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Abstract

We most often consider muscle as a motor generating force in the direction of shortening, but less often consider its roles
as a spring or a brake. Here we develop a fully three-dimensional spatially explicit model of muscle to isolate the locations of
forces and energies that are difficult to separate experimentally. We show the strain energy in the thick and thin filaments is
less than one third the strain energy in attached cross-bridges. This result suggests the cross-bridges act as springs, storing
energy within muscle in addition to generating the force which powers muscle. Comparing model estimates of energy
consumed to elastic energy stored, we show that the ratio of these two properties changes with sarcomere length. The
model predicts storage of a greater fraction of energy at short sarcomere lengths, suggesting a mechanism by which muscle
function shifts as force production declines, from motor to spring. Additionally, we investigate the force that muscle
produces in the radial or transverse direction, orthogonal to the direction of shortening. We confirm prior experimental
estimates that place radial forces on the same order of magnitude as axial forces, although we find that radial forces and
axial forces vary differently with changes in sarcomere length.
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Introduction

Energy storage in cross-bridges
Strain energy storage in muscle systems is most often associated

with stretched tendons or other elastic supporting materials [1,2].

In many instances, strain energy storage in skeletal and tendon

structures has been shown to be a crucial component of the

locomotor systems of animals, especially flying animals [3]. While

muscle’ role as a force generator has dominated research on

animal locomotion, emerging studies posit diverse functional roles

for muscles, including those of a brake, actuator, spring, or even a

damper (for a review see Dickinson et al., 2000) [4]. Somewhat less

attention has focused on the extent to which muscle itself plays a

role in strain energy storage. That work which has been done has

focused on the possibility of storing energy in the thick filaments,

rigor cross-bridges, or the in the extensible accessory protein titin

[5–7]. This assumption that active cross-bridges play a minor role

is understandable: they generate force in activated muscle and are

thought to be constantly cycling between freely diffusing and

attached states and so would be expected to develop little

deformation.

However, recent work suggests that in certain situations the

cross-bridges may be locked onto muscle’ thin filaments, frozen

into a lattice that can act to store energy [8]. Energy storage may

be possible in the subset of bound cross-bridges in antagonistic

muscles that absorb inertial energy of a periodically moved

appendage. This energy storage permits locomotion that would

otherwise be energetically unfeasible [3]. Additionally, energy

storage in muscle has been proposed in non-cyclical movements

such as the tentacular strike of the squid, stomatopods’raptorial

appendage strike, or the tongue extension of toads [9–12]. In these

cases of one-off sudden movements, even a set of cycling cross-

bridges may store strain energy for release on the initiation of

rapid movement through pre-movement activation and subse-

quent pre-movement strain of the cross-bridges occurring just

before the onset of an explosive motion. Our spatially explicit half-

sarcomere model lets us parse how strain energy is partitioned

between the filaments and the cross-bridges in maximally activated

isometric sarcomeres. We show that the cross-bridges may store

the majority of the elastic strain energy.

Force generation in the radial direction
Cross-bridges are more often thought of as force generators

than energy storage sites. The force generated by individual

myosin heads arises from deformations as they form cross-bridges

between the thick and thin filaments and undergo a rotation about

a lever arm [13]. Interestingly, generating force by a rotation

about a hinge implies that the vector of the generated force will

have a component perpendicular to the direction of contraction

[14,15]. This force component is in the radial direction,

orthogonal to the axial force that is generated in parallel to the

thick and thin filaments (Figure 1).

Radial force was observed during contraction in intact muscle fiber

experiments dating back to the 1950s [16]. Subsequent studies of

radial forces placed them on the same order of magnitude as axial
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force [17–22]. These more recent experiments addressed radial force

production through a proxy such as changes in fiber diameter or

alterations of the muscle’ radial compliance. The use of a lever-arm

cross-bridge (with extensional and torsional springs) in the current

spatially explicit model permits direct simulation of radial force

production (Figure 1B&D) [15]. This cross-bridge model expands

upon prior models (Figure 1A&C) [23–27].

