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Esterification of cholesterol is a universal mechanism to store and transport large
quantities of cholesterol between organs and tissues and to avoid toxicity of the excess
of cellular cholesterol. Intended for transport and storage and thus to be inert, cholesteryl
esters (CEs) reside in hydrophobic cores of circulating lipoproteins and intracellular lipid
droplets. However, the inert identity of CEs is dramatically changed if cholesterol is
esterified to a polyunsaturated fatty acid and subjected to oxidative modification. Post-
synthetic, or epilipidomic, oxidative modifications of CEs are mediated by specialized
enzymes, chief among them are lipoxygenases, and by free radical oxidation. The
complex repertoire of oxidized CE (OxCE) products exhibit various, context-dependent
biological activities, surveyed in this review. Oxidized fatty acyl chains in OxCE can be
hydrolyzed and re-esterified, thus seeding oxidized moieties into phospholipids (PLs), with
OxPLs having different from OxCEs biological activities. Technological advances in mass
spectrometry and the development of new anti-OxCE antibodies make it possible to
validate the presence and quantify the levels of OxCEs in human atherosclerotic lesions
and plasma. The article discusses the prospects of measuring OxCE levels in plasma as a
novel biomarker assay to evaluate risk of developing cardiovascular disease and efficacy
of treatment.

Keywords: cholesteryl ester, oxidized, macrophage, atherosclerosis, cardiovascular disease, biomarker,
inflammation, toll-like receptor 4
INTRODUCTION

Cholesterol esterification is a mechanism the body uses to store and transfer cholesterol, while at the
same time to avoid cellular toxicity of the excess of unesterified (often called free) cholesterol.
However, oxidation of a cholesteryl ester (CE) drastically changes the part CE plays, from a subdued
supporting actor to a contender for the leading role. The script, in other words, the specific
physiological or pathological context, defines if oxidized CE (OxCE) plays a villain or the hero.

Unesterified cholesterol is an essential component of cellular membranes, where it plays both
structural and signaling roles, the latter via regulation of lipid rafts and binding to many
transmembrane proteins. In the nervous system, cholesterol is a major component of myelinated
sheath of many nerve fibers. Cholesterol is also a precursor for biosynthesis of steroid hormones and
bile acids. Thus, no wonder that cholesterol homeostasis is under tight control to ensure proper
cellular and systemic functions. Dysregulation of cholesterol metabolism underlies
n.org November 2020 | Volume 11 | Article 6022521
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many pathologies, from cardiovascular disease (CVD) to
neurodegenerative disorders to cancer (1, 2). In homeostatic state,
cellular cholesterol content is tightly controlled by balancing de
novo synthesis, uptake of lipoproteins, export to extracellular
milieu, and storage (2–4). The strategy for storage and transport
of amphipathic cholesterol molecules is their esterification to fatty
acids and tight packaging of the resulting hydrophobic CEs in the
core of intracellular lipid droplets or circulating lipoproteins
(Figure 1—Transport and Storage).

Inside the cells, after a threshold level in cellular cholesterol
mass has been reached, excess cholesterol is esterified in the ER
by the enzyme acyl CoA cholesterol acyltransferase (ACAT), and
the newly synthesized CEs are stored in lipid droplets. To re-
enter the cellular pathway, CE is hydrolyzed by neutral CE
hydrolase (NCEH). Alternatively, lipid droplets are packaged
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into autophagosomes and fuse with lysosomes, where the CE is
hydrolyzed by lysosomal acid lipase (LAL), generating
unesterified cholesterol for delivery to cellular membranes or
for export (5). Cellular CEs undergo a continual cycle of
hydrolysis and re-esterification with a half-life of about 24 h
(6, 7).

