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Abstract: A novel drug delivery system based on carboxymethyl cellulose containing copper oxide at
melamine and zinc oxide at melamine framework (CMC-Cu-MEL and CMC-Zn-MEL) was prepared
by the hydrothermal route. Synthesized nanocomposites were characterized by FTIR, SEM, and
Raman spectroscopy. In addition, transmission electron microscopy (TEM) and selected area electron
diffraction (SAED) images were applied to confirm the particle size and diffraction pattern of the
prepared nanocomposites. Furthermore, the crystallinity of the synthesized CMC, CMC-Cu-MEL, and
CMC-Zn-MEL materials was studied via X-ray diffraction (XRD). Estimating the transport exponent,
which discloses the solvent diffusion and chain relaxation processes, and the Ritger–Peppas kinetic
model theory were used to control the TC release mechanism from CMC-Cu-MEL and CMC-Zn-MEL.
Additionally, the CMC-Cu-MEL and CMC-Zn-MEL containing TC had the highest activity index
percents of 99 and 106% against S. aureus and 93 and 99% against E. coli, respectively. The tailored
CMC-Cu-MEL and CMC-Zn-MEL for drug delivery systems are expected to be feasible and efficient.

Keywords: drug delivery; nanocomposites; antibacterial activity; metal–organic framework

1. Introduction

Various novel strategies for creating drug delivery systems have been developed
in recent years [1–3]. The optimum drug delivery method should provide an adequate
concentration of medication to the target areas while also improving treatment effective-
ness [4,5]. Finding a good delivery carrier is thus one of the primary problems in achieving
this goal [6,7]. Polymeric particles [8,9], nanomaterials [7,10], microspheres [11], den-
drimers [12], and liposomes [13] have all been employed as possible drug carriers; however,
nanomaterials [7], microspheres [11], dendrimers [12], and liposomes [13] have all shown
benefits for drug delivery [14] in addition to energy applications [15] or water treatment
devices [16,17]. Nanoparticle-based therapies can improve the efficacy of conventional
medications and help to avoid many of the free drug therapeutic problems. Nanocarriers
can significantly increase the efficacy and distribution of medications, particularly those
that have low water-solubility [18].

Nanoparticle drug conjugates were produced in clinical therapy at various stages,
demonstrating the clinical effectiveness of nanoparticle therapeutics [5,19]. The synthesis
of metal–organic framework (MOF) and carboxymethyl cellulose (CMC) nanocomposites
has recently been reported in various publications [20–24]. An MOF consists of organic
linkers and metal ions as nodes that self-assemble [21,23,25,26]. The concept of MOF
nanocomposites was established because CMC comprises carboxylic and hydroxyl groups
that allow the action of metal ions in MOFs to be generated as a composite [22].
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One of the cellulose derivatives, carboxymethyl cellulose (CMC), for example, is
an anionic water-soluble biopolymer [27–30]. CMC has distinctive properties, such as
pH sensitivity, hydrophilicity, nontoxicity, biodegradability, and biocompatibility [31–33].
Because of these CMC properties, it is used as a carrier that has sparked much interest
in biological applications [9,34,35]. As a result, CMC may be a promising candidate for
nanoparticle modification [36,37].

Tetracycline (TC) is an antibiotic that is widely used in the industry to treat a variety
of illnesses. Acne, cholera, plague, malaria, brucellosis, and syphilis are examples [38].
Irritation of the gastrointestinal area (GIA) is one of the most common adverse effects seen
after taking TC orally. The medicine can be encapsulated into biocompatible support as
enteric-coated dosage forms to reduce the high GIA adverse effects induced by the oral
usage of TC. Furthermore, nanomaterial supports with a large surface area, such as MOFs,
can increase medicinal effectiveness, and medical enactment can be enriched even further
by adjusting nanoparticles.

The aim of this work was to find a novel low-cost drug delivery system based on
carboxymethyl cellulose containing copper oxide melamine and a zinc oxide melamine
framework (CMC-Cu-MEL and CMC-Zn-MEL) via a simple technique (hydrothermal
route). These nanocomposite materials were characterized by various physicochemical
techniques to indicate the incorporation of transition metal oxide into the CMC polymer
content. Tetracycline hydrochloride was loaded into the prepared nanocomposites and
its release mechanism was examined in PBS. The antibacterial activities of the prepared
samples were evaluated against S. aureus and against E. coli.

