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Abstract

Background: MicroRNAs (miRNAs) regulate gene expression and have been targeted as indicators of environmental/
toxicologic stressors. Using the data from our deep sequencing of miRNAs in an extensive sampling of rat tissues, we
developed a database called RATEmiRs for the Rat Atlas of Tissue-specific and Enriched miRNAs to allow users
to dynamically determine mature-, iso- and pre-miR expression abundance, enrichment and specificity in rat
tissues and organs.

Results: Illumina sequencing count data from mapped reads and meta data from the miRNA body atlas
consisting of 21 and 23 tissues (14 organs) of toxicologic interest from 12 to 13 week old male and female
Sprague Dawley rats respectively, were managed in a relational database with a user-friendly query interface.
Data-driven pipelines are available to tailor the identification of tissue-enriched (TE) and tissue-specific (TS)
miRNAs. Data-driven organ-specific (OS) pipelines reveal miRNAs that are expressed predominately in a given
organ. A user-driven approach is also available to assess the tissue expression of user-specified miRNAs. Using
one tissue vs other tissues and tissue(s) of an organ vs other organs, we illustrate the utility of RATEmiRs to
facilitate the identification of candidate miRNAs. As a use case example, RATEmiRs revealed two TS miRNAs in
the liver: rno-miR-122-3p and rno-miR-122-5p. When liver is compared to just the brain tissues for example,
rno-miR-192-5p, rno-miR-193-3p, rno-miR-203b-3p, rno-miR-3559-5p, rno-miR-802-3p and rno-miR-802-5p are
also detected as abundantly expressed in liver. As another example, 55 miRNAs from the RATEmiRs query of
ileum vs brain tissues overlapped with miRNAs identified from the same comparison of tissues in an independent,
publicly available dataset of 10 week old male rat microarray data suggesting that these miRNAs are likely not
age-specific, platform-specific nor pipeline-dependent. Lastly, we identified 10 miRNAs that have conserved
tissue/organ-specific expression between the rat and human species.

Conclusions: RATEmiRs provides a new platform for identification of TE, TS and OS miRNAs in a broad array of rat
tissues. RATEmiRs is available at: https://www.niehs.nih.gov/ratemirs
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Background
MicroRNAs (miRNAs), short non-coding RNA molecules
of approximately 22 nucleotides in length, regulate gene
expression by binding to the 3′ untranslated regions of
messenger RNAs (mRNAs) to inhibit translation or

directly causing degradation of the transcripts [1–4]. miR-
NAs have recently become of great interest as molecular
targets for disease intervention and as tissue-specific
biofluid based biomarkers [5, 6]. For example, measuring
miR-122 in the blood, the expression of which is specific
to the liver, has been investigated as a potential biomarker
for various types of liver disease or dysfunction [7–9].
Having the ability to accurately detect the level of expres-
sion of miRNAs in tissues and organs is key to exploiting
their full potential as modern day therapeutic targets.
Several recent efforts surveyed the expression of

miRNAs in the tissues and organs of humans, mice, rats
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and other species [10–14]. miRNA sequences have been
shown to be highly conserved between certain species
[15]. Except for the beagle dog miRNA tissue atlas, cur-
rently the databases of miRNA expression are largely
based on microarray analysis and/or offer limited analytics
supporting tissue-enrichment (TE) and tissue-specificity
(TS). RNA-sequencing (RNA-Seq) has recently out per-
formed microarray in the analysis and utilization of gene
expression in clinical and regulatory settings [16, 17].
Smith et al. [18] used three different bioinformatics pipe-
line analyses of deep miRNA-Seq data to survey the
baseline expression of miRNAs in 21 and 23 tissues of
male and female Sprague Dawley rats respectively, that
make up 14 different organs. This rat miRNAs body atlas
data is publicly available but currently, there is no useful
way of performing meta-analysis of the data across tissues
and within organs.
We developed a database called RATEmiRs for the Rat