In circulation, lower density lipoproteins transport CEs from
digestive organs to tissues, and high-density lipoprotein (HDL)
returns excess cholesterol in the form of CE back to the liver. In
brief, very-low-density lipoprotein (VLDL), packing triglycerides
(TGs) and CEs, undergoes intravascular remodeling by shedding
TGs and transitions into low-density lipoprotein (LDL), which is
the most CE-rich lipoprotein in circulation. LDL is internalized
by many cell types and thus delivers CEs to tissues. Serving the
opposite function, HDL gathers excess of unesterified cholesterol
FIGURE 1 | In search of CE identity—from inert storage to bioactivity and CVD biomarker. This diagram illustrates different biological processes that involve CEs,
using examples described in text, and potential biomarker applications of detecting OxCEs in plasma and atherosclerotic plaques. Transport: Cholesteryl esters
(CEs) together with triglycerides (TGs) populate the hydrophobic core of circulating lipoproteins, serving to deliver cholesterol and fatty acids to organs. Depicted is
the low-density lipoprotein (LDL), a major CE-transporting lipoprotein in blood. Shown are representative structures (from top to bottom) of a TG, a CE with saturated
fatty acyl [cholesteryl palmitate], and a CE with polyunsaturated fatty acyl (PUFA) [cholesteryl arachidonate], the latter is susceptible to oxidation. Storage:
Intracellular lipid droplets predominantly store either CEs, like in macrophage foam cells in atherosclerotic lesions, or TGs, like in adipocytes. Oxidation: PUFA-CEs
are the preferential substrate for 12/15-lipoxygenase (12/15-LO). Shown is cholesteryl 15(S)-HPETE, the product of 12/15LO-mediated oxidation of cholesteryl
arachidonate, which in turn is oxidized to more complex products, like BEP-CE. Hydroperoxide, endoperoxide and aldehyde groups in OxCEs are reactive and can
covalently modify proteins. Bioactivity: In one example of OxCE biological activity, BEP-CE and minimally modified LDL (mmLDL), which carry many OxCE
molecules, activate an MD-2/TLR4/SYK pathway in macrophages, resulting in ROS generation, inflammatory cytokine secretion, and macropinocytosis-mediated
LDL uptake and foam cell formation. OxCEs also activate endothelial cells, but their effects on vascular smooth muscle cells have not been studied. Biomarkers:
Antibodies against OxCE-protein adducts stain human atherosclerotic lesions and recognize a fraction of ApoB and ApoA-I lipoproteins that carry OxCE in human
plasma. In one example, an immunoassay measuring levels of OxCE-apoA lipoproteins detects reduced levels of this potential biomarker in subjects after treatment
with atorvastatin compared to placebo. The artwork in this figure uses panels originally published in the Journal of Lipid Research. Gonen et al. A monoclonal
antibody to assess oxidized cholesteryl esters associated with apoA-I and apoB-100 lipoproteins in human plasma. J Lipid Res 2019; 60:436-445. © The American
Society for Biochemistry and Molecular Biology.
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from extrahepatic tissues in order to move it back to the
liver. The HDL-associated enzyme lecithin-cholesterol
acyltransferase (LCAT) catalyzes the esterification of free
cholesterol with a fatty acyl transferred from the sn-2 position
of phosphatidylcholine (PC), resulting in the formation of a CE.
In addition, there is a bidirectional exchange of CEs and TGs
between HDL and the apoB-containing lipoproteins VLDL and
LDL, mediated by the CE transfer protein (CETP) in plasma (8,
9). In plasma of healthy human subjects, approximately 70% of
cholesterol molecules are esterified and reside in lipoprotein
cores (10, 11).

This abridged description of CE metabolism illustrates
complex pathways involved in keeping CE locked away in
hydrophobic cores of lipid droplets and lipoproteins for
storage and safe passage through the body—that is until CE
undergoes oxidation and becomes biologically active.

CE Oxidation
The acyl chain in a CE can be derived from a saturated,
monounsaturated or polyunsaturated fatty acid (PUFA). The
most common PUFA-CEs are cholesteryl linoleate [CE(18:2)],
arachidonate [CE(20:4)], and docosahexaenoate [CE(22:6)]. The
PUFAs are more susceptible to oxidation than cholesterol due to
the presence of a weaker C-H bond at the bis-allylic position and
will therefore be oxidized preferentially (12). The hydrogen
atoms are easily abstracted from the bis-allylic positions of
PUFAs to form a lipid radical - the first intermediate of
enzymatic or non-enzymatic lipid peroxidation (13, 14). This
article will be largely focused on the OxCEs with oxidized acyl
chain and non-oxidized sterol, with a brief discussion of
oxysteryl-containing OxCEs.

