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Transcallosal motor fiber (TCMF) plays a role in interhemispheric inhibition (IHI) between
two primary motor cortices. IHI has been an important concept in development of the motor
system of the brain. Many studies have focused on the research of the topography ofTCMF,
however, little is known about development of TCMF. In the current study, we attempted
to investigate development of TCMF from the corticospinal tract (CST) in the human brain
using diffusion tensor tractography. A total of 76 healthy subjects were recruited for this
study. We reconstructed the TCMF, which was derived from the CST, by selection of two
regions of interest below the corpus callosum (upper and middle pons).Termination criteria
used for fiber tracking were fractional anisotropy <0.2 and three tract turning angles of
<45, 60, and 75◦. The subjects were classified into four groups according to age: group
A (0–5 years), group B (6–10 years), group C (11–15 years), and group D (16–20 years).
Significant differences in the incidence ofTCMF were observed between group B and group
C, and between group B and group D, with tract turning angles of 60 and 75◦ (p < 0.05).
However, no significant differences in any tract turning angle were observed between group
C and group D (p > 0.05). In addition, in terms of the incidence of TCMF, no significant
differences were observed between the three tract turning angles (p > 0.05). We obtained
visualized TCMF from the CST with development and found that the incidence of TCMF
differed significantly around the approximate age of 10 years. As a result, we demonstrated
structural evidence for development of TCMF in the human brain.
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INTRODUCTION
Transcallosal motor fiber (TCMF), which indicates the connec-
tion fibers of the corpus callosum between primary motor cortices
of the two hemispheres, plays a role in interhemispheric inhibi-
tion (IHI) between the two primary motor cortices (Netz, 1999;
De Gennaro et al., 2004; Lenzi et al., 2007; Wahl et al., 2007;
Wahl and Ziemann, 2008; Jang et al., 2009). IHI has been an
important concept in development of the motor system of the
brain. Associated movements or mirror movements are invol-
untary movements corresponding to voluntary movement on
opposite sides of the body (Connolly and Stratton, 1968; Mayston
et al., 1999). They are known to decrease with development of
IHI (Connolly and Stratton, 1968; Wolff et al., 1983; Lazarus and
Todor, 1987; Heinen et al., 1998; Mayston et al., 1999). In adult,
associated movement is regarded as a pathological phenomenon
(Connolly and Stratton, 1968). However, normally developing
children and adolescents can represent the associated movements
to a various degree depending on the motor task, development
of the corpus callosum and maturation of motor control net-
work (Mayston et al., 1999; Hoy et al., 2004; Shim et al., 2008;
Koerte et al., 2009; Gasser et al., 2010; Qiu et al., 2010). On the
other hand, decrement of IHI following brain injury is a basic
mechanism of the contribution of the unaffected motor cortex,
which has been regarded as a mechanism for motor recovery

(Liepert et al., 2000; Manganotti et al., 2002; Shimizu et al., 2002;
Jang et al., 2009; Jang, 2010). Therefore, clarification of the char-
acteristics of IHI and TCMF has been an important topic in
neuroscience.

Many previous studies have reported on IHI (Cohen et al.,
1967; Connolly and Stratton, 1968; Wolff et al., 1983; Lazarus and
Todor, 1987; Mayston et al., 1997, 1999; Müller et al., 1997; Heinen
et al., 1998; Hamzei et al., 2002; Stefanovic et al., 2004; Manson
et al., 2006; Koerte et al., 2009; Gasser et al., 2010; Koerte et al.,
2010). Behavior study, electromyography, transcranial magnetic
stimulation (TMS), and functional magnetic resonance imaging
were used in most of these studies (Cohen et al., 1967; Connolly
and Stratton, 1968; Wolff et al., 1983; Lazarus and Todor, 1987;
Mayston et al., 1997, 1999; Müller et al., 1997; Heinen et al., 1998;
Hamzei et al., 2002; Stefanovic et al., 2004; Manson et al., 2006;
Koerte et al., 2009; Gasser et al., 2010; Koerte et al., 2010). How-
ever, these methods had a common limitation in that visualization
and reconstruction of the neural tract, such as TCMF, could not be
achieved. By contrast, recently developed diffusion tensor tractog-
raphy (DTT), derived from diffusion tensor imaging (DTI), has a
unique advantage in three-dimensional reconstruction of neural
tracts by detecting the water diffusion properties (Kunimatsu et al.,
2004). Several studies using DTI have reported on TCMF in nor-
mal subjects and in patients with brain injury (Wahl et al., 2007;
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Jang et al., 2009; Koerte et al., 2009; Jang, 2010; Fling et al., 2011,
2012). However, most of these studies focused on the topography
of TCMF and little is known about development of TCMF. In this
study, we hypothesized that development of TCMF would differ
according to age and that structural evidence of development of
TCMF could be demonstrated by DTT.