2. Materials and Methods
2.1. Materials

Metal salts, zinc nitrate hexahydrate [Zn(NO3)2-6H2O,98%] and copper nitrate trihy-
drate (Cu(NO3)2-3H2O), were purchased from BDH Chemicals, dimethyl sulfoxide (DMSO)
(99.8%) was purchased from Loba Chemie (LOBA CHEMIE PVT. LTD, Jehangir Villa, Mum-
bai, INDIA, cellulose powder from spruce was prepared in Fluka AG Laboratories (Buchs,
Switzerland), sulfuric acid (95–97%) and 2-propanol (99.8%) were purchased from Sigma-
Aldrich (St. Louis, MO, United States, formaldehyde, 2,4,6-triamine-1,3,5-triazine, 99%
(Melamine) was purchased from Sigma-Aldrich (St. Louis, MO, United States).

2.2. Synthesis of Carboxymethyl Cellulose (CMC)

The carboxymethyl cellulose (CMC) sample was prepared to utilize the alkalization
and carboxymethylation processes in accordance with the stated method [39]. An alkaliza-
tion process was produced by the 2:1 molar ratio of sodium hydroxide to cellulose in the
presence of 50/50 (v/v) water and isopropanol, which was stirred mechanically for 10 min.
Monochloroacetic acid (1 mol) was then added to the mixture and blended for 5 min with
a mechanical blender. After that, it was transferred to a glass bottle before spending 3 h
in an 80 ◦C water bath. To eliminate unreacted sodium hydroxide and monochloroacetic
acid, prepared samples were washed with water/isopropanol combination 50:50 (v/v) for
48 h at 70 ◦C. The produced sample was then baked at 70 ◦C to test how much carboxyl it
contained. The prepared samples had a carboxyl content of 62 meq./100 g sample, which
is equivalent to a 0.58 degree of substitution. The degree of substitution was calculated
according to carboxyl content, which was determined by the acid–base titration method
using the following equations:

n COOH =
(V1 − V2) × conn. o f HCl

w
(1)
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where nCOOH is the carboxyl content, V1 is the volume of NaOH, V2 is the volume of HCl,
and w is the dry weight of prepared sample

DS =
162 × nCOOH

w − 58 × nCOOH
(2)

where 162 is the molecular weight of unhydroglucose unit and 58 is the molecular weight
of COO.

2.3. Synthesis of Carboxymethyl Cellulose Containing Cu-melamine and Zn-melamine Framework

The hydrothermal method of aqueous Zn and Cu was used to produce ZnO and
CuO/CMC nanocomposites, and the methods followed those described in the literature [40].
To make a diluted colloidal solution (0.5 wt percent), CMC (5.0 g) was suspended in
distilled water and then sonicated for 10 min to scatter the CMC. Then, with the mixture
continuously stirred in a nitrogen atmosphere, 1.0 mg of citric acid, 1.0 mL of 2 mole/L
HCl, and 1.3 mmoles of metal salt (Zn(NO3)2-6H2O and Cu(NO3)2-3H2O) were added.
Dropwise addition of 10 mL of a 2 mole/L NaOH solution was added to the aforementioned
solution, followed by 120 min of stirring at 25 ◦C while under nitrogen at 500 rpm. The
produced CMC/ZnO and CMC/CuO composites were centrifuged at 15,000 rpm for
15 min after being cleaned and separated many times with distilled water. Melamine
formaldehyde and prepared CMC/ZnO and CMC/CuO nanocomposites were dispersed
in ethanol and subjected to a 10 min sonication process. CMC/ZnO and CMC/CuO
nanocomposites were added with a mechanical stirrer to melamine formaldehyde ethanol
solution, and the mixture was stirred continuously for four hours. The CMC-Cu-MEL
and CMC-Zn-MEL nanocomposites were then separated by centrifugation at 6000 rpm for
10 min, dried at 50 ◦C under vacuum, and washed numerous times with a water/ethanol
mixture (50:50). Additionally, a stainless steel boat containing the mixed nanocomposite
samples was transported to and placed in a muffle furnace at 250 ◦C for five hours [41].
Using a centrifuge set at 10,000 rpm for 10 min, cured samples were first rinsed several
times with a water/ethanol solution before being dried for five hours at 65 ◦C using a
vacuum drier. The preparation mechanism started with metal/CMC interaction in the
presence of a strong alkaline medium to form the oxide form of the Cu or Zn at the CMC
polymer. After that, physical contact by sonication and stirring between melamine and
oxide/polymer was done to confirm the homogeneity of the prepared composite. Finally,
the formation of CMC-Zn-MEL or CMC-Cu-MEL was carried out by maintaining the
obtained solid at 250 ◦C for five hours. During this high temperature, melamine interacted
with the oxide/CMC to form CMC-Zn-MEL or CMC-Cu-MEL.