The enzyme 12/15-lipoxygenase (mouse 12/15-LO is highly
homologous to human and rabbit 15-LO) differs from other
PUFA-oxidizing enzymes like cyclooxygenases in that its
preferential substrate is a CE and not a free fatty acids or a
phospholipid (PL) (12, 15). In a test-tube reaction of LDL
oxidation by rabbit 15-LO, even when the LDL particle is
loaded with free linoleic acid, cholesteryl linoleate constitutes
the major 15-LO substrate (15). However in vivo, 12/15-LO is an
intracellular enzyme and LDL is an extracellular lipoprotein, so it
was at first puzzling how CEs were oxidized by 12/15-LO.
According to one suggested mechanism (16, 17), LDL binds to
macrophage LDL receptor related protein-1 (LRP-1), which in
turn induces 12/15-LO translocation from the cytosol to the cell
membrane and mediates CE transport from LDL to the cell
membrane, where it becomes oxidized by 12/15-LO, as well as
the return of an OxCE to the LDL. It is unknown if any of lipid
droplet-associated proteins can mediate a similar CE exchange
and if CE oxidation can occur on the surface of intracellular
lipid droplets.

Products of 12/15-LO–mediated CE oxidation are vulnerable to
subsequent oxidation in free radical reactions, forming numerous
and complex isoprostane OxCE products, with up to 6 oxygen
atoms inserted in the molecule of cholesteryl arachidonate (18, 19).
Among these polyoxygenated CE products, molecules with a
bicyclic endoperoxide group (18–20), such as cholesteryl (9,11)-
epidioxy-15-hydroperoxy-(5Z,13E)-prostadienoate (abbreviated as
Frontiers in Endocrinology | www.frontiersin.org 3
BEP-CE for the presence of bicyclic endoperoxide and
hydroperoxide groups), have biological activities and can
covalently modify proteins, including apolipoproteins, as
discussed below. OxCEs can also decompose to produce highly
reactive end products, like malondialdehyde (MDA) or 4-hydroxy-
2-nonenal (4-HNE), which in turn covalently modify proteins and
phosphatidylethanolamines (21, 22). These posttranslational
modifications profoundly affect protein function.

In addition, intracellular OxCE hydrolysis and subsequent re-
esterification of an oxidized fatty acyl chain can produce oxidized
PL (OxPL) in the cell (12). In wild type but not 12/15-LO–
deficient murine macrophages, radioisotope-labeled cholesteryl
linoleate and cholesteryl arachidonate, either intracellular or as
part of LDL, were oxidized by the macrophage 12/15-LO, and the
oxidized fatty acyls in OxPL molecules originated from the
OxCEs (12).

Esterification of Oxysterols
Oxysterols, derived from either enzymatic or non-enzymatic
oxidation of cholesterol, are bioactive and play important
regulatory roles (23, 24). Similar to esterification of cholesterol,
esterification of oxysterols is mediated by ACAT in cells and
LCAT in plasma, as well as by lysosomal phospholipase A2 (25,
26). Esterification of oxysterols in plasma shifts their distribution
away from albumin to LDL and HDL (27), where approximately
95% of plasma esterified oxysterols are found (28–31).

OxCE Trafficking
Transport of OxCEs in circulation and their uptake by cells occur
via the same pathways that traffic non-oxidized CEs. HDL carries
85% of total plasma CE hydroperoxides. While HDL and LDL
carry approximately equal numbers of CE hydroperoxide
molecules per particle, the CEs in HDL on a per lipid basis are
over 20-fold “more oxidized” than those in LDL (32). Lipid
peroxidation products in HDL are increased due to direct
oxidation, transfer from LDL to HDL or by enzymatic re-
esterification from OxPL by LCAT (9, 33, 34). CETP does not
distinguish between CE and OxCE and mediates exchange of
OxCE between HDL and LDL at the same rate as it transfers CE
(9). Oxidized cholesteryl linoleate in which the fatty acyl moiety
is oxidized to a hydroperoxide moves readily from HDL to
hepatoma cells in serum-free medium (35), and the rate of SR-
BI-mediated OxCE uptake by cells is approximately 9 times
faster than that of non-oxidized CE and at least 40 times faster
than the uptake of a whole HDL lipoprotein (36, 37). Because of
the presence of hydrophilic, oxygen-containing groups in OxCE
molecules, they become amphipathic and more mobile and
presumably less confined to hydrophobic cores of lipoproteins
or lipid droplets.