Radial force may have functional implications. The internally

generated radial force is a partial determinant of fiber radial

compliance [21,22]. Alterations in radial fiber compliance are also

a hallmark of dystrophic disorders [28,29]. Mis-regulation of the

transmission of radial force produced during contraction may be a

cause of the ultrastructural disorganization observed in histological

studies of dystrophic muscle [30].

In addition to the more commonly analyzed axial forces, the

model presented here addresses both radial force generation and

the strain energy in the filaments and cross-bridges of the

contractile lattice. These phenomena are linked, and are results

of deformation of cross-bridges in the axial and radial directions.

The interdependence of these properties is uniquely addressable

using spatially explicit models of muscle contraction with lever-

arm myosin geometries (Figure 1). We have developed such

models based on protein structural information [15]. These

models permit a fine parsing of energy locations which shows

that cross-bridges store substantial elastic strain energy. Correla-

tion of this cross-bridge energy with axial and radial forces suggests

that radial cross-bridge strain could supply much of the energy

stored in the contractile lattice.

Results

Below we present results for simulations at the level of a half-

sarcomere, the smallest fully-regulated component of muscle. Our

half-sarcomere is composed of springs representing four myosin

(thick) and eight actin (thin) filaments, arranged with boundary

conditions which provide a semi-infinite lattice (Figure S1) [26].

Forces and energies are plotted as sarcomere length is changed by

varying filament end locations. Spacing between the filaments is

varied with sarcomere length to maintain a constant lattice volume

[31]. Thus results are plotted over the range of the classic

isovolumetric length-tension curve [32] The force decrease in our

half-sarcomere model, to 18–21% of maximal values, at extreme

sarcomere lengths is comparable to the 25–30% remaining force

seen in experimental measurements of striated muscle [32].

Radial forces produced within the half sarcomere are both large

and correlated with energy storage. Our model monitors radial forces

produced by lever arm cross-bridge models composed of an angular

(or torsional) and an extensional (linear) spring (Figure 1A&B). The

forces and energies used for comparison are steady state values

produced on full isometric activation at a range of sarcomere lengths

stretching across the length-tension curve. Even though isometric

contraction represents only one possible loading regime, it is a

computationally simple condition with low cross-bridge turnover,

making it a regime well suited to explore how sarcomere length, and

thus filament overlap, influences force produced and energy stored.

Axial and radial forces are of the same order of
magnitude

In the fully activated conditions of our simulations, both the axial

and radial forces quickly rise to an asymptotic maximum (Figure 2).

This rise to a maximum value takes less than 50 ms. The exponential

time constant of the rise to peak force is not significantly different

between the axial and radial forces (p = 0.31). After steady force levels

are reached, stochastic fluctuations in the number and states of bound

cross-bridges show as noise in the force traces. This clean rise gives

clear asymptotic maximum forces.

Figure 1. Models produce radial and axial forces. The one-
dimensional cross-bridge model shown in (A) produces force and exists
only in the axial direction. The two-dimensional cross-bridge model
shown in (B) produces both axial and radial forces, and responds to
changes in lattice spacing. A multi-filament model using one-
dimensional cross-bridge, shown in (C), is diagrammed as a three-
dimensional system but is insensitive to changes in lattice spacing and
unable to explore radial force produced during contraction. Using two-
dimensional cross-bridges in the same model geometry, in (D), allows
the recording of radial forces and altered force dynamics with altered
lattice spacing.
doi:10.1371/journal.pcbi.1002770.g001

Author Summary

Locomotion requires energy. Very fast locomotion requires
a larger amount of energy than muscle can produce in
such a short time period, thus muscle must use energy
that it previously produced and stored as elastic deforma-
tion. Cyclical or repeated movements can be directly
powered by muscle, but energy may be conserved in such
cases through elastic energy storage. Traditionally we’ve
looked primarily at tendons, insect exoskeletons, and
bones as locations where this energy is stored. However, a
small but growing body of literature has recently
suggested the backbone filament proteins in muscle act
as elastic storage locations. We suggest that the myosin
motors themselves are capable of storing more energy
than the filaments, energy that may be released to power
very fast movements or reduce the cost of cyclical
movements. We further suggest that this energy is stored
in the radial deformations of myosin motors, in a direction
that is perpendicular to the axis of muscle shortening.

