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Modeling of stem cells not only describes but also predicts how a stem cell’s environment can control its fate. The first stem cell
populations discovered were hematopoietic stem cells (HSCs). In this paper, we present a deterministic model of bone marrow
(that hosts HSCs) that is consistent with several of the qualitative biological observations. This model incorporates stem cell death
(apoptosis) after a certain number of cell divisions and also demonstrates that a single HSC can potentially populate the entire
bone marrow. It also demonstrates that there is a production of sufficient number of differentiated cells (RBCs, WBCs, etc.). We
prove that our model of bone marrow is biologically consistent and it overcomes the biological feasibility limitations of previously
reported models. The major contribution of our model is the flexibility it allows in choosing model parameters which permits
several different simulations to be carried out in silico without affecting the homeostatic properties of the model. We have also
performed agent-based simulation of the model of bone marrow system proposed in this paper. We have also included parameter
details and the results obtained from the simulation. The program of the agent-based simulation of the proposed model is made

available on a publicly accessible website.

1. Introduction

Stem cells and their descendants are the building blocks of
life. How stem cell populations guarantee their maintenance
and self-renewal and how individual stem cells decide to
transit from one cell state to another to generate mature dif-
ferentiated cells are long standing and fascinating questions
[1]. There is a significant interest in studying stem cells, both
to elucidate their basic biological functions and to learn how
to utilize them as new sources of specialized cells for tissue
repair [2].

Blood is the life preserving fluid, whose major func-
tions are supply of nutrients and oxygen to the tissues,
self-immunity, and defense against pathogens. In order to
carry out these tasks, human blood contains a variety of
cells, each precisely adapted to its specific objective. All the
different blood cells develop from a kind of master cell,
called the hematopoietic (blood forming) stem cell (HSC).
Incidentally, the first stem cell populations discovered were

HSCs. HSCs are primarily present in the bone marrow. HSCs
are stem cells that give rise to all the differentiated blood
cell types including white blood cells (WBC), red blood
cells (RBCs), and platelets. Fully mature differentiated cells
migrate into the blood stream. The transition of HSCs from
quiescence (not undergoing any cell cycle) into proliferation,
or differentiation, is governed by their internal state and by
chemicals secreted by neighboring cells in their immediate
microenvironment.

It is believed that a single HSC is sufficient to recon-
stitute the entire blood system [3, 4]. This extraordinary
regenerative ability of the bone marrow is not surprising,
considering that it has a vital role that must remain unaffected
by stem cells depletion that might occur, for example, as
a result of chemotherapy, radiation, or disease. It should
be emphasized that though the supply of blood cells in
the periphery is steady, the bone marrow is not static. It
is dynamic in the sense that it constantly changes in its
constitution and arrangement, and these changes occur at
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varying rates. The bone marrow is in a state of homeostasis
that can be considered as a dynamic equilibrium between its
constituents.

Theise and Harris [5] describe how stem cells and their
lineages are examples of complex adaptive systems. Profound
understanding of a complex adaptive system can be gath-
ered by generating computer models using computational
techniques. Agent-based modeling is a way to represent
such complex adaptive systems in software. An agent is a
high-level software abstraction that provides a convenient
and powerful way to describe a complex software entity in
terms of its behavior within a contextual computational envi-
ronment. Agents are flexible problem-solving computational
entities that are reactive (respond to the environment) and
autonomous (not externally controlled) and interact with
other such entities.