Atlas of Tissue-specific and Enriched miRNAs to allow
users to determine mature-, iso- and pre-miR expression
abundance, enrichment and specificity in Sprague Dawley
rat tissues and organs. Using the RNA-Seq data from the
rat miRNA body atlas, we developed user-friendly query in-
terfaces to dynamically detect TE, TS and organ-specific
(OS) miRNAs across three different bioinformatics pipe-
lines (Data-Driven) based on 1) non-negative matrix
factorization (NMF) [19] by Eli Lilly, 2) quasi-Poisson mod-
eling by the National Institute of Environmental Health Sci-
ences (NIEHS) and 3) percentage of total mapped reads by
Maastricht University. In addition, a User-Driven interface
is available to query the tissue expression of user-specified
miRNAs. Functionality is implemented in RATEmiRs to
compare abundantly expressed miRNAs from two or all
three of the pipelines, to plot and display the expression of
the data and to download results. Using one tissue vs other
tissues and tissues of an organ vs other organs, we illustrate
the utility of RATEmiRs to facilitate the identification of
abundantly expressed miRNAs.

Construction and content
Tissues (Table 1) from the organs of five male and five
female Sprague Dawley rats 12–13 weeks in age were
harvested, preserved and total RNA extracted. Detailed
information on the tissues collected and miRNA
sequence libraries are as previously described [18]. Illu-
mina sequencing of the miRNAs extracted from the 215
tissue samples was performed by Illumina HiSeq 2000
analysis generating 50 bp single-end reads with 4–5 mil-
lion reads per sample. The raw data is made available
within the Gene Expression Omnibus (GEO) [20, 21]
through GEO Series accession number GSE78031. Three
separate bioinformatics pipelines (Fig. 1) processed the
data as previously described [18]. Table 2 provides a
comparison of the analysis steps for each pipeline. The

strengths and limitations of the core analysis methods
implemented into each pipeline are shown in Table 3.
Below is a detailed description of each pipeline.

Eli Lilly – Non-negative matrix factorization
FastQ files were preprocessed to remove adapter
sequences, filtered to discard reads < 17 bp in length
and trimmed. Trimmed reads containing an ‘N’ were
discarded. Identical sequences from the same sample
were combined into a single sequence. Using miR-
Deep2 [22], reads were aligned to known miRNAs
from rat miRBase v20 [23–27]. Each isomiR (variant
of a mature miRNA) sequence in an alignment was
associated with the corresponding mature miRNA
identifier. A read is identified as <miR> − pre if it
was found to map to a miRNA precursor but not
with the mature miRNA sequence that is expected. If
a given sequence was identified as mapping to two or
more precursors, it was associated with all potential
names. Sequences that did not align were compared

Table 1 Sample sizes of each tissue for each pipeline

Pipeline sample sizes

Tissues Lilly NIEHS Maastricht

Adrenal 10 10 10

Muscle bicepse 10 10 10

Brainstemd 10 10 10

Cerebellumd 10 10 10

Cerebrumd 10 10 10

Cortexa 10 10 10

Dorsal root ganglion (DGR/Uk) 10 4 10

Duodenumc 10 9 10

Stomach glandular (Gln)b 10 10 10

Heart 10 10 10

Hippocampusd 10 10 10

Ileumc 10 8 10

Jejunumc 10 10 10

Kidneya 10 10 10

Liver 10 10 10

Medullaa 10 10 10

Stomach non-glandular (NGln)b 10 10 10

Ovary 5 5 5

Pancreas 10 10 10

Muscle soleuse 10 10 10

Testicle 5 1 5

Uterus 5 5 5

Whole Blood 10 6 10

Denotation of tissues that comprise of an organ
aKidney; bStomach; cIntestine; dBrain; eMuscle
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to known miRNAs from other species (mouse, human
then C. elegans).
Tissue level counts (summing over all the animals for a

tissue) were aggregated to the organ level by selecting the
maximum read count of the tissues for a given organ.
Other choices of aggregation included using the average,
which might dilute the organ level signal. As we are equally

interested in miRNAs that are expressed at all levels, we
used a technique called NMF [19] to find TE/TS/OS miR-
NAs for each level of expression. To determine the expres-
sion level of each miRNA, a two-component mixture of
Poisson distributions was fitted to the tissue counts data.
The larger component of the two-component Poisson mix-
ture model relates to high expression miRNA, whereas the

Fig. 1 RATEmiRs pipelines. A) Eli Lilly, B) NIEHS and C) Maastricht University. Each pipeline has a workflow which preprocesses the data, aligns the
reads and performs an analysis to detect TE, TS and OS miRNAs