Energy Storage and Radial Forces in the Sarcomere
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The radial force, at all sarcomere lengths, is of the same order of

magnitude as the axial force (Figure 3). At most sarcomere lengths

below 3:0mm, where there is significant myofilament overlap, the

radial force is larger than the axial force. At very short sarcomere

lengths the radial force is as much as 2.4 times the axial force,

although this is in a region where overall axial force levels are

relatively small. These results agree with prior experimental

studies which found radial forces of the same magnitude as axial

forces [18–22,33].

The cross-bridges store the majority of strain induced
energy

The majority of strain energy stored in the complete contractile

lattice of filaments and cross-bridges is partitioned in the cross-

bridges (Figure 4A&B). The relative distribution of energy between

the cross-bridges and the filaments varies with sarcomere length

(Figure 4B). Even when the filaments reach their peak energy

relative to the cross-bridges, at the sarcomere lengths where

maximum force is produced, the cross-bridges still have more than

three times the energy of the filaments. At very long and very short

sarcomere lengths, where little axial force is produced, the energy

stored in the cross-bridges dominates the system.

The elastic energy storage may be more finely parsed: into the

components located in each of the two springs constituting every

cross-bridge and the components in each of the two filament types

(Figure 4C). These results show that the energies of the thick and

thin filaments vary similarly across all sarcomere lengths. In

contrast, the energies of the torsional and extensional spring which

comprise the cross-bridge are quite different. The energy of the

torsional springs is far less than that of the extensional springs at all

but the smallest sarcomere lengths. Thus the majority of the elastic

strain felt by the cross-bridge may arise from stretching, rather

than rotation.

Cross-bridge energy correlates with radial force
Energy stored in the cross-bridges follows the radial force

produced by the system (Figures 3&4A). Radial force has a higher

correlation with the cross-bridges’energy than does axial force

Figure 2. Example axial and radial forces. The mean (lines) and
standard deviations (shaded regions) of axial and radial forces as they
develop at a sarcomere length of 2:5mm over the course of 10 runs.
Each run consists of 400 time steps, each 1 ms long. Maximum forces
are calculated from the mean of the last 50 ms of such runs.
doi:10.1371/journal.pcbi.1002770.g002

Figure 3. Radial force is of the same order of magnitude as
axial force. Asymptotic maxima of 10 runs at each sarcomere length
with standard deviation. Radial and axial forces obey similar scaling
trends across the sarcomere lengths and lattice spacings of a classic
length-tension curve. The level of radial force varies from 2.4 times the
level of axial force at extremely short sarcomere lengths to 0.9 times the
axial force at the longest sarcomere lengths. The radial force plateau
ends at a shorter sarcomere length than does axial force plateau.
doi:10.1371/journal.pcbi.1002770.g003

Figure 4. Energy of the multi-filament array is partitioned
between the filament backbone and the cross-bridges. The
energy stored in the springs comprising the cross-bridges and filaments
changes, much as force does, with sarcomere length. (A) As sarcomere
length increases, the energy stored across all cross-bridges rises and
falls more steeply than does the energy stored in the filaments. (B) At all
lengths, the energy stored in the cross-bridges comprises more than 3/
4 of the sarcomere’s strain based energy. (C) The energy stored in the
thick and thin filaments is approximately equal, while the extensional
spring of the cross-bridges stores the major share of the energy at all
sarcomere lengths.
doi:10.1371/journal.pcbi.1002770.g004

Energy Storage and Radial Forces in the Sarcomere
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(linear fits show respective r2 values of 0.97 and 0.69). All of these

relationships are significant (pv0:001). This suggests that radial

strain in the system may disproportionately determine the energy

stored in the cross-bridges or, put another way, radial deformation

may be acting as a ‘‘idden’’energy sink.