In the current study, we attempted to investigate development
of TCMF from the corticospinal tract (CST) in the human brain,
using DTT.

MATERIALS AND METHODS
SUBJECTS
A total of 76 healthy subjects (males: 43, females: 33, mean
age: 9.5 years, range: 0–20 years) with no history of neurologi-
cal, psychiatric, or physical illness were recruited for this study.
All participants were volunteers with typical development whose
parents had applied to this study. Written informed consent was
obtained from the parents of all children. The study was approved
by the Institutional Review Board of Yeungnam University
hospital.

Subjects were classified into four groups according to age: group
A (19 subjects, male: 10, mean age: 2.2 years) – the range of age
was from 0 to 5 years, group B (25 subjects, male: 13, mean age:
8.3 years) – the range of age was from 6 to 10 years, group C (20
subjects, male: 15, mean age: 12.7 years) – the range of age was
from 11 to 15 years, and group D (12 subjects, male: 5, mean age:
18.4 years) – the range of age was from 16 to 20 years. Each group
met the normality on the age.

DIFFUSION TENSOR TRACTOGRAPHY
A six-channel head coil on a 1.5 T Philips Gyroscan Intera
(Philips, Best, The Netherlands) with single-shot echo-planar
imaging was used for acquisition of DTI data. For each of the
32 non-collinear diffusion sensitizing gradients, we acquired 60
contiguous slices parallel to the anterior commissure – posterior
commissure line. Imaging parameters were as follows: acquisition
matrix = 96 × 96; reconstructed to matrix = 128 × 128; field
of view = 221 mm × 221 mm; TE = 76 ms; TR = 10,726 ms;
parallel imaging reduction factor (SENSE factor) = 2; NEX = 1;
EPI factor = 49; b-value = 1000 s/mm2; and a slice thickness of
2.3 mm (acquired voxel size 1.73 mm × 1.73 mm × 2.3 mm).
Removal of eddy current-induced image distortions using affine
multi-scale two-dimensional registration was performed using
the Oxford centre for functional magnetic resonance imaging of
brain software library (FSL; www.fmrib.ox.ac.uk/fsl) (Smith et al.,
2004). Signal to noise ratio (SNRSENSE) was measured in non-
diffusion-weighted images in all subjects, with a mean (SD) of
25.2 (6.2). DTI-Studio software (Johns Hopkins Medical Insti-
tute, Baltimore, MD, USA) was used for fiber tracking of the
CST (Jiang et al., 2006). Before fiber tracking, DTI data, includ-
ing the mean diffusivity and fractional anisotropy (FA), were
calculated automatically using DTI-Studio software (Jiang et al.,
2006). Fiber tracking was based on the fiber assignment con-
tinuous tracking algorithm (FACT) and a multiple regions of
interest (ROIs) approach. For reconstruction of the entire CST
without mixing the adjacent fibers, we selected two ROIs for the
CST on the color map (Afifi and Bergman, 2005; Jang, 2011).

The first ROI was placed at the upper pons (portion of ante-
rior blue color) on the color map with an axial image. The
second ROI was placed on the mid pons (portion of anterior
blue color) on the color map with an axial image. Termina-
tion criteria used for fiber tracking were FA <0.2 and three
tract turning angles of <45, 60, and 75◦ (Kunimatsu et al.,
2004). Incidence was defined as termination of one or more
reconstructed fiber into the contralateral cortex via the corpus
callosum.

For measurement of inter-observer, random analyses of the
data was performed by two evaluators (Kwon HG and Son SM)
who were blinded to the other evaluator’s data. The consistency
rate of analyses with three tract turning angles by two evaluators
were identical for 150 out of 152 hemispheres (98.7%, 45◦), 150 out
of 152 hemispheres (98.7%, 60◦), and 149 out of 152 hemispheres
(98.0%, 75◦) respectively.

STATISTICAL ANALYSIS
SPSS software (v.15.0; SPSS, Chicago, IL, USA) was used for data
analysis. For comparison with the incidence of TCMF, the chi-
square test was performed between the four groups and between
the three tract turning angles. The significant level of the p value
was set at 0.05.