One of the significant contributions to stem cell modeling
was by Agur et al. [6]. The main aim of their paper was to
provide a mathematical basis for the bone marrow home-
ostasis. More precisely, they wanted to define the properties
that enabled the bone marrow to rapidly return to a steady
supply of blood cells after relatively large perturbations in
stem cell numbers. Their model is represented as a family
of cellular automata on a connected, locally finite undirected
graph. Their model can be briefly described as follows: It has
three types of cells, stem cells, differentiated cells, and null
cells. Each cell has an internal counter. Stem cells differentiate
when their immediate neighborhood is saturated with stem
cells and their internal counter reaches a certain threshold.
A differentiated cell converts to a null cell after its internal
counter crosses the required threshold, a process that denotes
the passing of a differentiated cell to blood stream leaving the
place it had earlier occupied in the bone marrow empty. A
null cell, with a stem cell neighbor, is converted to a stem cell
when its internal counter reaches a particular threshold.

D’Inverno and Saunders [7] have listed the following
drawbacks of Agur et al’s [6] model:

(1) The specification of Agur et al’s model reveals that the
null cells must have counters. In a sense, an empty
space has to do some computational work. This lacks
biological feasibility and is against what the paper
states about modeling cells having counters, rather
than empty locations.

(2) Stem cell division is not explicitly represented;
instead, stem cells are brought into existence in empty
spaces.

(3) A stem cell appears when a null cell has been sur-
rounded by at least one stem cell for a particular
period. However, the location of the neighboring stem
cell can vary at each step.

As an effect of the drawback mentioned above, a stem
cell can potentially differentiate more than once in the
same time instant since it might be surrounded by
more than one null cell. Hence, potentially more than
one neighboring null cells can get converted to stem
cells.
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(4) The state of a stem cell after division is not defined.
Nothing is said about what happens to a stem cell after
a new stem cell appears in the null cell space. There
is no provision of any preconditions on the stem cell
division.

(5) There is no provision for stem cell apoptosis.

D’'Inverno and Saunders [7] provided an agent-based
simulation for the model described by Agur et al. They
needed to overcome the third limitation mentioned above
for creating a deterministic agent-based simulation. In order
to overcome the limitation, they introduced the concept of a
controlling microenvironment that links a null cell, which has
reached a threshold, with a stem cell that can differentiate. All
the cells send and receive signals from the microenvironment
and act on its suggestions. They performed agent-based
implementation with the incorporation of Agur et al’s model
in two dimensions. However, the improvement suggested by
them, of a controlling microenvironment, does not have any
biological basis.

Moreover, there is an additional limitation of the model
described by Agur et al. The limitation is that there are no
intermediate cells, also called transitive cells, in the model
proposed by them. Transitive cells have limited stem cell-like
properties that decreases with each subsequent generation
and they are eventually converted to differentiated cells. For
hematopoietic system, common lymphoid progenitor (CLP)
and common myeloid progenitor (CMP) are examples of
transitive cells [8]. As there are no transitive cells, there
cannot be any conversion of a transitive cell to a stem cell,
which can help bone marrow system to recover in case of
severe perturbations.

Some other novel models of HSCs are proposed. Roeder
and Loeffler [9] propose a stochastic model with two growth
environments where a stem cell remains quiescent for longer
periods of time when it is in first environment and pro-
liferates when it transitions to the other environment. The
proliferation and transition depend only upon two stochastic
parameters. Glauche et al. [10] provide two independent com-
partments for fast proliferating HSCs and slow proliferating
HSCs to explain simultaneous occurrence of self-renewal
and differentiation. Glauche et al. [11] further improved
their model by considering the effects of aging on stem
cell population. These models show within-tissue plasticity
and proliferation and self-renewal potential of stem cells.
Stem cells moving between two different compartments or
environments with a fixed probability are an artifact that
is not biologically consistent. The probability might change
since it is dependent on the local environment of the stem cell.
Another limitation is that these models show homeostasis for
only a limited range of parameter values.

The model proposed in this paper is an enhancement
over our earlier model [12], with incorporation of stem cell
death (apoptosis) after certain number of cell divisions. In
our model, we have addressed all the limitations listed above
by extending and augmenting the model originally proposed
by Agur et al., thereby making the model close to biological
observations. The model we present is aimed at simulating
a situation in which a cell’s behavior is determined only by
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a combination of the types and states of cells in its proximity
and its own cell cycle represented by its internal counters. The
main assumptions of our model are as follows:

(i) Cell behavior is determined by the number and
type of its neighbors. This assumption is aimed at
describing the fact that cytokines, secreted by cells
into the microenvironment, are capable of activating
cells into changing their types [1, 3].