Fractional energy stored is not constant
As the sarcomere shortens below 2:0mm, the ratio of energy

stored in the sarcomere to energy consumed through ATP use is

elevated (Figure 5). This fraction of energy stored, or energy

retention efficiency, is constant at sarcomere lengths longer than

2:0mm. The hydrolysis of ATP to ADP alters the free energy of a

modeled cross-bridge by 8.8 RT (3:11:10{20J=mol) [15,26]. A

fraction of this energy is stored as continued deformation of the

cross-bridge in its new state and a fraction drives deformation of

the filaments experiencing cross-bridge forces. This energy is

entirely released on the detachment of the cross-bridge and may

partially appear as deformations induced in other bound cross-

bridges. At sarcomere lengths longer than 2:0mm the ratio of the

energy stored by the sarcomere to the power consumed by the

sarcomere (as measured by the rate of ATP consumption) is

constant (Figure 5). At shorter sarcomere lengths this ratio climbs:

more of the input energy is stored in the sarcomere.

Discussion

The role that muscle’ radial geometry plays in determining its

functioning is still poorly understood. It is difficult to experimen-

tally measure the forces muscle generates in the radial direction

and the strain and energies which result from such forces. The

studies that have attempted to measure radial forces have all done

so indirectly, through back-calculating from changes in radial

stiffness or lattice spacing changes on activation [19,20,22]. While

these are easier values to quantify, they are not direct measure-

ments of radial force. Our results suggest radial forces, in addition

to being quite large, may function as a ‘‘idden’’ energy storage

mechanism, that radial force may partition energy into the cross-

bridges which is not initially transmitted to the filament ends.

Substantial energy is stored in muscle’s contractile
elements

The elements of the sacomere’s contractile lattice, cross-bridges

as well as thick and filaments, are storing a substantial amount of

energy. At peak energy levels where the 16% of bound cross-

bridges in our model store 545pN:nm of energy, each bound

cross-bridge is storing approximately 20% of the work it is capable

of producing across a power stroke [34]. The peak cross-bridge

energy levels we see in of our half-sarcomere model is 0.084 J/kg

of stored energy when the lattice is assumed to have the density of

water [31]. This is more than 10% of the flight-permitting energy

stored in Hemipteran flight muscle [35].

This strain energy is primarily stored in the cross-bridges—

rather than in the thick and thin filaments—despite the turnover

and energy dissipation inherent in the our model of cross-bridge

kinetics [15]. Energy storage in the cross-bridges requires low

cross-bridge turnover, as the deformation of an individual cross-

bridge, and thus the energy in an individual cross-bridge, is

released upon detachment. A ‘‘locked lattice’’ of tightly bound

cross-bridges is likely to be present in a maximally activated

isometric contraction, as simulated here, and where external

factors such as temperature differentials reduce cross-bridge

turnover [8]. Energy stored in the muscle’s filaments and cross-

bridges is then available for later release and utilization.

Radial force may be a ‘hidden’means of storing energy
Radial force’ role in muscle remains unclear. Radial force may

simply be a byproduct of the motor and filament geometry which

has evolved to generate force or it may produce a useful effect.

The high correlation between radial force and strain energy stored

in the cross-bridges may indicate that radial force and distortion

act as an energy storage mechanism which permits the cross-

bridges to store more strain based energy than the thick and thin

filaments. It is possible that radially associated energy could then

be redirected to produce axial force, much as happens when

energy is stored in the deformation of elastic solids. Such a

mechanism would provide a means to store the energy powering

after-stretch transient shortening, the shortening of recently

stretched muscle against a load equal to its maximal isometric

force [36]. Transient shortening has been suggested to be a result

of energy elastically stored in cross-bridges at levels comparable to

those seen in Figure 4 [34].

However, radial strain based energy storage will not necessarily

register as force at the filament ends. As such, it may be difficult to

address in experiments, although radial stiffness observations

suggest a means by which such tension and energy storage could

be quantified [22].

