seamlessly integrated into existing
bioinformatics pipelines.

Currently, there is no HLA-typing tool, which allows perfor-
mance of a global study-wide comparison between the RNA-seq
samples. None of the previously developed approaches had a
purpose of using HLA genotypes for sample identification and
matching, thus all of them run over one RNA-seq sample at
the time, which would require extensive programming skills
involved in the downstream processing to perform the QC and
cross-compare hundreds of samples within the study. However,
the existing programs and algorithms developed for HLA-typing
can serve as a template for the creation of the HLA-based QC tool.

Here, we developed RNA2HLA—novel command-line QC tool
performing study-wide HLA-typing on RNA-seq data and match-
ing the samples from the common source based on their HLA
types.

METHODS
Selection of HLA-typing algorithm

We performed a comparison of open-source HLA-typing pro-
grams and evaluated their utility. The general features of widely

used HLA-typing programs [6, 8, 9, 10] have been summarized
in Table 1 (only the tools allowing RNA-seq samples as input
were included for the comparison). While paired-end RNA-seq
data can be used for HLA-typing, none of the existing programs
clearly state the possibility of defining HLA genotypes based on
the single-end RNA-seq sample.

HISAT2 [8] and HLAforest [10] type HLA alleles to the higher,
eight-digital, resolution compared to seq2HLA [9] and HLAscan
[6], both of which allow HLA genotyping to four digits. Four-
digital resolution suitable for the purposes of distinguishing
the individuals within particular study, as this provides enough
combinations of the six most variable HLA genes encoded by two
alleles each (one inherited from each parent), leading to the 12
alleles of HLA genes in total to be included in typing. Based on
that, four-digital resolution HLA-typing programs were preferred
over the others, as they gained the advantage of a smaller size of
reference databases, which improved the HLA-typing speed and
reduced memory usage.

HLA-typing for the QC purposes is expected to be done at
the very beginning of the bioinformatics pipeline for the pro-
cessing of the samples, e.g. ahead of the classical mapping
to the reference genome. Therefore, the raw sequencing data
format—fastq—is the most suitable input for the HLA-based
QC tool.

Further, platform-independent tools have an advantage over
the others, as they do not require specific knowledge of a partic-
ular operating system (OS). Straightforward set up and interface
along with a small number of specific dependencies required for
HLA-typing served as an additional benchmark.

Based on all the above-mentioned criteria, seq2HLA [9], writ-
ten in Python and R, has been selected as a template for the
creation of an HLA-based QC tool for RNA-seq studies. The
underlying HLA-typing algorithm and the assignment of the P-
values for the confidence of the typing have been taken from
seq2HLA; however, the original scripts have been significantly
modified and rewritten in order to serve as a core for the novel
tool—RNA2HLA.

Overall workflow of RNA2HLA

RNA2HLA is a command-line tool, which in the minimal mode
does not require anything but a folder containing raw RNA-seq
samples in order to produce the study-wise HLA comparison
matrix (Figure 1).

The RNA-seq based studies containing N (N ≥ 1) samples can
undergo RNA2HLA analysis, while it serves as a particularly
important step of initial QC in the case of X individuals included
in the study, where N > X, meaning there are multiple samples
related to the same source. Raw RNA-seq data obtained from
the sequencing machine used as an input for RNA2HLA—the
only mandatory parameter for running the tool is the folder
containing raw fastq files, which can be optionally compressed.

Then, each of the samples is extracted and processed sequen-
tially by the relevant HLA-typing subscript, depends on the
sample-type (single-end or paired-end), which is accessed inde-
pendently for each sample within the input folder. The tool
extracts the HLA types of the HLA genes of I and II classes,
using seq2HLA typing algorithm. Out of six HLA genes (HLA-A,
HLA-B, HLA-C, HLA-DPB1, HLA-DQB1, HLA-DRB1) with the highest
degree of variability, five genes have been selected for RNA2HLA
and used for HLA-typing by default, leaving HLA-DQB1 out, since
it has the lowest expression level (Supplementary Figure S1),
which decreases the precision of its typing in RNA-seq samples,
however, it can be included explicitly by user.
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Table 1. Overview of HLA-typing programs

Program Input format Sequencing type HLA
resolution

Languages OS

fastq compr.
fastq

DNA RNA

single-end paired-end

HISAT2 + + + -(?) + 8 digits C++,
Python,
JAVA

Unix/Linux

HLAscan + − + − + 4 digits Python Unix/Linux
seq2HLA + + − -(?) + 4 digits Python, R Unix/Linux,

Mac OS,
Windows (?)