Table 2 Comparison of pipelines analysis steps

Analysis steps Eli Lilly NIEHS Maastricht University

Preprocessing Trim adapters Trim adapters Trim adapters

Quality filtering Quality filtering

Elimination of short reads Elimination of short reads Elimination of short reads

Alignment miRDeep using miRBase v20 BWA using miRBase v19 Pre-alignment: miRDeep2 using
Ensembl v5.0.73

Post-Alignment: PatMaN using predicted
miRs and miRBase v20

Read count filtering Yes (i.e. > 10 in at least one
tissue/organ)

Yes (i.e. > 3 in at least one
tissue/organ)

NA

Scaling NA NA According to # of loci

Pre-Normalization NA TPMa TMM

Statistical method Non-negative Matrix Factorization Quasi-Poisson modeling Percentage of total mapped read counts

Comparison One vs All One vs Rest One vs All

Post-Normalization Of basis (W) and coefficient (H) matrices NA NA

Tissue-enriched
thresholding

% of total expression (i.e. 60% in
more than one tissue/organ)

p-value (i.e. < 0.05) % of total expression (i.e. > 50%)

Tissue/organ-specific
thresholding

% of total expression (i.e. > 80% in
one tissue/organ)

p-value and % of expression
(i.e. <0.05 and > 90%)

% of total expression (i.e. > 90%)

Data for display TMM TMM TMM
aPrior to statistical analysis, a transformation from floats to integers was performed by ceiling the data
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smaller component corresponds to the low miRNA expres-
sion. This is to ensure that NMF is applied to miRNAs that
have similar levels of expression. Otherwise, we are likely to
miss miRNAs that are expressed at medium or low level.
Let X be the organ level count matrix of dimension N by
M, where N is the number of miRNAs and M is the 14 or-
gans. NMF was used to decompose the non-negative
matrix X into 2 non-negative matrices W and H. Each col-
umn of W explains a miRNA factor group and each col-
umn of H defines the expression of the miRNA factor
group corresponding to the particular organ type. Based on
this decomposition, OS miRNAs are identified by their high
expression level for the organ. This method was also ap-
plied to detect TE and TS miRNAs. We impose the con-
straint that a TS miRNA has to be OS.

NIEHS – Quasi-Poisson statistical modeling
FastQ files with the RNA-Seq reads were checked for
quality and preprocessed using recursive trimming of
the adapters, quality filtering at Q ≤ 20 and elimination
(TQE) of reads < 14 or > 25 bp long. Using the
Burrows-Wheeler Alignment (BWA) tool [28], reads
passing the TQE filtering were aligned to rat miRBase
v19 [23–27]. Read counts from perfect matches were
summarized for each mature miRNA. Seventeen of the
215 samples had too few reads remaining after TQE and
alignment and were therefore removed from analysis.
To detect TE miRNAs, a one-vs-rest strategy was

adopted. Abundantly expressed miRNAs in one tissue vs
all other tissues were identified using a quasi-Poisson
(Quasi-Seq) model [29]. Significantly expressed miRNAs
as TE were detected at a nominal p-value < α and with a
positive difference. To detect TS miRNAs, a percentile
criteria was used to select any TE miRNA which had a
mean expression > a number of percentage points above
the maximum mean expression from any of the other
tissues. OS miRNAs were identified with the same
model and manner for detecting TE miRNAs except that

an organ-vs-rest quasi-Poisson modeling was
implemented.

Maastricht – Percentage of total mapped reads
Using miRDeep2 [22] FastQ files were mapped to the rat
genome (version 5.0.73 from Ensembl [30]). To retain
predicted miRNA precursors with a score of 1 or above,
we parsed the output then trimmed raw reads and dis-
carded any with a size < 16 or > 35 bp. Using PatMaN, a
fast short read mapping software [31], we mapped
trimmed reads to rat precursor miRNAs or generated de
novo from the miRDeep2 prediction. To generate
pre-normalized count data, we parsed the PatMaN out-
put in order to assign a unique name to each unique
sequence and then divided the total read count of each
by the number of assigned loci for the miRNA. Finally,
the data was normalized by the trimmed mean of
M-values method (TMM) [32] and then filtered to
remove all miRNAs where the TMM was < 10 in all of
the samples.
We defined a miRNA as TE or TS/OS when the pro-

portion of reads aligned for a single tissue (or organ)
was greater than 0.5 or 0.9 of the total reads aligned
respectively. To identify isomiRs, we first converted the
raw count number of each given isomiR to the propor-
tion of expression compared to the mature miRNA.
Then by comparing the proportions, we report the miR-
NAs for which the most expressed isomiRs differs
between all of the tissues.