The fraction of energy stored varies with muscle length
The variable energy retention efficiencies shown in Figure 5

represent a potential mechanism by which sarcomere parameters

can determine a muscle’ functional role, e.g. motor, brake, or

spring. A muscle that stores little of its consumed energy and

converts most into force acts as a motor, while a muscle that stores

more of its consumed energy for later release is acting, at least

prior to use of stored energy, as a spring. There are analogous

selections between roles in lengthening and shortening muscle, as

contrasted to the isometric conditions simulated here [4].

The non-constant storage of input energy means that changing

the degree of filament overlap or lattice spacing affects the amount

Figure 5. Energy stored varies with sarcomere length as well as
energy input. All energy present in the isometrically contracting half-
sarcomere derives from the hydrolysis of ATP. This permits a direct
comparison of the energy input to the system, as measured by the
consumption of ATP, to the energy stored across all filaments and cross-
bridges. The fraction of energy stored is shown to change as sarcomere
length drops below 2:0mm. A contractile lattice with a stored energy
dependent only on the rate at which ATP is consumed would not
exhibit the hysteresis present as sarcomere length changes. This
suggests that of the energy released by ATP, the fraction which is
stored instead of being dissipated is partially determined by sarcomere
length.
doi:10.1371/journal.pcbi.1002770.g005

Energy Storage and Radial Forces in the Sarcomere
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of energy stored in muscle and thus the amount of energy which

may be released to power contraction. Thus it is possible that

operating at different sarcomere lengths could change the

efficiency with which muscle retains energy or dissipates it, driving

the muscle towards functioning as a spring or a break.

Energy storage in muscle is still a relatively unexplored field.

The highly structured and three-dimensional nature of muscle

makes it likely that, historically, we have overlooked forms of

energy storage and efficiency regulation. This work points towards

cross-bridges as a site where energy can be stored, either in

preparation for use in rapid movements or to reduce the energy

requirements of cyclical movements. Further investigation of how

energy is partitioned between sub-sarcomeric structures and of

how radial force is generated will continue to expand our

understanding of these new mechanisms. Particularly, this work

may help us to understand cases where energy is stored as

deformations in an axis orthogonal to that of the direction of

muscle shortening, such as in a proposed mechanism by which the

heart stores elastic strain introduced into transverse fibers during

filling [37].

Methods

Our spatially-explicit model of the half-sarcomere represents the

thick and thin filaments as chains of springs connecting each

myosin crown or actin-binding site [25,26]. The cross-bridges

linking the contractile filaments are two-dimensional, and thus

both produce radial force and are sensitive to changes in lattice

spacing [15]. This is the only model we are aware of that accounts

for the lattice spacing between filaments and employs a cross-

bridge capable of simulating force in the radial direction.

Thick/thin filament arrangement and geometry
Four thick and eight thin filaments are arranged in an evenly

spaced hexagonal lattice with toroidal boundary conditions. As

shown in Figure S1, this filament arrangement simulates an

infinite lattice [26]. The filament numbers and arrangement of

boundary conditions provides the smallest system in which no

single thick filament connects to two sides of a single thin filament,

and vice versa. The distance between the faces of these filaments,

here referred to as the lattice spacing, is uniform and used to

provide the distance across which myosin must diffuse in order to

bind [15].

Lattice spacing changes with sarcomere length to maintain a

constant lattice volume. Thus lattice spacing separating the faces

of adjacent thick and thin filaments (dff ) is given from sarcomere

length (sl ) by dff ~
ffiffiffiffiffiffiffiffi
c=sl

p
where c is a proportionality constant.

This proportionality constant (2:5mm:(14nm)2) is chosen to set the

lattice spacing to 14 nm at a sarcomere length of 2:5mm, values

consistent with a wide range of muscle types [31].

Along each thick filament are 60 myosin crowns, with three

myosin heads per crown. The myosin heads on a given crown are

azimuthally rotated by 120 degrees from their neighbors. The

crowns are grouped into a three crown, 43 nm repeating pattern

[26]. Progressing axially through the pattern, each crown is

azimuthally rotated relative to the prior crown by 600. This

rotation pattern is measured and described in Al-Khayat et al.,

2008 [38]. As a result of this crown rotation every myosin head

faces an opposite a thin filament with which it may interact.