2.4. Characterization Techniques

The functional groups in the samples were identified using a Fourier transform in-
frared (FTIR) spectrometer (Spectrometer Model FTIR-8400S, Shimadzu, Japan) in the
range 400.0 to 4000.0 cm−1. A scanning electron microscopy (SEM, Joel Jsm6360LA, Tokyo,
Japan) was used to observe the morphology of the synthesized CMC, CMC-Cu-MEL, and
CMC-Zn-MEL materials. Additionally, a transmission electron microscope (TEM) in a
Jeol-1230 electron microscope was used to affirm the size of the prepared particles of CMC,
CMC-Cu-MEL, and CMC-Zn-MEL materials. The crystallinity of the synthesized CMC,
CMC-Cu-MEL, and CMC-Zn-MEL materials was studied via X-ray diffraction (XRD; TD-
3500 diffractometer, Dandong Mastery Technology Co., Ltd, Dandong, China) at room
conditions with Ni-filtered CuKα radiation (λ = 1.5418◦ A), at 40 kV and 30 mA. Raman
spectroscopy was utilized to study the stability of the chemical structure of the prepared
CMC, CMC-Cu-MEL, and CMC-Zn-MEL materials using a Raman spectrometer (Horiba
Scientific, Unit D Fletcher, CA, USA). The nitrogen adsorption–desorption isotherm was
utilized to determine the impact of Cu and Zn oxide incorporation on the CMC matrix
by using the Brunauer–Emmett–Teller (BET) method at 77 K (Tristar II 3020 version 3.02,
Norcross, GA, USA).
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2.5. Preparation of TC-Loaded CMC, CMC-Cu-MEL, and TC-Loaded CMC-Zn-MEL

Tetracycline hydrochloride (TC) loading in the CMC-Cu-MEL and CMC-Zn-MEL was
carried out using the following method: The prepared CMC-Cu-MEL and CMC-Zn-MEL
were impregnated in TC aqueous solution (0.1 mMole) and stored at room temperature for
72 h. The loaded samples were removed from the mixture using a centrifuge at 3000 rpm.
The TC-loaded samples were washed several times with deionized water and centrifuged.
The TC-loaded samples were dried in the vacuum oven. A UV–visible spectrophotometer
at (λmax = 360 nm) was used to confirm the presence of TC in CMC-Cu-MEL and CMC-Zn-
MEL via determination of the free amount of TC from the impregnation. The TC-loaded
CMC-Cu-MEL and TC-loaded CMC-Zn-MEL were 0.36 and 0.3 (mg/L), respectively.

2.6. Release Study

According to the described approach, UV–visible (UV-Vis-NIR UV 3600-spectrometer
Shimadzu Company, Kyoto, Japan) absorbance is considered to indicate the release of TC from
CMC-Cu-MEL and CMC-Zn-MEL nanocomposites [42] as follows: Each vessel holding the
TC-loaded nanocomposite was doped with 50 mL of buffer saline phosphate (pH = 7.40), and
the vessels were then incubated at 310 K. Each vessel holding the TC-loaded nanocomposite was
doped with 50 mL of buffer saline phosphate (pH = 7.40), and the vessels were then incubated
at 310 K. The CMC-Cu-MEL and CMC-Zn-MEL nanocomposites were dispersed individually
in 0.2 g of the buffer solution to conduct release studies. To measure the absorbance using
UV–visible spectroscopy at max = 360 nm, 3 mL methanol and 2 mL distilled water were mixed
and added to each buffer. The concentration of the free TC was determined using a common
calibration curve. Based on the findings, up to 24 h of data were plotted.