Database implementation
The RATEmiRs database contains tables (Fig. 2) to
store data related to the samples, miRNAs and specific
analysis pipeline. Eli Lilly’s mature-, pre- and isomiRs
read count and normalized data, NIEHS’ mature miR-
NAs read count and normalized data and Maastricht’s
mature-, pre- and isomiRs count and normalized data
were loaded into a MySQL database [33]. A previous
claim of TMM poor performance for miRNA

Table 3 Strengths and limitations of core analysis methods implemented into the pipelines

Core Analysis Methods
Implemented

Strengths Limitations

NMF Factors are interpretable Factorization (W,H matrices) is not always unique

Reduces dimensions of the data No statistical inference

Fast computation Convergence can be slow

Quasi-Poisson Has underlying statistical inference Model dependency and complexity

Computational simplicity No probability distribution or log-likelihood

Accounts for over-dispersion of the data Supported by asymptotic (large sample) theory in special cases

Requires normalization and transformation of the data

% Total Mapped Reads Proportion basis offers an intuitive relationship
to relative expression

Requires normalization of the data

Easy to implement No statistical inference
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sequencing data [34] has been disproved and attributed
to an error in utilization of the normalization method
[35]. Rigorous optimization of miRNA sequencing data
revealed that TMM is recommended for count
normalization [36, 37]. The count data from all three
pipelines were normalized by TMM in order to
harmonize the transcript measurements for display pur-
poses. Tissues are grouped (flagged in the TisLane
table) according to the organ they were extracted from.
As shown in Table 1, 14 tissues are denoted as derived
from the kidney, stomach, intestine, brain or muscle
and along with the other nine tissues, make up a total
of 14 organs. miRBase and miRDB [38] external re-
sources are used to update the annotation of the miR-
NAs according to the current version and provide the
structure of the database respectively. Individual pipe-
lines have their respective naming conventions of the
miRNAs. However, when the query for abundant miR-
NAs compares two or all three pipelines, the annota-
tion of the miRNAs are reconciled by lookup tables and
then presented in the Venn diagram overlap with a
common miRBase identifier. A ColdFusion® web

application server manages the user web requests to
query the database (Fig. 3). R scripts [39] for each pipe-
line process the data by way of an analytical server.

Utility and discussion
There are two ways of querying the data through the
RATEmiRs interface (Fig. 4). The Data-Driven ap-
proach computationally identifies TE, TS or OS miR-
NAs depending on the pipeline(s) chosen and the
parameter(s) selected. Users can select one tissue to
compare to two or more other tissues or an organ
represented by or one or more tissues. The User
Driven entrez permits a user to enter in miRBase IDs
in order to display the expression determined by se-
lected pipelines. The query interfaces have no more
than 5 steps (numbered in circles) to follow to per-
form an analysis for identification of TE, TS, OS or
user-defined miRNAs. For identifying TE or TS
miRNAs:

1) Select which type is desired

Fig. 2 RATEmiRs database tables. Core RATEmiRs database tables organized by their utility: sample-related, miRNA-related and data-related. The
mirna-diff table tracks the versioning of miRBase so that the annotation of the miRNA IDs are updated dynamically
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Fig. 3 RATEmiRs database web application schema. The components of the RATEmiRs web application database are shown. The client web browsers
currently supported are Chrome and Firefox. Requests from the web browser are received by the ColdFusion web application server which in turns
executes R scripts. The MySQL database stores the data and the R analytic server queries the database to perform the analyses on the data and generate
the output files. Data files are transferred using a secured shell (ssh) file transfer and copy protocol (scp). The ColdFusion server also queries the database
and provides the web browser client the results in web page tables and embedded graphics as well as downloadable text and image files