RESULTS
A summary of the incidence of TCMF, which originated from
the CST, is shown in Table 1. No TCMF was found in group A
(0–5 years), however, TCMF was found in the other groups, as
follows: group B (6–10 years): eight (16%, 45◦), 13 (26%, 60◦),
and 13 (26%, 75◦) of 50 hemispheres; group C (11–15 years): 16
(40%, 45◦), 24 (60%, 60◦), and 25 (63%, 75◦) of 40 hemispheres;
and group D; 11 (45.83%, 45◦), 16 (66.67%, 60◦), and 16 (66.67%,
75◦) of 24 hemispheres. As a result, incidence of TCMF in groups
A and B (under age of 10 years) was lower than in groups C and
D (over the age of 10 years) (Figure 1).

Table 1 | Comparison of the incidence ofTCMF among four groups.

45◦ 60◦ 75◦

Group A (n = 19) 0 0 0

Group B (n = 25) 8 (16%) 13 (26%) 13 (26%)

Group C (n = 20) 16 (40%) 24 (60%) 25 (63%)

Group D (n = 12) 11 (45.8%) 16 (66.6%) 16 (66.6%)

* 0.017 0.003 0.003

† 0.000 0.000 0.000

P ‡ 0.000 0.000 0.000

§ 0.053 0.036 0.027

|| 0.041 0.033 0.033

¶ 0.772 0.799 0.875

Incidence (percent as all hemispheres in each group), Bold character: p < 0.05.
Chi-square test for comparison with incidence of transcallosal fiber among four
groups: *, between group A and group B; †, between group A and group C; ‡,
between group A and group D; § , between group B and group C; || , between
group B and group D; ¶ , between group C and group D.

Frontiers in Human Neuroscience www.frontiersin.org March 2014 | Volume 8 | Article 153 | 2

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive
http://www.fmrib.ox.ac.uk/fsl


Kwon et al. Development of the transcallosal motor fiber

FIGURE 1 | Results of diffusion tensor tractography for transcallosal motor fiber originating from the corticospinal tract with three angles: group A –

the range of age was 0–5 years, group B – the range of age was 6–10 years, group C – the range of age was 11–15 years, and group D – the range of

age was 16–20 years.

In comparison with the incidence of difference for TCMF with
45◦ between the four groups, significant differences were observed
between group A and the other three groups [B (p = 0.017), C
(p = 0.000), and D (p = 0.000)], and between group B and group
D (p = 0.041; p < 0.05). However, no significant difference was
observed between group B and group C (p = 0.053), and between
group C and group D (p = 0.772; p > 0.05). Regarding the 60 and
75◦, significant differences were observed between group A and
the other three groups [B (p = 0.003, and 0.003), C (p = 0.000,
and 0.000), and D (p = 0.000, and 0.000)], and between group B
and group C (p = 0.036, and 0.027), and between group B and
group D (p = 0.033, and 0.033; p < 0.05). However, no significant
difference was observed between group C and group D (p = 0.799,
and 0.879; p > 0.05). In addition, no significant differences in the
incidence of TCMF were observed between the three tract turning
angles (p > 0.05).

DISCUSSION
In the current study, we investigated development of TCMF with
age from 0 to 20 years in the human brain. TCMF connects
the primary motor cortices of the two hemispheres as neural
fiber. However, reliable reconstruction of TCMF between two
primary motor cortices with aging was technically difficult; there-
fore, we were obliged to investigate TCMF derived from the CST.
We reconstructed the CST by selection of two ROIs below the
corpus callosum: upper and middle pons. With regard to the
conditions of fiber tracking for the CST, two conditions, FA
and tract turning angle, are important. FA indicates the degree
of directionality of microstructures, such as axons, myelin, and
microtubules, and has a range of 0 (completely isotropic diffu-
sion) to 1 (completely anisotropic diffusion). Tract turning angles

represent the curvature of axonal tracts in a voxel (0–90◦). Kuni-
matsu et al. (2004) reported an optimal FA value of approximately
0.2. However, no optimal degree of tract turning angle has been
reported; instead, TCMF tends to be easily changed by the tract
turning angle (Lee et al., 2005). Therefore, we reconstructed the
CST using the FA value of 0.2 and compared the incidence of
TCMF using three different tract turning angles (45, 60, and
75◦), which have been adopted popularly in other studies using
DTT for the CST (Jang et al., 2009; Son et al., 2009; Kwon et al.,
2011).