2.7. Antibacterial Activity

According to the published procedure, an agar well diffusion assay was used to test
the antibacterial activity of CMC-Cu-MEL, CMC-Zn-MEL, and tetracycline hydrochloride
against Gram-positive Escherichia coli and Gram-negative Staphylococcus aureus bacteria [42].
The antibacterial strains were planted on Petri dishes with 20.0 g of the dextrose agar
nutrient, 5.0 g peptone, and 3.0 g of the beef extract. In DMSO, a nanocomposite containing
1.0 mM was created. Paper discs of a standard size (5.0 cm) were autoclaved and sterilized.
The nanocomposite was then diluted by 20.0 L and added to the paper discs inside the
Petri dishes. As a standard, the antibacterial medication ampicillin was mentioned. The
plates were kept at 30 ◦C for one day of incubation. According to Equation (1), the clear
zones (measured in mm) and activity index percentage were computed. The supporting
documents include pictures of the Petri dishes.

Activity Index % =
clear inhibition zone diameter o f prepared samples

clear inhibition zone diameter o f ampicillin
× 100 (3)

3. Results and Discussion
3.1. Morphology Investigation

The SEM and TEM images were utilized to investigate the morphology of the prepared
CMC, CMC-Cu-MEL, and CMC-Zn-MEL, as shown in Figures 1 and 2 for SEM, and TEM,
respectively. For SEM images, the CMC one is shown in Figure 1A and has organic block
behavior without isolated microscale or nanoscale particles. After that, CMC-Cu-MEL
and CMC-Zn-MEL materials were additionally scanned and displayed in Figure 1B,C,
respectively. The porosity was strongly increased in the case of CMC-Cu-MEL and small
particles at the surface of the studied area as clarified in the blue circle of Figure 1C. The
SEM images of CMC-Cu-MEL and CMC-Zn-MEL have heterogeneous characters with
variable scale size particles, which indicate the impact of Cu and Zn on the morphology
of CMC. The scale size of the synthesized particles of CMC-Cu-MEL and CMC-Zn-MEL
was studied via TEM images, as shown in Figure 2A,B, respectively. The scale size was
found to be between 5 and 25 nm, which confirms the nanoscale size of the prepared
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CMC-Cu-MEL and CMC-Zn-MEL materials. The traditional agglomeration of particles
could not be observed in either the CMC-Cu-MEL or CMC-Zn-MEL materials. The SAED
images of CMC-Cu-MEL and CMC-Zn-MEL are described in Figure 2C,D, respectively.
These images have different ring patterns with variable diameters, which are assigned to
different planes of the formed crystals. Additionally, these clear rings affirm the design
of material in nanocrystalline characteristics. Therefore, the TEM, together with the SEM
images, indicate that the prepared CMC-Cu-MEL and CMC-Zn-MEL materials have a
heterogeneous surface containing small-size particles. Additionally, the prepared CMC,
CMC-Cu-MEL, and CMC-Zn-MEL materials were studied by the dynamic light scattering
(DLS) to confirm the particle size distribution (Figure 3). The size of the prepared particles
by the DLS is larger than that previously seen via TEM because DLS analysis measures
the hydrodynamic diameter. The highest intensity or frequency particle size was found
at 1741.1, 1751.3, and 3594.1 nm for CMC, CMC-Cu-MEL, and CMC-Zn-MEL samples,
respectively. The larger particle size was found in the CMC-Zn-MEL sample if compared
with CMC-Cu-MEL. This trend could be due to filling some pores in the CMC matrix with
crystalline metal Cu or Zn oxide. In short, DLS analysis indicates Cu- or Zn-loading to
form CMC-Cu-MEL and CMC-Zn-MEL materials. The SEM image of CMC-Cu-MEL has
more pores than CMC-Zn-MEL, which can be interpreted to indicate the smaller sample
particle size of CMC-Cu-MEL compared to CMC-Zn-MEL.
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Figure 1. (A) SEM image of CMC, (B) SEM image of CMC-Cu-MEL, (C) SEM image of CMC-Zn-MEL.

3.2. Crystallinity Analysis

XRD analysis confirmed the crystallinity of the CMC-Cu-MEL and CMC-Zn-MEL
materials, as shown in Figure 4. The intensity of the diffraction peaks was sharply decreased
after Cu or Zn incorporation. CMC XRD has an amorphous character with low-intensity
XRD peaks at 2θ around 19.98, 22.34, 23.42, 30.62, and 32.58◦. The appearance of these peaks
as a broad peak apart from other high-intensity peaks in the case of CMC-Cu-MEL and
CMC-Zn-MEL materials suggests the presence of ZnO or Cu oxide as filler in the polymer
matrix of CMC. For CMC-Cu-MEL, the higher intensity peaks (more than pure CMC) were
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found at 35.26 and 38.66◦, which indicate the formation of CuO as JCPDS 05–0661 [43].
The ZnO XRD peaks in the XRD analysis of CMC-Zn-MEL were observed at 2θ at 31.5,
34.18, 36.02, 47.32, 56.31, 62.66, and 67.64◦. These peaks indicate the formation of ZnO in
CMC-Zn-MEL as hexagonal wurtzite (JCPDS 36–1451) [44]. These peaks can be assigned to
the following planes: (100), (002), (101), (102), (110), (103), and (112), respectively. Based on
XRD analysis, it is proposed that CuO and ZnO were successfully incorporated into the
CMC matrix.