Each thin filament is made up of two actin strands. Each strand

hosts 45 actin binding-sites giving a whole filament 90 actin

binding-sites [25,26,39]. Each binding site faces and interacts with

one of three adjacent thick filaments. Consecutive binding sites on

each strand are rotated by 1200 clockwise. The first binding site of

one strand is offset from the first binding site of the other strand by

half the axial distance between adjacent binding sites and a

rotation of 1200 counter-clockwise. Further filament properties are

listed in Table S1.

Cross-bridge model, briefly
Our cross-bridges are comprised of one torsional spring and one

extensional spring [15]. The axial and radial location of each

myosin tip determines the angle and extension of the cross-bridge

springs and thus the force the cross-bridge generates. The torsional

spring simulates the power stroke via a change in rest angle.

Inefficiency in converting, through ATP hydrolysis, chemical to

mechanical energy during state transitions is accounted for as

distortions of the cross-bridge. This inefficiency is manifest as heat.

Additionally as we suggest below, mechanical strain energy which

drives motion may also be returned as recoil of cross-bridges or

filament backbones.

The binding of an individual myosin head is determined by the

distance to the nearest available binding site and energy landscape

created by the properties of the head’ constituent springs. The

process is one of perturbation, distance calculation, and stochastic

attachment. A myosin head is perturbed with a random

Boltzmann distributed energy, providing a new myosin tip location

[40]. Distance from the myosin tip to the nearest available binding

site is calculated. Binding probability, which falls off exponentially

as the distance to the binding site increases, is checked against a

random number. Further transitions between loosely attached,

force generating, and unattached states are determined as

described in Williams et al., 2010 [15].

Force transmission through the lattice - calculation of
axial and radial forces

The thick and thin filaments are coupled together by the cross-

bridges. Each bound cross-bridge both generates and transmits

force. This coupling yields a three dimensional network of springs.

We solve for the root location of our spring-network at each

time-step. The root is the set of locations of actin binding-sites and

myosin crowns that provides no net axial force at any internal

point in the spring-network. A modified form of the Powell hybrid

method allows the actin and myosin locations to iteratively settle

into their solution values [41].

At each time-step, actin and myosin locations are allowed to

settle in the axial dimension while being held rigidly in the radial

dimension. The total axial force (Fax) of the system thus comes as

the sum of unbalanced axial forces at the ends of each thick

filament,

Fax~
XNthick

i~1

k(x0{x1,i{drest,i)

where for a given thick filament, i, k is the filament stiffness, x0 is

the axial location of the end node location, x1,i is the axial location

of the adjacent node, and drest,i is the resting separation between

the two. The total radial force (Fra) is the sum of the radial force

experienced by all sides of the thick filament and thus ultimately

the sum of the radial force of each cross-bridge (XB),

Fra~
XNXB

i~1

kr(ri{rrest,i) sin hiz
kh

ri

(hi{hrest,i) cos hi

where kr, ri, and rrest,i are the stiffness, length, and rest length of

cross-bridge i’s extensional spring while kh, hi, and hrest,i are the

Energy Storage and Radial Forces in the Sarcomere
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stiffness, angle, and rest angle of cross-bridge i’s torsional spring.

The current model does not permit radial movement as it does not

include a resistive radial force, i.e. forces in the radial direction

that act against the radial deformation of the filament.

Future models may treat the filaments as radially-deformable

axially-tensioned beams subject to filament persistence length,

electrostatic effects, and viscous stresses and thus be able to permit

radial movement. Radial bending or deformation of the thick and

thin filaments could potentially reduce the level of radial force

within the lattice by increasing lattice spacing disorder. Reduced

radial force has the potential to affect the partitioning of energy

between the cross-bridges and filaments, shifting energy stored in

cross-bridge deformation to a newly-created radial deformation

component of the thick and thin filaments’ energies. Radial

bending of the filaments and subsequent changes in the

distribution of axial and radial forces will be resisted by the highly

constrained nature of the sarcomere lattice as well as the inherent

stiffnesses of the filaments themselves.