HLAforest + − − − + 8 digits Perl Unix/Linux

Abbreviations: DNA: DNA-seq, RNA: RNA-seq, comp.fastq: compressed fastq,(?): potential to be implemented.

When HLA-typing has been run over all the samples in
the input folder, threshold of the P-value is applied to all the
identified alleles for each sample separately leaving only those
alleles, where the confidence of typing passed the significance
threshold (user-defined, default P < 0.05—suitable for paired-end
data; suggested to be moved to P < 0.5 for single-end samples).
The remaining, confidently typed, HLA alleles are then cross-
compared between all of the RNA-seq samples. The percentage
and the number of identical alleles for each couple of samples
is reported into the squared matrix, along with the total number
of alleles successfully identified (Supplementary Table S1).

This summary comparison matrix serves as a main result
of the RNA2HLA and can be visualized as a heat map of HLA
identities between the samples in the study (e.g. Figure 3,
Supplementary Figure S2). Additionally, exact alleles along
with corresponding confidence levels and the expression of
HLA genes are reported for each sample in an output folder
(Supplementary Table S1).

Dependences

RNA2HLA can be downloaded from Github (https://github.com/
Chelysheva/RNA2HLA) [14] and does not require any additional
installations. The depository contains one main RNA2HLA
Python script along with two subsequent Python scripts (for
single-end and paired-end data, respectively), which are called
automatically, once the tool is running, and perform the HLA-
typing for each sample. The references folder contains the
databases of the sequences of known HLA alleles of classes I
and II to be typed, which were created based on those in the
template HLA-typing tool—seq2HLA. Corresponding reference
files are selected automatically for the analysis based on the
command-line parameter -g (see below), which allows choosing
between five or six HLA genes. Additional R-scripts contain the
relevant functions called during the analysis.

None of the scripts are designed for independent use and
are called within the main program setup where relevant. The
whole pipeline is completely automated and runs from a single
line command in the command-line interface to simplify the
processing.

Required software

RNA2HLA has minimal requirements, thereby allowing a simple
and straightforward setup. The tool is written on Python and
compatible with both versions—Python 2 and Python 3. The

template HLA-typing algorithm seq2HLA was based on Python 2
and was able to perform the typing on paired-end RNA-seq data.
For our tool, it has been rewritten on Python 3 and adapted to
also allow single-end RNA-seq datasets as an input.

R (version 3.x and higher) has to be installed in order for
the subsequent scripts written in R to be functional within the
RNA2HLA pipeline.

Bowtie (version 1.1.2 or higher) [15] is used for aligning
the RNA-seq reads to the reference files containing the HLA
sequences; therefore, it must be installed and reachable from
the command-line.

For the ease of the setup, the complete conda [16] environ-
ment has been created and can be downloaded
(RNA2HLA_env.yml) from the home page of the project at Github.

Usage and parameters

RNA2HLA takes advantage of a straightforward command-line
interface, allowing the whole pipeline to be run from one line
of code.

While the minimal required input information is a folder
containing raw RNA-seq samples from a study, the additional
user-defined parameters are introduced for the advanced users.

The significance threshold for the confidence of HLA-typing
can be changed (-c parameter), which is particularly relevant for
the low-depth datasets, where there are not enough reads to
perform the highly confident HLA-typing. Also, in the case of
single-end datasets, based on the performances of the typing
algorithm (see below), the recommended threshold is P < 0.5,
which does not, however, decrease the number of correctly
assigned alleles, but rather allows including more of them into
the final cross-comparison between the samples. All of the RNA-
seq datasets used for the benchmarking (Table 2) had a widely
acceptable read depth of over 20 million reads per sample, which
was enough for confident identification HLA alleles using the
default suggested P-values of RNA2HLA (<0.05 for paired-end
and <0.5 for single-end datasets).