Polymers 2022, 14, x FOR PEER REVIEW 6 of 15 
 

 

Figure 1. (A) SEM image of CMC, (B) SEM image of CMC-Cu-MEL, (C) SEM image of CMC-Zn-

MEL. 

 

Figure 2. (A) TEM image of CMC-Cu-MEL, (B) TEM image of CMC-Zn-MEL, (C) SAED image of 

CMC-Cu-MEL, (D) SAED image of CMC-Zn-MEL. 

 

Figure 3. DLS analysis of CMC, CMC-Cu-MEL, and CMC-Zn-MEL. 

3.2. Crystallinity Analysis 

XRD analysis confirmed the crystallinity of the CMC-Cu-MEL and CMC-Zn-MEL 

materials, as shown in Figure 4. The intensity of the diffraction peaks was sharply de-

creased after Cu or Zn incorporation. CMC XRD has an amorphous character with low-

Figure 2. (A) TEM image of CMC-Cu-MEL, (B) TEM image of CMC-Zn-MEL, (C) SAED image of
CMC-Cu-MEL, (D) SAED image of CMC-Zn-MEL.

Polymers 2022, 14, x FOR PEER REVIEW 6 of 15 
 

 

Figure 1. (A) SEM image of CMC, (B) SEM image of CMC-Cu-MEL, (C) SEM image of CMC-Zn-

MEL. 

 

Figure 2. (A) TEM image of CMC-Cu-MEL, (B) TEM image of CMC-Zn-MEL, (C) SAED image of 

CMC-Cu-MEL, (D) SAED image of CMC-Zn-MEL. 

 

Figure 3. DLS analysis of CMC, CMC-Cu-MEL, and CMC-Zn-MEL. 

3.2. Crystallinity Analysis 

XRD analysis confirmed the crystallinity of the CMC-Cu-MEL and CMC-Zn-MEL 

materials, as shown in Figure 4. The intensity of the diffraction peaks was sharply de-

creased after Cu or Zn incorporation. CMC XRD has an amorphous character with low-

Figure 3. DLS analysis of CMC, CMC-Cu-MEL, and CMC-Zn-MEL.



Polymers 2022, 14, 3815 7 of 13

Polymers 2022, 14, x FOR PEER REVIEW 7 of 15 
 

 

intensity XRD peaks at 2θ around 19.98, 22.34, 23.42, 30.62, and 32.58°. The appearance of 

these peaks as a broad peak apart from other high-intensity peaks in the case of CMC-Cu-

MEL and CMC-Zn-MEL materials suggests the presence of ZnO or Cu oxide as filler in 

the polymer matrix of CMC. For CMC-Cu-MEL, the higher intensity peaks (more than 

pure CMC) were found at 35.26 and 38.66°, which indicate the formation of CuO as JCPDS 

05–0661 [43]. The ZnO XRD peaks in the XRD analysis of CMC-Zn-MEL were observed at 

2θ at 31.5, 34.18, 36.02, 47.32, 56.31, 62.66, and 67.64°. These peaks indicate the formation 

of ZnO in CMC-Zn-MEL as hexagonal wurtzite (JCPDS 36–1451) [44]. These peaks can be 

assigned to the following planes: (100), (002), (101), (102), (110), (103), and (112), respec-

tively. Based on XRD analysis, it is proposed that CuO and ZnO were successfully incor-

porated into the CMC matrix. 

 

Figure 4. XRD analysis of CMC, CMC-Cu-MEL, and CMC-Zn-MEL. 