Fig. 4 RATEmiRs interface. The Data Driven TE and TS analysis tab is shown. Other tabs are for Data Driven OS, User Driven, viewing expression
plots and viewing heat maps. The steps to perform an analysis are denoted by the numbered circles. Mouseover of a bolded title or parameter
setting describes the function or parameter setting value used in the analysis. The query output is presented in the tab that launched the
analysis. The profile plots of the miRNAs’ expression and the heat maps of the miRNAs’ expression are presented in the Expression Plots tab and
the Heat maps tab respectively

Bushel et al. BMC Genomics          (2018) 19:825 Page 6 of 13



2) Select the analysis pipeline(s) and adjust parameters
if needed

3) Select one tissue to compare with two or more
selected other tissues

4) If necessary, adjust the filtering of miRNAs by read
counts

5) Hit Go

For identification of OS miRNAs:

1) Select the analysis pipeline(s) and adjust parameters
if needed

2) Select one organ
3) If necessary, adjust the filtering of miRNAs by read

counts
4) Hit Go

To obtain the expression of user-defined miRNAs:

1) Select the analysis pipeline(s)
2) Enter a list of miRNAs (one per line) using mature

miRBase identifiers
3) Select two or more tissues
4) Hit Go

Query and analysis results are presented in the
form of tables with the mean expression (averaged
across the male and female biological replicates)
within each tissue or organ (Table 4) or as shown in
Fig. 5, bar plots of the distribution of the miRNAs
within each tissue or organ, box plots illustrating the
spread of the miRNAs in each tissue and a cluster
analysis representing the similarity of the expression
of the miRNAs across the samples. Finally, if more
than one pipeline is selected, a Venn diagram is pro-
duced depicting the overlap of the miRNAs detected
as TE, TS or OS (Fig. 6). Overlapping miRNAs

Table 4 Abundance of the miRNAs in the liver vs brain tissues

miRNA ID Liver Brainstem Cerebellum Cerebrum Hippocampus

rno-miR-101b-3p 9673.302 259.239 333.532 239.783 325.597

rno-miR-122-3p 4009.98 0.168 0.045 0.134 0.092

rno-miR-122-5p 69,427.419 0.428 0.87 0.69 1.574

rno-miR-142-3p 363.858 26.372 10.863 12.454 61.031

rno-miR-142-5p 3637.916 118.302 71.591 102.668 682.414

rno-miR-144-3p 579.159 22.386 16.137 11.014 16.39

rno-miR-144-5p 679.886 37.424 22.018 18.614 20.869

rno-miR-192-5p 468,832.18 2273.309 4705.168 1628.248 49,459.205

rno-miR-193-3p 1737.21 15.646 5.535 10.126 71.69

rno-miR-194-5p 29,022.858 222.803 1005.578 154.443 4888.132

rno-miR-203b-3p 346.805 0.549 0.34 1.926 5.414

rno-miR-21-5p 159,245.015 3854.307 1345.632 1652.192 15,147.209

rno-miR-22-3p 1,236,523.448 96,603.646 55,374.293 166,371.249 235,026.152

rno-miR-22-5p 444.407 63.992 28.289 87.822 84.76

rno-miR-31a-3p 135.821 4.969 0.734 4.788 12.909

rno-miR-31a-5p 2931.165 168.328 32.897 158.017 583.204

rno-miR-339-5p 314.445 49.849 25.719 27.668 43.617

rno-miR-3559-5p 550.276 11.454 11.879 13.587 34.687

rno-miR-365-3p 470.536 26.121 10.247 22.187 60.292

rno-miR-378a-3p 16,034.731 383.201 604.102 379.106 1496.621

rno-miR-378a-5p 412.681 12.512 54.307 8.676 41.054

rno-miR-451-5p 1297.679 81.875 47.434 43.356 53.144

rno-miR-6329 158.695 15.135 17.172 11.838 23.729

rno-miR-802-3p 2405.619 0.794 0.317 2.248 50.689

rno-miR-802-5p 294.88 0.093 0 0.027 6.983

rno-miR-92a-1-5p 270.871 10.879 2.949 8.154 37.219

rno-miR-92a-3p 16,055.859 197.271 58.193 158.198 198.4

Expression represented as TMM. Based on the NIEHS pipeline with p-value < 0.01, miRNA expression ≥80 percentage points above the maximum mean expression
within any of the other brain organ tissues and miRNA mean expression in liver > 100 TMM
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suggest higher confidence in them as, abundant,
enriched or specific in a tissue or organ whereas non-
overlapping ones may represent pipeline-specific
analysis results or miRNAs not detected as abundant
by the other pipelines. All the result sets are
downloadable.
The Expression Figures tabs contains a dynamically