Energies of a filament or cross-bridge is the sum of its
springs’energies

The energy in a cross-bridge or filament is the sum of the energy

in every spring in that cross-bridge or filament. Thus the energy of

a single cross-bridge (Uh,r) is calculated, as in prior work [15].

Uh,r~aDGz
1

2
(kr(r{rrest)

2zkh(h{hrest)
2

The energy of a thick filament (Uthick ) with Nnodes crown locations

is calculated as

Uthick~
1

2

XNnodes

i~1

k(xi{1{xi{drest,i)
2

and the energy of a thin filament is calculated similarly. These

energies are logged throughout the run of an instance of the model

and their stable state is found at the conclusion of the simulation.

Simulation details
A simulated contraction follows the course described in the

diagram shown in Figure S2. Briefly, each 1 ms time-step consists

of allowing every myosin head to calculate the probability of

changing from its current state into another state, check this

probability against a random number, and transition or not based

on the outcome. After the state of each myosin head has been

established, the location of every interior point in the model is

allowed to settle so that there is no net axial force on them. The

axial force, radial force, and other properties of the system at that

time-step are then recorded and a new time-step is begun if the

contraction has not yet reached its end.

The model was allowed to complete 10 contractions (starting

from unbound cross-bridges) for every set of input parameters,

each continuing for 400 ms (400 time-steps at 1 ms resolution).

The asymptotically developed forces and energies were calculated

as the mean of the force produced over the last 50 ms.

These simulations took place on a dynamically created cluster of

spot-priced machine instances in Amazon’s EC2 service (Figure

S3). Control of this cluster was with a first-in-first-out command

queue hosted by Amazon’s SQS.

Supporting Information

Figure S1 Model lattice arrangement. The model simulates

a semi-infinite lattice with four myosin and eight actin filaments, as

in Tanner et al., 2007. The bolder filaments and cross-bridge

interactions are those which are directly simulated, while the

desaturated filaments are the bold filaments mirrored across a

boundary. Cross-bridge interactions that cross a boundary

condition to a mirrored thin filament are connected only to their

non-mirrored thick filament. This lattice geometry is used as it is

the smallest arrangement of thick and thin filaments that: 1)

maintains the physiological ratio of thick to thin filaments and 2)

permits tessellation of the existing filaments without causing a

single thick filament to face a thin filament more than once.

(PDF)

Figure S2 Model code structure and information flow. A

diagrammatic representation of the steps that occur during a

simulation, and which produce the measured forces and energies.

(PDF)

Figure S3 Sequence diagram of remote simulation
process. This sequence depicts the process of running and

retrieving results from Amazon’s Web Services (AWS). Three

AWS services are used: the Simple Storage Service (S3), the

Simple Queue Service (SQS), and the Elastic Compute Cloud

(EC2). The custom Python code which constitutes the model is

sent to and stored in S3. The parameters which describe

simulations are parsed into small jobs, which are sent to SQS.

The remote cluster which will run the simulation is configured on

EC2. When machine instances which make up the cluster are

allocated and have started, they connect to S3 and download a

copy of the model. They then connect to SQS and request jobs to

run on each of their available cores. As jobs are completed, their

results are uploaded to S3 and the completed job is removed from

the SQS queue. The machine instances of the cluster will continue

this process until the job queue is empty at which point they shut

themselves down. The complete result set may then be

downloaded for local processing, or processed by another EC2

cluster, as needed.

(PDF)

Table S1 Geometric and mechanical properties. A listing

of the geometric and mechanical parameters used in the model.

Where possible, values used are common to a wide array of

striated muscle. By choosing conserved values, a more general

model is produced and the necessity of computationally intractable

sensitivity analyses is avoided. All values are given for the half-

sarcomere model and thus refer to one half of a thick or a thin

filament.

(PDF)
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