3.3. Surface Area Analysis 

The surface area of the studied CMC, CMC-Cu-MEL, and CMC-Zn-MEL materials 

was investigated at 77 K via the nitrogen adsorption–desorption isotherm, as displayed 

in Figure 5. The adsorption curve of all CMC derivatives did not completely coincide with 

the desorption curve, and the isotherm behavior is near to a type (IV) isotherm, which is 

typical for mesoporous materials [45]. The BET surface area of CMC, CMC-Cu-MEL, and 

CMC-Zn-MEL materials were calculated and found at 64.4218, 5.8830, and 5.3964 m2/g, 

respectively. Therefore, the introduction of metallic parts decreased the estimated BET 

surface area. This trend could be due to filling some pores in the CMC matrix with crys-

talline metal Cu or Zn oxide. Although the surface area of CMC was less, the pores were 

filled with crystalline oxide that might create active sites for enhancement of crystallinity 

and performance. In short, BET analysis indicated the Cu- or Zn-loading to form CMC-

Cu-MEL and CMC-Zn-MEL materials. The SEM image of CMC-Cu-MEL at high magni-

fication reveals more pores than CMC-Zn-MEL, which can interpreted by the higher sur-

face area of the CMC-Cu-MEL sample compared to the CMC-Zn-MEL sample. The ab-

sence of pores in the case of the CMC-Zn-MEL sample could be due to the larger size of 

Figure 4. XRD analysis of CMC, CMC-Cu-MEL, and CMC-Zn-MEL.

3.3. Surface Area Analysis

The surface area of the studied CMC, CMC-Cu-MEL, and CMC-Zn-MEL materials
was investigated at 77 K via the nitrogen adsorption–desorption isotherm, as displayed in
Figure 5. The adsorption curve of all CMC derivatives did not completely coincide with the
desorption curve, and the isotherm behavior is near to a type (IV) isotherm, which is typical
for mesoporous materials [45]. The BET surface area of CMC, CMC-Cu-MEL, and CMC-Zn-
MEL materials were calculated and found at 64.4218, 5.8830, and 5.3964 m2/g, respectively.
Therefore, the introduction of metallic parts decreased the estimated BET surface area. This
trend could be due to filling some pores in the CMC matrix with crystalline metal Cu or Zn
oxide. Although the surface area of CMC was less, the pores were filled with crystalline
oxide that might create active sites for enhancement of crystallinity and performance. In
short, BET analysis indicated the Cu- or Zn-loading to form CMC-Cu-MEL and CMC-Zn-
MEL materials. The SEM image of CMC-Cu-MEL at high magnification reveals more pores
than CMC-Zn-MEL, which can interpreted by the higher surface area of the CMC-Cu-MEL
sample compared to the CMC-Zn-MEL sample. The absence of pores in the case of the
CMC-Zn-MEL sample could be due to the larger size of the Zn radius (139 pm) compared
to the Cu radius (128 pm). Therefore, the larger element (Zn) could fill more pores than
that of the smaller element (Cu).
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3.4. FTIR Analysis

FTIR analysis was used to investigate the chemical bonds or functional groups of the
prepared CMC-Cu-MEL and CMC-Zn-MEL materials; in addition, pristine cellulose, CMC,
and CMC-MEL were also studied (Figure 6). The stretching vibration of O-H groups around
3440 cm−1 was seen as a clear broad peak in the case of cellulose or CMC, or CMC-MEL,
and as a small peak after Cu or Zn incorporation, which could be attributed to the expected
interaction between the transition element (Cu or Zn) and the CMC oxygenated groups. The
FTIR peak of symmetric C-H was observed at 2900 cm−1 with smaller intensity in the case
of CMC-Cu-MEL and CMC-Zn-MEL materials [46,47]. The asymmetric vibrations of C-O-C
were seen at 1160 cm−1 in all the samples [40]. Furthermore, the 1740 and 1180 cm−1 peaks
could be assigned to C=O stretching and C-O-C stretching vibration, respectively [47,48].
The FTIR spectrum of the CMC-Cu-MEL and CMC-Zn-MEL materials has a peak at around
700 cm−1, which could correspond to M–O peaks (M = Cu or Zn) [48,49]. In short, the FTIR
analysis indicates the successful incorporation of Cu or Zn in addition to the existence of
most CMC function groups with lower transmittance.
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3.5. Raman Spectroscopy Analysis