generated expression plot (Fig. 7a) which can be zoomed
in to reveal the levels of expression of the miRNAs and
a heat map (Fig. 7b) that displays the expression of the
miRNAs as a color representation according to the data
scaled between − 4 and + 4. The heat map can be down-
loaded as an image file.
The data included in the RATEmiRs database is from

male and female Sprague Dawley rats with ages ranging

between 12 and 13 weeks. To assess whether age or plat-
form affects the miRNAs identified as TE, we compared
the miRNAs overlapping the three pipelines in ileum vs
brain tissues (cerebellum, cerebrum and hippocampus)
against those obtained in the same comparison of miR-
NAs obtained from 10 week old male Sprague Dawley
rats where the samples were assayed on customized Agi-
lent miRNA microarrays (GEO accession number
GSE52754) [13]. The RATEmiRs TE querying parame-
ters were set as follows:
Eli Lilly: threshold = 40%.
NIEHS: p-value = 0.05.
Maastricht: threshold = 50%.
There were 55 miRNAs identified in the overlap of the

three RATEmiRs pipelines (Table 5). The GEO2R

Fig. 5 Example of NIEHS pipeline TE query analysis results from liver vs other tissues (except the ovary, testicle and uterus). A) Box plot of the
average expression of TE miRNAs within a tissue displaying the distribution of data based on the minimum, first quartile, median, third quartile,
and maximum values. The x-axis is the tissues/organs and the y-axis is the log base 2 of TMM. B) Cluster analysis of the average expression of TE
miRNAs (rows) in the tissues (columns). The clustering is performed in R using the heatmap.2 function with default parameters (dist for the
distance metric and hclust to perform the hierarchical clustering) and scaling/centering of the data by row (miRNAs). The heat map colors are
represented by z-scores as depicted in the legend. C) Bar chart of the average expression of TE miRNAs with the vertical bar representing the
standard deviation of the mean. The x-axis is tissues/organs and the y-axis is TMM
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Fig. 6 Overlap of TE miRNAs. A) Venn diagram and B) list showing intersection of liver TE miRNAs from the Eli Lilly, NIEHS and Maastricht
University pipelines in a liver vs other tissues (except the ovary, testicle and uterus) comparison. Clicking on a number in the Venn diagram (A)
will display the overlapping or unique miRNAs in the display box (B). The image of the Venn diagram (PNG or SVG) and the miRNAs (unique and
intersections) as lists in a file (CSV) are downloadable by clicking the menu (three lines in the upper right-hand corner of the Venn diagram)

Fig. 7 Expression plot and heatmap of TE miRNAs from the NIEHS pipeline in a liver vs other tissues (except the ovary, testicle and uterus). A)
Expression profile plot with the miRNAs in the x-axis and TMM in the y-axis. Each miRNA is color coded and when the profiles are mouseovered,
the TMM value for each miRNA is displayed. B) Heat map of the miRNA expression. The x-axis is the tissues/organs and the y-axis is the miRNAs.
The color for the heat map expression is the TMM data scaled to values between − 4 and + 4. Mouseover of a cell in the heat map displays the
miRNA, its scaled expression and the tissue/organ of expression. The image (PNG, JPEG, PDF and SVG formats) of the heat map is downloadable
by clicking the menu (three lines in the upper right-hand corner of the heat map)
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empirical Bayes statistics [40, 41] analysis (limma with
log2 FC > 0.5 and FDR < 0.05) of the 10 weeks in age
male rat data was based on ileum vs brain tissues (cere-
bellum and cerebrum [cortex, hippocampus and thal-
amus]) and yielded 456 miRNAs. All 55 miRNAs from
the RATEmiRs query of the 12–13 week old male and
female rat data were identified by the GEO2R query of
the 10 week old male rat data suggesting that these
miRNAs are not age-specific, platform-specific nor
pipeline-dependent.
Conservation of tissue/organ-specificity between rat