If the analysis is run on a powerful machine with multiple
cores, the most time-consuming part of the algorithm—mapping
to the corresponding reference HLA sequences with bowtie—
can be parallelized by launching a specified number of parallel
threads [15]. Each of them runs on a separate core and thereafter
significantly speeds-up the whole processing. Including the -p
parameter allows to define a number of cores used by bowtie.

Another parameter, which can be adjusted, is a number of
HLA genes used for the typing. By default, five out of six HLA

https://github.com/Chelysheva/RNA2HLA
https://github.com/Chelysheva/RNA2HLA
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Figure 1. RNA2HLA workflow.

genes with the highest number of known allele variations are
included. The selection was based on the samples used to bench-
mark the tool: these five genes had higher expression levels
and therefore higher confidence of HLA alleles to be correctly
identified. Parameter -g allows switching between five and six
genes included for typing by adding DQB1 into the algorithm.
This is relevant for RNA-seq datasets of a high depth, where the
number of reads for the lowly expressed DQB1 gene is expected
to be enough in order to correctly assign HLA alleles with a
defined confidence level.

Evaluation of the performance

Two distinct approaches have been used in order to evaluate the
performance of RNA2HLA as a QC tool for RNA-seq datasets:

(1) Four publicly available RNA-seq datasets fitting the cri-
teria (containing multiple samples per study participant) were
uploaded from Sequence Read Archive (https://www.ncbi.nlm.
nih.gov/sra) [17].

(2) RNA-seq datasets were created using simulation, account-
ing to the HLA frequencies reported in PyPop database (http://
pypop.org/popdata/) [18, 19] for each of the selected populations
separately.

Among almost 500 of populations included in the database
only 12 (Canoncito, Cape_York, Czech, Finn, Japanese, Kimberley,
Mixe, Mixteco, Nu, Shona, Zapotec, Zulu) contained the
information about the allele frequencies for all of the six
HLA genes, which were selected for typing within RNA2HLA
(Supplementary Table S2).

https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
http://pypop.org/popdata/
http://pypop.org/popdata/
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Figure 2. Fraction of correctly assigned samples based on HLA identity threshold for each of the tested studies.

Table 2. RNA2HLA performance on available RNA-sequencing datasets. Identity threshold has been defined by the maximum F1 score

Dataset SRP144583 SRP090552 SRP103772 SRP081020

Length (bp) 75 100 51 101
Type Paired Paired Single Single
# of samples 195 42 53 55
P-value 0.05 0.05 0.5 0.5
Identity threshold (%) 81.8 87 77 70
Precision 1 1 0.95 0.99
Recall 1 1 1 0.85
F1 score 1 1 0.97 0.91

Abbreviations: Type: paired – paired-end; single – single-end.

RNA-seq datasets for each population has been simulated
separately, serving as the strictest evaluation, considering
the limited number of alleles present within each reported
population. Since none of the studies extended 1000 partici-
pants, all the additional alleles from the reference sequences
files, which have not been present in the given population,
were included with a frequency of 0.001. All the remaining
frequencies were adjusted accordingly in order to keep the sum
equal 1.

The alleles for each HLA gene have been assigned to each
sample randomly accounting for the probabilities described

above, using the wgsim simulation tool to simulate RNA-seq
samples (https://github.com/lh3/wgsim) [20]. The expression
levels were specified based on the estimation of 50 000—
100 000 reads mapped to the six selected HLA genes in
total—in line with the publicly available RNA-seq studies of
medium sequencing depth. The random number of paired-
end samples was created assuming the number of participants
X = 10 and the number of samples per participant 0 < n < X.
Two different read lengths (75 and 100 bp) have been used
resulting in creation of two independent RNA-seq datasets per
population.

https://github.com/lh3/wgsim
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RESULTS AND DISCUSSION
Precise HLA-typing of RNA-seq datasets with RNA2HLA