Biological Activity of OxCE
There is an important feature of OxCEs that sets them apart from
other oxidized lipids—a combination of reactive and/or
functional oxidation moieties in the fatty acyl chain, which we
already discussed, with cholesterol. Unmodified cholesterol is a
major regulatory molecule for many proteins. The cholesterol
recognition/interaction amino acid consensus (CRAC) motif and
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its reverse version CARC are present in many transmembrane
proteins and are essential for their function (38). In model
binding experiments, cholesterol is often replaced with an
acidic short-chain CE, cholesteryl hemisuccinate (39),
suggesting that cholesterol esterification does not significantly
affect its interaction with CRAC/CARC motifs. However, we
have not seen direct experimental or modeling comparison of
cholesterol and long-chain CE or OxCE binding to these
domains. And we are unaware of studies of interaction
between transmembrane proteins, like GPCRs, with OxCEs,
which are bifunctional—carrying both unmodified cholesteryl
and fatty acyl oxidation moieties.

In addition to transmembrane cholesterol-binding proteins,
there are non-membrane proteins that have hydrophobic pockets
where cholesterol docks, CETP and Niemann-Pick disease, type
C2 protein (NPC2) being the most characterized proteins in this
class. Another cholesterol-binding protein is MD-2 (40). MD-2 is
the LPS-binding co-receptor for TLR4, an obligatory component
for LPS-induced TLR4 activation and signaling. MD-2 has a b-cup
fold structure composed of two antiparallel b sheets forming a
hydrophobic pocket, with positively charged residues located near
the opening rim of the pocket (41–43). Fatty acyl chains of LPS
dock into the hydrophobic pocket, and negatively charged
phosphate groups of LPS bind positively charged residues at the
pocket opening. Likewise, in the molecule of cholesterol, a
hydrocarbon chain together with the steroid form an elongated
hydrophobic structure, which docks in the hydrophobic pocket of
MD-2, and a hydroxyl group linked to the other side of the steroid
stabilizes cholesterol at the positively charged entrance to the
pocket. Test-tube experiments confirm that MD-2 binds
cholesterol (40). Furthermore, cholesterol is found associated
with the MD-2 immunoprecipitated from human plasma or
from mouse atherosclerotic lesions (40). It is unlikely that
unesterified cholesterol binding to MD-2 activates TLR4 because
there is no moiety in the MD-2-bound cholesterol that would
interact with TLR4, however, such a moiety is present in the
cholesteryl esterified to a fatty acyl–CE. The hypothesis that an
oxygenated fatty acyl chain in OxCE provides additional
interaction surfaces, which, in combination with cholesteryl
anchoring in the MD-2 hydrophobic pocket, provide sufficient
interfaces for OxCE-induced MD-2-TLR4 binding,
remains untested.

Although structural determinants are not yet elucidated,
OxCE, and specifically BEP-CE, indeed induces MD-2
recruitment to TLR4 and TLR4 dimerizat ion (44).
Interestingly, MyD88, a TLR4 adaptor which mediates the bulk
of LPS effects, minimally contributes to macrophage responses to
minimally modified LDL (mmLDL), a major carrier of OxCE.
Instead, spleen tyrosine kinase (SYK) has been identified as a
kinase, which is recruited to TLR4 and mediates the majority of
mmLDL- and OxCE-induced effects in macrophages (45–47).
This dichotomy between LPS- and OxCE-mediated TLR4
responses attests, in addition to the pattern-recognition
character of TLR4, to the TLR4 functional selectivity, similar
to biased agonism of GPCRs (48).
Frontiers in Endocrinology | www.frontiersin.org 4
The SYK-dependent activation of TLR4 by mmLDL and
OxCE results in profound cytoskeleton changes in
macrophages, including actin polymerization, cell spreading,
membrane ruffling and macropinocytosis (44, 46, 49) (Figure
1—Bioactivity). Macropinocytosis is a robust mechanism of
OxLDL, mmLDL, and native LDL uptake by macrophages and
foam cell formation. In addition, mmLDL induces PLCg, PKC
and NOX2-dependent ROS production, which regulates
expression of RANTES (CCL5), IL-1b, and IL-6 (45). NOX-2
also regulates mmLDL-induced expression of MCP-1 (CCL2),
TNFa, MIP-2 (CXCL2), and MIP-1a (CCL3) (45). Tlr4−/−

primary macrophages fail to respond to mmLDL or OxCE (44,
46, 49). Remarkably, in in vitro experiments, mmLDL and low-
dose LPS, imitating subclinical endotoxemia observed in patients
with the metabolic syndrome, synergize to produce higher levels
of inflammatory cytokines. Although published data point to
pro-inflammatory effects of OxCE, a more extensive literature on
biological effects of OxPL describes both pro-and anti-
inflammatory effects depending on the disease or pathological
condition context (21). Thus, we cannot exclude the possibility of
context-dependent, anti-inflammatory effects of OxCE, but this
requires further research.