and human was observed for 10 miRNAs (Table 6).
Using the default parameters for each of the three
pipelines in RATEmiRs, TS or OS miRNAs in the rat
liver, heart, pancreas, intestine or testis tissues/organs
also exhibited tissue-specificity in those same tissues
in the human as revealed by the Human Tissue

miRNA Atlas [10]. The tissue-specificity index
defined as

TSI j ¼
PN

i¼1 1−xij
� �

N−1

where xij is the TMM expression of miRNA j in tissue i
normalized by the maximal expression of miRNA j in
any of the N tissues [10, 42]. TSI ranges between 0 and
1 with measures closer to 0 indicative of a miRNA
expressed in many tissues and measures closer to 1 indi-
cative of a miRNA expressed more exclusively. As shown
in Table 6, the rat and human conserved TS/OS miR-
NAs have similar TSI measures with values > 0.9.
Human hsa-miR-21 has been shown to be ubiquitously
expressed and upregulated in various cancers [43]. The
TSI measure for rno-miR-21-3p is ≤0.71 in the RATE-
miRs rat miRNA sequencing data but is as high as 0.8 in
the Human Tissue miRNA Atlas or as low as 0.69. Two
human miRNAs (hsa-miR-3960 and hsa-miR-6089) were
the only miRNAs ubiquitously expressed with TSI mea-
sures ≤0.32. These two aforementioned miRNAs are not
represented in the rat database.
As a User Driven case scenario, 5 rat miRNAs (rno

-miR-802-5p, rno-miR-101b-3p, rno-miR-122-5p,
rno-miR-192-5p and rno-miR-31-3p) known to be TS in
the liver [44] were queried in RATEmiRs using the User
Driven entrez. Shown in Fig. 8 is a bar chart of the mean
TMM expression of the 5 miRNAs from the Maastricht
University pipeline in each tissue with error bars repre-
senting the standard deviations of the means. As can be
seen, the miRNAs are for the most part, exclusively
expressed in the liver.
The RATEmiRs tool can reliably be used to discover

and query TS, TE, OS miRNAs, but the actual quantity
of the miRNA may be inaccurate. T4 RNA ligases are
used to ligate adapters to the miRNAs upstream of the
polymerase chain reaction (PCR) and sequencing. The
use of ligases may result in inaccurate quantitation of
miRNAs due to inconsistent ligation efficiency caused by
differences in secondary structures of miRNAs and
adapters during the ligation process [45]. While ligase
bias may result in inaccurate quantitation, the efficiency
of ligation should be equal for a particular miRNA
despite the tissue/sample of origin. This hypothesis is
supported by the fact that many previously discovered
TS, TE and OS miRNAs were found in the rat miRNA
body atlas sequencing data [18]. However, additional
methods should be employed to provide more accurate
quantitation of miRNAs particularly if a miRNA is to be
used as a blood-based marker of organ injury since the
quantity of miRNA within a tissue may affect its utility

Table 5 TE miRNAs that overlap the three RATEmiRs pipelines
in ileum vs brain tissues

miRNA IDs

rno-miR-1-3p rno-miR-200a-3p

rno-miR-10a-3p rno-miR-200a-5p

rno-miR-10a-5p rno-miR-200b-3p

rno-miR-130b-3p rno-miR-200b-5p

rno-miR-130b-5p rno-miR-200c-3p

rno-miR-133a-3p rno-miR-203a-3p

rno-miR-133a-5p rno-miR-203b-3p

rno-miR-141-3p rno-miR-20a-5p

rno-miR-141-5p rno-miR-20b-3p

rno-miR-142-3p rno-miR-20b-5p

rno-miR-142-5p rno-miR-21-3p

rno-miR-143-3p rno-miR-21-5p

rno-miR-143-5p rno-miR-223-3p

rno-miR-145-3p rno-miR-27a-5p

rno-miR-145-5p rno-miR-28-3p

rno-miR-146a-3p rno-miR-301b-3p

rno-miR-146a-5p rno-miR-31a-3p

rno-miR-15b-3p rno-miR-31a-5p

rno-miR-15b-5p rno-miR-3558-5p

rno-miR-183-3p rno-miR-3559-3p

rno-miR-183-5p rno-miR-3559-5p

rno-miR-18a-5p rno-miR-363-3p

rno-miR-192-3p rno-miR-375-3p

rno-miR-192-5p rno-miR-802-3p

rno-miR-196c-3p rno-miR-802-5p

rno-miR-196c-5p rno-miR-92a-1-5p

rno-miR-19a-3p rno-miR-96-5p

rno-miR-19a-5p
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[46]. Ligase bias in the rat miRNA body atlas data used
in RATEmiRs was addressed in Smith et al. [18].
Plans for future versions of the database includes the pos-