RNA2HLA has been run as a QC tool over four publicly avail-
able RNA-seq datasets (SRA: SRP144583 + SRP276081, SRP090552,
SRP103772, SRP081020), both single- and paired-end. The num-
ber of participants included in the study varied between 42
and 195, while all of the studies had multiple RNA-seq sam-
ples taken from the same participant. The read length varied
between 51 and 101 bp. RNA2HLA performance was independent
of the number of samples or read length (Table 2), yielding
both, precision and recall of correct sample pairings across the
study, close to 1. Allele identity threshold was slightly higher for
paired-end datasets (over 80%) compared to the single-end ones
(over 70%), denoting more precise identification of HLA alleles
in paired-end RNA-seq data. This trend was expected, as the
main advantage of paired-end RNA-seq approach is an increased
quality of alignment of the reads, especially in highly variable or
repetitive regions of the genome.

RNA2HLA uses seq2HLA typing approach as a template and
therefore keeps the precision of the typing in line with original
estimations for this tool [9]. This expands the utility of RNA2HLA
from being a QC tool—it can also serve as an independent
and convenient HLA-typing tool, which takes an advantage of
typing the whole RNA-seq based study in one command. The
introduction of such option increases the value of RNA2HLA,
since it has not been possible to perform a study-wide HLA-
typing with any of the previously developed tools. All of the
HLA-typing tools had to be run separately for each of the samples
within the study to produce independent outputs without cross-
comparison and summarization, which are crucial for in the case
of extensive sample-size.

For the evaluation of the RNA2HLA performance, the defi-
nition of the identity threshold was based on maximization of
F1 score—harmonic mean of the precision and recall values,
which is a widely used measure to assess the computational
approaches, including omics tools [21]. For majority of the stud-
ies, 100% individuals can be correctly assigned using HLA iden-
tity threshold over 80% between the samples for paired-end, or
over 70% for single-end data (Table 1, Figure 2). We propose these
thresholds to be used as default cut-offs for the samples to be
considered from the same source while reading the output of
RNA2HLA.

In the RNA2HLA application by typical user, the threshold
does not require a complex calculation, but should rather be
intuitive, since the samples, which do not relate to one individ-
ual, almost never have over 50% identical HLA alleles and can be
clearly distinguished, while any mismatched samples would be
outstanding (Figure 3).

RNA2HLA reveals mislabeled samples within publicly
available RNA-seq datasets

Strikingly, besides correctly grouping the samples from the same
individual based on their HLA-identity, RNA2HLA was able to
confidently reveal the wrongly assigned (e.g. mislabeled) sam-
ples between the individuals within 2 (SRP144583 + SRP276081
and SRP081020) out of four studies used for the benchmarking.
Importantly, all of these datasets were already deposited online
were previously published [22, 23, 24, 25] including those with
identified mislabeling [24, 25]. This finding highlights the crucial
importance of RNA2HLA to be introduced as a QC tool for the
RNA-seq based studies.

The first study, where the mislabeling has been identified,
was a paired-end RNA-seq dataset (SRP144583 + SRP276081, read
length – 75 bp). The study analyzed the transcriptional responses
in whole blood of 80 healthy adults, which were experimentally
challenged with Salmonella enterica serovar Paratyphi A. Single
oral dose of S. Paratyphi was given in two dose levels: high
(HD) and low (LD), the RNA-seq samples have been collected at
various time points (D0, D0 + 12 h, D4, D6, D28).

RNA2HLA identified multiple mislabeled samples (6 in
total), which were assigned to the wrong study participants.
This dataset has been partially included in the publication
[24] involving two of the misallocated samples (SRR7119070,
SRR7119072). These RNA-seq samples were used to reveal
diagnostic gene signature, which would allow distinguishing
enteric fever from other febrile diseases.

One of the mislabeled samples (SRR7119072, in the study
– P1_77_D0) has been misclassified by the diagnostic predic-
tion signature [24], while the corrected allocation of the sample
would have been improved the performance of the predicting
algorithm.

RNA2HLA was able to correctly reassign all of the mis-
matched samples to the right individuals
(Figure 3, Supplementary Table S3—before and after correction;
only mismatched sample groups are included). However, in
this particular study, the time point, when the sample was
taken (D0, D0 + 12 h, D4, D6 or D28), carried crucial information
about the transcriptomic responses, which were relevant for the
analysis. Therefore, once the mislabeling has been identified, all
of the mislabeled samples would have to be excluded from the
follow-up processing and further analysis of this dataset.