In contrast to the biological activity of fatty acyl-oxidized
OxCE, esterification of oxysterols largely serves to curtail their
biological activity (50). However, in neurons, ACAT-mediated
esterification of 24(S)-hydroxycholesterol results in the
formation of atypical lipid droplets and neurotoxicity (51).
These findings suggest cell type and context dependent effects
of esterification of oxysterols.

In addition to free lipid OxCE, cholesteryl fatty acyl
hydroperoxides or endoperoxides (like in BEP-CE) can make
covalent adducts with proteins and thus affect their function and/
or produce novel protein-OxCE epitopes. For example,
cholesteryl hydroperoxyoctadecadienoate (HPODE) forms
covalent adducts with PDGF, TGFb, and bFGF and inactivates
them (52). In contrast, cholesteryl HPODE does not modify EGF
(52), implying specificity of OxCE-protein modification,
however, determinants of this specificity remain unclear.
Similarly, remain unclear the exact mechanisms of cholesteryl
HPODE and cholesteryl 9-oxononanoate (9-ON) induced
activation of PKC and ERK1/2 in endothelial cells, which
results in expression of fibronectin connecting segment-1 and
enhanced adhesion of monocytes to endothelial cells (53).
Cholesteryl 9-ON induces expression of both TFG-b and TGF-
b receptor type I in human U937 promonocytic cells. This effect
is mediated by ERK1/2 and potentially is involved in sustaining
vascular remodeling in atherosclerosis (54). Cholesteryl HPODE,
but not HPODE-containing OxPL, has been identified as an
active component that induces PPARa-dependent expression of
CD36 in human monocyte-derived macrophages (55). It is also
possible that in the experimental systems employed in the above
experiments, cholesteryl HPODE underwent further oxidative
modifications, resulting in more complex products, which in
turn evoked biological activity different from that of an
initial hydroperoxide.
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OxCE in Human Atherosclerotic Lesions
How relevant is the biological activity of OxCE to the
pathogenesis of atherosclerosis? Definitive studies for OxCE
are yet to be conducted but if any guide, recent work from
Witztum’s group has demonstrated that constitutive expression
of the single-chain E06 antibody, which neutralizes atherogenic
effects of OxPL, in Ldlr−/− mice significantly reduces
atherosclerosis and its co-morbidities (56, 57). In the absence
of similar work targeting OxCE, we can only hypothesize that the
substantial presence of OxCE in atherosclerotic lesions may have
an atherogenic effect. Indeed, using advanced mass spectrometry
techniques helped identify many OxCE species in human
atherosclerotic lesions, estimating that, on average, 23% of
cholesteryl linoleate, 16% of cholesteryl arachidonate and 12%
of cholesteryl docosahexaenoate are oxidized (58). In a different
study, OxCEs have accounted for 11 to 92% of the CE-PUFA
pool in atherosclerotic plaques from different subjects (59). BEP-
CE has been detected in human atherosclerotic lesions as
well (44).