sibility of incorporation of body tissue RNA-Seq reads of
miRNAs from treated samples and implementation of add-
itional analysis pipelines. In addition, future versions of the
database will likely include partitioning of the data and ana-
lysis functionalities to identify sex differences related to the
expression of the miRNAs in particular tissues and organs.

Conclusions
The RATEmiRs database was developed to provide a
user-friendly interface to the publicly available rat miRNA

body map dataset. On-the-fly analysis of the expression of
miRNAs in 23 tissues of Sprague Dawley rats using three
different analysis pipelines is available for tissue vs tissues
or organ vs organs comparisons. Comparing across mul-
tiple pipelines, tissues and organs gives the user immense
analysis power and confidence in the TE, TS and OS miR-
NAs that overlap. Having the flexibility to narrow down
miRNAs to ones which are largely expressed in a tissue or
organ, or querying by user-defined miRNAs, is of valuable
to scientists who want to target particular miRNAs because
of their tissue specificity, comparative expression, expres-
sion abundance or biological importance. The RATEmiRs
database is a useful resource not only for scientists studying

Table 6 Tissue/organ-specific miRNAs conserved between rat and human

Tissue/Organ Expression Type miRNA Lilly Rat TSI NIEHS Rat TSI Maastricht Rat TSI Human TSI (body 1/body 2)

Liver TS rno-miR-122-3p 1.00 0.97 0.97 1/0.91

Liver TS rno-miR-122-5p 1.00 0.97 0.97 0.99/0.94

Heart OS rno-miR-208a-3p 1.00 0.98 0.96 0.98/0.96

Pancreas TS rno-miR-216a-5p 1.00 0.97 0.96 0.9/0.92

Pancreas TS rno-miR-216b-5p 0.99 0.96 0.96 0.72/0.95

Pancreas TS rno-miR-217-3p 0.99 0.96 0.96 0.92/0.96

Pancreas TS rno-miR-217-5p 0.99 0.97 0.96 0.92/0.96

Intestinea OS rno-miR-215-5p 0.94 – 0.94 –

Testisb TS rno-miR-509-3p 0.99 0.95 0.99 0.96/0.96

Testisb TS rno-miR-509-5p 0.99 0.95 0.98 0.98/0.98

Several Ubiquitous rno-miR-21-3p 0.57 0.71 0.71 0.8/0.69

TS tissue-specific, TSI Tissue Specificity Index, OS organ-specific. Specificity determined by RATEmiRs analysis in a one vs all other tissues and using the default
parameters for each
Shown are the rat miRNAs that have specific expression and overlap with specific expression of human miRNA from the Human Tissue Atlas
aIndicates that the miRNA was not an annotated feature in the NIEHS pipeline
bDenotes that the NIEHS pipeline did not detect the miRNAs as specific
RATEmiRs TSI computed from TMM data and the human TSI computed from the Human Tissue Atlas quantile normalized data

Fig. 8 Liver-specific expression of 5 miRNAs. The Maastricht University TMM expression of 5 miRNA known to be liver-specific are plotted
(rno-miR-802-5p, rno-miR-101b-3p, rno-miR-122-5p, rno-miR-192-5p and rno-miR-31-3p). The x-axis is the tissues/organs and the y-axis is TMM.
The error bars represent the standard deviation of the mean expression of the 5 miRNAs
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miRNA biology in the rat, but also for those who are
interested in some form of comparative genomics.

Availability and requirements
Database name: RATEmiRs.
Database homepage: https://www.niehs.nih.gov/ratemirs
Browser requirement: JavaScript enabled; Chrome and

Firefox web browsers are supported and recommended.
For questions regarding the RATEmiRs database func-

tionality, contact Pierre R. Bushel (bushel@niehs.nih.-
gov), Jianying Li (jianying.li@nih.gov) or the RATEmiRs
development team at ratemirsdevteam@niehs.nih.gov.
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