The second mislabeled dataset (SRP081020, single-end RNA-
seq, read length – 101 bp), did not have a corresponding publica-
tion from the supplier at the moment when RNA2HLA analysis
has been performed, however, the initial analysis and normaliza-
tion were done and publically available. This study used RNA-
seq dataset to profile gene expression of the host immune
response to an irradiated sporozoite immunization (PvRAS) and
subsequent Plasmodium vivax malaria challenge. RNA-seq sam-
ples have been collected from 20 participants of three different
study groups (3 Control, 5 Duffy Fy(−) and 12 PvRAS immu-
nized) at three time points—diagnosis day, baseline and pre-
challenge day.

Our HLA-based QC tool was able to identify a sample
(SRR4005716, time point – diagnosis), which HLA-identity did
not fit to the corresponding sample labeling (Supplementary
Table S4). Strikingly, once the mislabeled sample was reassigned
based on HLA types, it corresponded to another study group,
where the participant was susceptible to P. vivax infection
instead of being protected. However, there was already another
sample taken from the same individual at time point – diagnosis
(SRR4005709). It remains unclear, at which time point this
mislabeled sample has been collected, since all of the time
points were already present for this participant (SRR4005693,
SRR4005709 and SRR4005728). Moreover, the correction of this
sample led to the situation when one of the 20 participants of
the study had only one sample left in the dataset (SRR4005735
– collected at pre-challenge day), which made it impractical for
the downstream analysis of this dataset.

This study has been previously analyzed and included in
the publication from another group among multiple publicly
available datasets [25]. Authors identified the mislabeled sample
(SRR4005716) to be uninfected, while the actual reason for that
was not the protection from P. vivax, but rather the mislabeling
and the wrongly assigned time point. Taking into account the
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Figure 3. Heat maps of HLA identity: before (A) and after (B) the correction of sample labeling.

correction, this sample should have been excluded from their
analysis.

Running RNA2HLA on these two datasets (SRP144583 +
SRP276081 and SRP081020) demonstrated the successful identi-
fication of multiple events of the misallocation of the samples—
assigning them to the wrong individuals and thereafter to the
wrong study groups—this mistake could have a significant effect
on the outcome of the research project.

These findings confirm that using HLA-typing as a QC
method can improve labeling accuracy and therefore down-
stream bioinformatics analysis.

RNA2HLA benchmarking using strict population-based
simulated RNA-seq datasets

Another, more restricted step of evaluation of RNA2HLA
performance, was based on the simulated RNA-seq datasets,
which were created using available HLA-allele frequencies
from 12 various populations. As the sample size for each of
the simulated RNA-seq studies has been random, fraction of
correctly assigned samples at a given HLA identity threshold was
chosen as criteria for the evaluation. In line with the real RNA-
seq datasets described above, even in this unnaturally restricted
case, the majority of the samples have been successfully
assigned to the correct individuals at the identity threshold
over 75% (Supplementary Table S5, Supplementary Figure S2)
for each of the simulated RNA-seq datasets.

Only two populations (Mixe, Kimberley) with a lowest number
of total known alleles for all of the six HLA genes (47 and 41,
respectively) revealed the decreased precision of HLA-typing,
which led to the problems of the correct assignment of the

samples within these two datasets. Therefore, the total num-
ber of alleles, which were present in the particular population,
played a crucial role for the correct allocation, low HLA vari-
ability within the frequency dataset led to the higher amount
of similar alleles and homozygous samples to be present within
the simulated RNA-seq data. However, the dataset from another
population with low allele variability—Canoncito (46 HLA alleles
in total) has been assigned correctly, which can be potentially
explained by the presence of more distant HLA alleles, which
had less sequence similarity, within this population. Taking into
account, that the population studies had a limited number of
participants, lower than 1000 each, the allele distribution (even
adjusted to the ‘potential’ rare alleles, which were missing in
the initial study), was far more strict compared to the presence
of the alleles in the real populations. Therefore, this limitation,
observed within the simulated RNA-seq datasets, does not cause
any problems in vast majority of the datasets in the natural study
environment.