The studies cited in the previous paragraph identified free lipid
OxCEs. It is technically challenging to construct a mass
spectrometry method that would detect covalent OxCE adducts to
proteins. However, these new epitopes can be detected with
antibodies raised against the OxCE moiety independent of a
protein, which has been covalently modified by this OxCE. For
example, a monoclonal antibody raised against proteins modified
with cholesteryl 9-ON has been shown to stain atherosclerotic
lesions (60). Studies in our lab have produced a new monoclonal
antibody that recognizes an OxCE epitope on modified proteins. To
ensure the independence of an OxCE epitope recognition from the
protein carrier, mice were immunized with OxCE-KLH and the
antibody was selected against OxCE-BSA. The resulting antibody,
AG23, bound OxCE-modified KLH, BSA, apoA-I, and a 6-amino
acid peptide (61). The OxCE used for covalent modification of these
proteins was a product of cholesteryl arachidonate oxidation with
2,2’-azobis (2,4-dimethylvaleronitrile) in an atmosphere of oxygen,
which predominantly produced BEP-CE, but other complex
oxidation products were present as well (44). The AG23
immunoreact ivi ty was abundant in human carotid
endarterectomy specimens, demonstrating the presence of OxCE
epitopes in atherosclerotic lesions (Figure 1—Biomarkers) and
suggesting relevance of OxCE to the pathogenesis of human
CVD (61).
OxCE in Human Plasma as a Biomarker
for CVD
As with detection of OxCE in atherosclerotic tissue, early studies
employing biochemical and mass spectrometry techniques
reported a wide range of CE hydroperoxides in human plasma,
from 3 to 920 nmol/L (62, 63), with hydroperoxides of
cholesteryl linoleate and cholesteryl arachidonate as the major
oxidation products (32, 64–66). Plasma levels of CE
hydroperoxides have been significantly increased on day 1 and
peaked at day 5 after subarachnoid hemorrhage, returning to
normal levels on days 7 and 9 (67). This temporal sequence
Frontiers in Endocrinology | www.frontiersin.org 5
correlates well with the known time course of cerebral
vasospasm, which typically has its onset between 5 and 7 days
after subarachnoid hemorrhage. Using a targeted lipidomic
approach to quantify multiple classes of OxCE, Yin’s group
tested plasma samples from 49 CVD patients and observed a
significant elevation of multiple oxidation products of cholesteryl
arachidonate and cholesteryl linoleate in plasma of patients with
myocardial infarction compared to that of control and other
CVD groups. These results suggest release of OxCEs from the
raptured atherosclerotic plaque (68).

The AG23 mAb against OxCE described in the preceding
section has been used to develop a new ELISA method to
measure OxCE associated with apoA-I or apoB-100
lipoproteins in human plasma (61). This assay measures levels
of lipoproteins that have at least one OxCE epitope. Measuring
OxCE-apoB and OxCE-apoA in plasma samples from PROXI, a
randomized parallel-arm double-blind placebo-controlled trial
in which human subjects received placebo or a statin treatment
for 16 weeks, we demonstrated that the OxCE-apoA levels were
significantly lower in subjects treated with atorvastatin than in
the placebo group, independent of the apoA-I levels (Figure 1—
Biomarkers) (56). Testing larger cohorts of human subjects with
different conditions and treatment regimens will determine if
this particular OxCE assay will become a useful diagnostic and/
or prognostic CVD biomarker.
CONCLUSIONS AND UNRESOLVED
QUESTIONS

Biological activity and biomarker potential of OxCEs remain
understudied. In part, this is due to a common perception of
CEs as inherently inert intracellular “storage” and lipoprotein
“transport” lipids, which is certainly the case for CEs with
saturated fatty acyls. However, there exist mechanisms for
oxidative modification of CEs with polyunsaturated fatty
acyls, producing a multitude of OxCEs, which exhibit
biological activity as free lipid and can covalently modify
proteins. The unique feature of OxCEs is that they contain
both an oxidized fatty acyl, which is often reactive and/or
makes OxCEs less hydrophobic and thus more mobile, and
the unmodified cholesteryl, which binds to and modulates
function of many membrane and soluble proteins. In this
article, we reviewed how cholesterol binding to MD-2 makes
OxCE an agonist for TLR4, resulting in inflammatory and lipid
accumulation responses in macrophages. Future studies will
elucidate whether OxCE can interact with GPCRs, which
potentially may have broad implications. More work is also
needed to understand biological effects of esterified oxysterols,
which seem to be tissue and pathology context dependent. The
spectrum of proteins in plasma and in tissues that have OxCE
covalent adducts remains unexplored, as remain poorly
understood determinants of the OxCE specificity in covalent
modification of proteins. The development of new antibodies
that recognize OxCE-protein covalent complexes independent
of a protein carrier will be instrumental in answering these
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quest ions . However , there remains a chal lenge of
characterization of the exact chemical structure of OxCE-
protein covalent adducts; where mass spectrometry methods
are insufficient, co-crystallization of antibodies with their
OxCE antigens may become a productive approach. Initial
studies using OxCE-specific antibodies, as illustrated in this
article, are promising but examination of larger cohorts of
subjects with CVD and possibly other conditions are needed
to fully evaluate the diagnostic and prognostic potential of
OxCE as a new biomarker.
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