Raman spectroscopy of the CMC, CMC-Cu-MEL, and CMC-Zn-MEL materials was
investigated, as shown in Figure 7, in the range 50–2000 cm−1 for all studied samples extending
vibrations. The main broad peak in the case of CMC without oxides at ~1095 cm−1 could
be assigned to the amorphous C-O-C of the CMC polymer [50]. This peak declined after Cu
or Zn-oxide incorporation, which indicates the interaction between CMC and Cu-oxide or
Zn-oxide. The other bonds of CMC such as CCC, OCC, and OCO were observed in the range
150–600 cm−1 [40]. After oxide incorporation, there are three broad and clear peaks at 354,
556, and 970 cm−1, which were found in both the CMC-Cu-MEL and CMC-Zn-MEL samples.
Typically, there are nine zones expected that are focused optical phonon modes (4Au + 5Bu +
Ag + 2Bg), but three from these nine modes (Ag + 2Bg) are Raman active. The first observed
peak at 354−1, which could be related to the Ag mode, and the other peaks, evident at 556 and
970 cm−1,were related to Bg modes [40]. Briefly, Raman spectroscopy indicates the existence
of Raman active vibration modes of oxide and polymer bonds.
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3.6. TC Release Study

Metal–organic frameworks (MOFs) are routinely regulated in quantity form via a
local transit method. As a result, the drug release only occurs at the desired location,
preventing any systematic drug interaction. By using MOFs at the vulnerable position
through destructive or nondestructive revenue, the longitudinal management of drug
bearing can be quickly assumed. The rate of drug dissolution, drug dispersion, MOF
size, drug physical desorption, and/or MOF degradation/erosion rates have recently been
used to predict the order of drug release from MOFs [51]. The release of loaded TC from
CMC-Cu-MEL and CMC-Zn-MEL in phosphate-buffered saline is shown in Figure 8. The
data show that, due to the nature of burst release, the drug release rose for the first two
hours and thereafter dropped. The burst release behavior during the first two hours was
due to the presence of some TC over the surface of CMC-Cu-MEL and CMC-Zn-MEL, and
the release that was exclusively from the CMC-Cu-MEL and CMC-Zn-MEL produced the
difference in delivery behavior [52].
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The Ritger–Peppas equation was used to study the release data for loaded TC from
CMC-Cu-MEL and CMC-Zn-MEL (0.3%) within 24 h in order to fully comprehend the
drug release process. This formula is displayed as Equation (2) [53]:

Mt

M∞
= ktn (4)

where the portion of TC released at time t is represented by Mt
M∞

, and the parameters k (rate
constant) and the exponent n were obtained by calculating the undeviating relation of log
(Mt/M∞) against log time (hour), which could afford evidence on the important release
mechanisms. The intercept and slope values were determined when the relationship was
plotted, and the transport exponent n was estimated to be approximately 0.32 at an R2 value
of 0.966. The value of n falls between 0.2 and 0.8, taking into account the irregularity of
the release mechanism (non-Fickian diffusion, which is a mixture of diffusion and polymer
chain relaxation). The TC is then said to be released as a result of the polymeric chains
relaxing and the solvent diffusing through them. This is due to the overwhelming influence
of the diffusion process competing with the influence of the relaxation process [54].

3.7. Antibacterial Activity

The antibacterial evaluation of the synthesized TC-loaded CMC-Cu-MEL and TC-
loaded CMC-Zn-MEL was our main concern. In this case, the antibacterial activity of the
TC-loaded-CMC-Cu-MEL and TC-loaded-CMC-Zn-MEL were tested against Gram-positive
Staphylococcus aureus and Gram-negative Escherichia coli bacteria. Table 1 and Figure S1
provide the corresponding clear areas of the inhibitory zones of the CMC-Cu-MEL and CMC-
Zn-MEL and TC-loaded CMC-Cu-MEL and TC-loaded CMC-Zn-MEL samples. According
to the data, CMC-Cu-MEL and CMC-Zn-MEL generally exhibited antibacterial activity
against S. aureus as opposed to E. coli because of the presence of Cu and Zn, which had
obvious inhibition zones with diameters of 6 mm and 12 mm, respectively. The latter is most
likely caused by the bacteria’s cell wall’s variable selective permeability. Since Escherichia
coli bacteria have two cytoplasmic membranes, which impede the drug’s penetration across
its lipid membrane into the cytoplasm, Staphylococcus aureus exhibits stronger antibacterial
efficacy than Escherichia coli. However, Staphylococcus aureus only has a thin cytoplasmic
membrane and no outer lipid barrier, which facilitates better medication penetration. The
antibacterial activity of the TC-loaded CMC-Cu-MEL and the TC-loaded CMC-Zn-MEL
is also higher than that of the synthetic CMC-Cu-MEL and CMC-Zn-MEL. Synthesized
TC-loaded CMC-Cu-MEL and TC-loaded CMC-Zn-MEL had the strongest antibacterial
effects, with activity indices of 99 and 106 percent against S. aureus and 93 and 99 percent
against E. coli, respectively. The synthesized CMC-Cu-MEL and CMC-Zn-MEL, on the other
hand, showed very modest antibacterial action, with activity index percentages of 34 and
66 against S. aureus and 26 and 52 against E. coli, respectively. It is interesting to note that
TC-loaded CMC-Cu-MEL and TC-loaded CMC-Zn-MEL were both even more effective than
ampicillin against S. aureus. According to these findings, TC is released from TC-loaded
CMC-Cu-MEL and TC-loaded CMC-Zn-MEL, and is effective against E. coli and S. aureus.