LIMITATIONS
In the case of studying a particular population with prior knowl-
edge of the low HLA allele diversity—in analog with two of the
simulated datasets above—RNA2HLA should not be used as a
QC, but only as a convenient study-wide HLA-typing method.
One can refer to the Allele Frequency Net Database [26], which
contains the information of the populations (over 4200 studies),
which can be accessed through the interactive HLA world map.
The populations with less than 50 of total known alleles should
be considered as of low diversity.
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Another point, which may cause a potential limitation to the
QC component of RNA2HLA, is the existence of linkage dise-
quilibrium (LD)—non-random association of alleles at different
loci in a given population. Even so, LD has been reported for
HLA genes [27], there is limited knowledge of the exact LD and
it is stretch in the majority of the populations and generally
should not affect the analysis, as we have been able to show by
successfully performing the analysis in all of example studies.
If the known LD exists in the dataset, the QC part of RNA2HLA
should be used with caution, and in the further versions of the
tool (>1.0) should be adapted by including only those HLA genes,
which are not in LD (see the Future development -g option).

FUTURE DEVELOPMENT
Gene expression levels may vary across the datasets and input
sources, therefore, any of the potential combinations of HLA
genes should be used for RNA2HLA comparison. The exact user-
defined gene list will be included in the selection (-g option).

We have shown that heat maps serve as the best visualization
of HLA comparison matrix, so this option will be automated and
included in the updated version of the program.

Automatic calculation of the diversity of the HLA alleles in
the study based on the total number of samples (and sources –
can be included as additional option -s) will allow the users to
be confident about QC without consulting the allele frequency
net database, or, in the case of the low diversity being detected
in the dataset, the user will receive a warning message.

RNA2HLA is a first tool allowing HLA-typing on single-end
RNA-seq datasets with a reasonable precision; however, algo-
rithm can be further improved and adjusted to improve the per-
formance on single-end data, including the appropriate adjust-
ment of P-value calculation, which is currently performed simi-
larly to paired-end data.

Key Points
• RNA2HLA – a novel command-line tool, which serves

as a QC for the RNA-seq studies allowing precise allo-
cation and grouping of RNA samples based on their
HLA types.

• RNA2HLA revealed multiple events of mislabeling
within publicly available datasets—showing this being
not an infrequent event in RNA-seq studies.

• RNA2HLA is an important tool for improving the bioin-
formatics processing pipelines for RNA-seq datasets
that contain multiple samples from the common
source/participant.

• The tool successfully extracts HLA alleles and can be
used to perform massive HLA-typing from RNA-seq
study even if matching of the samples is not required.

DATA AVAILABILITY
The datasets analyzed during the current study are available in
the Sequence Read Archive (https://www.ncbi.nlm.nih.gov/sra/)
under the following accession numbers: SRP103772, SRP081020,
SRP090552, SRP144583, SRP276081.

SUPPLEMENTARY DATA
Supplementary data are available online at Briefings in Bioinfor-
matics.

SOFTWARE AVAILABILITY AND
REQUIREMENTS
Project name: RNA2HLA
Project home page: https://github.com/Chelysheva/RNA2HLA
Operating system(s): Platform independent
Programming language: Python (2 or 3), R (3.x or higher, devel-
oped with 3.6.3)
Other requirements: Bowtie (developed with 1.1.2), biopython
(Python2-1.76, Python3-1.76 or higher), numpy (Python2-1.16-
1.18, Python3-1.16 or higher), pandas (Python2-0.24.2, Python3-
0.24.2 or higher)
Complete conda environment: Available at Github
(RNA2HLA_env.yml)

LIST OF ABBREVIATIONS
RNA-seq: RNA-sequencing; MHC: major histocompatibility
complex; HLA: human leucocyte antigen; NGS: next generation
sequencing; QC: quality control; SNP: single nucleotide poly-
morphism; bp: base pairs; OS - operating system; LD: linkage
disequilibrium.
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