For comparison of the incidence of TCMF, we divided our sub-
jects into four groups according to age; the two following results
were obtained. First, regarding the incidence of TCMF, signifi-
cant differences were observed between group B and group C, and
between group B and group D, with tract turning angles of 60 and
75◦. However, no significant differences in any tract turning angles
were observed between group C and group D. In addition, the inci-
dence of TCMF in groups A and B (under the age of 10 years) was
lower than in groups C and D (over the age of 10 years). Second,
regarding the tract turning angle of DTT, in terms of the incidence
of TCMF, no significant differences were observed between the
three tract turning angles.

Many previous studies have reported on development of IHI
(Cohen et al., 1967; Connolly and Stratton, 1968; Wolff et al.,
1983; Lazarus and Todor, 1987; Müller et al., 1997; Heinen et al.,
1998; Mayston et al., 1999; Gasser et al., 2010). Behavior studies
have focused on assessment of associated movements, and have
reported that it was normally observed during early childhood
and a marked disappearance was observed at the approximate
age of 10 years by development of IHI. However, disappearing
age of associated movement was a little variable around 10 years
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[Cohen et al. (1967) – 9 years, Connolly and Stratton (1968)
– 5–13 years, Wolff et al. (1983) – 5–8 years, Lazarus and Todor
(1987) – 8.5 years]. By contrast, studies using TMS have investi-
gated the development of IHI using the ipsilateral CST (Müller
et al., 1997; Heinen et al., 1998). Müller et al. (1997) who investi-
gated development of the ipsilateral CST connection in 50 normal
children (range: 3–11 years), found that the incidence of ipsilat-
eral motor evoked potentials (MEP) decreased with aging and the
ipsilateral MEP was not observed in children older than 9 years
and 9 months of age. Subsequently, using TMS, Heinen et al.
(1998) demonstrated the absence of IHI via the corpus callosum
in seven children who ranged in age from 4.2 to 5.7 years (Heinen
et al., 1998). In 2009, using combined DTI and TMS, Koerte et al.
(2009) investigated development of TCMF. They reported signif-
icant differences between the two groups [11 children (mean age:
8.4 years; range: 7–11) and 10 adolescents (mean age: 15.6 years,
range: 15–17)] in terms of FA on TCMF region of the corpus
callosum and duration of the ipsilateral silent period, which is
known to depend on activation of IHI. According to the previ-
ous studies described above, we can summarize as follows: (1)
the age of disappearance of associated movements related to mat-
uration of IHI was reported as approximately 10 years of age.
(2) IHI was absent until the age of approximately 5 years. (3)
Significant difference in development of TCMF was observed at
approximately 10 years of age. Although our method using DTT
is different from the research methods used in previous studies,
such as behavior, electromyogram, and TMS, the results of pre-
vious studies appear to be compatible with those of our study
showing that no TCMF was found in group A (0–5 years) and
the incidence of TCMF in groups A and B (under age of 10
years) was lower than in groups C and D (over the age of 10
years).

In conclusion, using DTT, we reconstructed visualized TCMF
with development and found that the incidence of TCMF dif-
fered significantly around the approximate age of 10 years.
As a result, we demonstrated structural evidence for devel-
opment of TCMF in the human brain. We believe that the
methodology and results of this study would be helpful to
researchers on development of the motor system in the nor-
mal human brain and motor recovery mechanisms following
brain injury. However, several limitations of this study should
be considered (Wiegell et al., 2000; Tuch et al., 2002; Lee et al.,
2005; Parker and Alexander, 2005; Yamada, 2009; Yamada et al.,
2009). First, we could not show correlation with behavior, such
as associated movements; second, due to problems of cross-
ing fibers or partial volume effect, DTI might not reconstruct
whole neural fibers, such as TCMF; third, we only investigated
the incidence of TCMF without DTT parameters; for exam-
ple, fiber number and FA; fourth, regarding to the groups
according to the age, the number of subjects was not bal-
anced; fifth, the low tesla (1.5), channels (6), and diffusion
directions (32) employed in this study are another limitation.
Further conduct of combined studies with behavior or electro-
physiological study to overcome the limitation of DTI should be
encouraged. In addition, conduct of studies on clinical correla-
tion, quantification, reliability, and validity of TCMF would be
necessary.
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