Table 1. The antibacterial activity of the TC-loaded CMC-Cu-MEL and TC-loaded CMC-Zn-MEL.

Samples E. coli S. aureus
Diameter (mm) a % Activity Index Diameter (mm) a % Activity Index

CMC-Cu-MEL 6 26 8.8 34
CMC-Zn-MEL 12 52 17.2 66

TC-loaded CMC-Cu-MEL 21.4 93 25.8 99
TC-loaded CMC-Zn-MEL 22.8 99 27.6 106

Ampicillin b 23 - 26 -
a Disk papers (5 mm) were soaked with 20 µM of the suspended solution of prepared nanocomposites in DMSO.
b The activity was measured after one-day incubation with the prepared nanocomposites. Ampicillin was used as
the reference. All experiments were done in replicates.
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4. Conclusions

Hydrothermal preparation of CMC-Cu-MEL and CMC-Zn-MEL, two drug delivery
systems based on carboxymethyl cellulose with copper oxide at melamine and zinc oxide
at melamine framework, was successful. FTIR, SEM, Raman spectroscopy, TEM, and SAED
were used to characterize synthesized nanocomposites. Additionally, using XRD, the crys-
tallinity of the produced materials was investigated. The nitrogen adsorption–desorption
isotherm was used to determine the total surface area and particle size distribution of the
prepared nanocomposites. The data revealed that the scale size was found to be between 5
and 25 nm, which confirms the nanoscale-size of the prepared CMC-Cu-MEL and CMC-
Zn-MEL materials. Furthermore, SAED images of CMC-Cu-MEL and CMC-Zn-MEL have
different ring patterns with variable diameters, which are assigned to different planes of
the formed crystals. Additionally, SAED affirms the design of material in nanocrystalline
characteristics. XRD analysis confirmed the crystallinity of synthesized CMC-Cu-MEL and
CMC-Zn-MEL materials with higher intensity peaks at 35.26, and 38.66◦, which indicate
the formation of CuO, and 2θ peaks were observed at 31.5, 34.18, 36.02, 47.32, 56.31, 62.66,
and 67.64◦, which indicate ZnO formation. In addition, the BET surface area of the CMC,
CMC-Cu-MEL, and CMC-Zn-MEL materials were calculated and found at 64.4218, 5.8830,
and 5.3964 m2/g, respectively. Therefore, the introduction of metallic parts decreased the es-
timated BET surface area. In addition, there was an increase in drug release within the first
two hours, which is mostly attributable to the high charge density and diffusion-controlled
release. Additionally, the Ritger–Peppas kinetic model’s assessment of exponent n as the
transport factor with a predominately solvent diffusion-related effect elaborated the diffu-
sion and polymeric relaxation processes in the context of the drug release mechanisms of
TC over CMC-Cu-MEL and CMC-Zn-MEL. The highest antibacterial effects, however, were
demonstrated by the synthetic TC-loaded CMC-Cu-MEL and TC-loaded CMC-Zn-MEL,
which had activity indices of 99 and 106 percent against S. aureus and 93 and 99 percent
against E. coli, respectively. The synthetic CMC-Cu-MEL and CMC-Zn-MEL, on the other
hand, demonstrated very weak antibacterial activity, with activity index percentages of 34
and 66 against S. aureus and 26 and 52 against E. coli, respectively. Additionally, TC-loaded
CMC-Cu-MEL and TC-loaded CMC-Zn-MEL nanocomposites were toxic to both bacteria.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/polym14183815/s1, Figure S1: Antibacterial activity of TC-loaded-
CMC-Cu-MEL and TC-loaded-CMC-Zn-MEL, +Ve control is the ampicillin.
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