(ii) Each cell has an internal counter that determines
the time required for it to mature. The duration for
maturity is fixed for each type of cell. After maturity,
the cell changes its type or its generation.

(iii) Stem cell apoptosis occurs after certain number of
renewals.

(iv) Every cell possesses a directional component and
it proliferates in the direction of that component.
The directional component is updated after each
proliferation. Although the directional component
has no biological significance, it allows the model to
be fully deterministic.

(v) The model captures emergent behavior of the bone
marrow that is consistent with several biological
observations:

(a) The model has high resilience for the bone
marrow homeostasis as shown in [13].

(b) The model incorporates intermediate transitive
cells and quiescent stem cells as described in [8].

(¢) In [14], the authors mention that the transitive
cells can become stem cells in exceptional cir-
cumstances. The model supports this observa-
tion.

(d) The model also incorporates stem cell apoptosis
as given in [15].

(vi) The model does not account for leukemia causing
abnormal stem cell behaviors as is done in [16].

We have performed agent-based simulation of the model
of bone marrow stem cell system proposed in this paper. The
details and the results of this simulation are provided in the
Appendix.

The paper is organized as follows: In the next section, we
describe our model and the rules that govern it. In Section 3,
we show how a single stem cell can populate the entire
bone marrow and also prove the homeostatic properties of
the proposed model. In Section 4, we show that the model
provides a steady supply of differentiated cells to the blood
stream and we also show that several stem cells remain in
quiescent state. In Section 5, we describe the steady states
and death states of our proposed model. We discuss the
theoretical results in Section 6. The results of the agent-based
simulation are included in the Appendix.

2. Description of the Model

Our model contains three basic types of cells and a notation
for empty space:

(e)

FIGURE 1: Bone marrow graph in two dimensions (each vertex is
a cell that has eight immediate neighbors and the label denotes its

type).

(i) Stem cell, denoted by S, either can proliferate generat-
ing new stem cells or can convert to a transitive cell.
They can become quiescent. In the event of the death
of a stem cell, it can be considered to be converting to
an empty space.

(ii) Transitive cell, denoted by T, either can convert to a
differentiated cell or can convert back to a stem cell
when there are no stem cells in its near neighborhood.

(iil) Differentiated cell, denoted by D, is the final product
of a stem cell. After maturation, these cells leave the
bone marrow.

(iv) Empty space, represented by E, denotes space in the
bone marrow that can be occupied by either a stem
cell or a transitive cell or a differentiated cell.

In our model, the bone marrow is represented as a
connected, locally finite undirected graph. This describes the
neighborhood of bone marrow cells.

Let G = (V, L) be a connected, locally finite undirected
graph that denotes the bone marrow. Its vertex set V denotes
the cells and the set of edges L describes the neighboring cells
to which a cell is connected in the bone marrow (Figure 1).

Diagrammatically, the transitions of different types of
cells in Agur et al’s [6] model and our proposed model are
depicted in Figure 2 (N denotes a null cell in Agur et al’s
model).

For every pair of vertices u, v € V, we denote by p(u, v) the
distance between these vertices in the shortest-path metric
induced by G. N(v) = {u € V | p(u,v) = 1} denotes the
immediate neighborhood of a vertex v € V, that is, the set
of vertices joined to v by an edge. B(v,n) denotes the ball of
radius n centered in v € V. It is the set of all vertices such that
their distances from v do not exceed n. We write B(v,n) =
{u e V| p(u,v) < n}. B(v,n) defines the near neighborhood
of size nof vertex v. If U € V is a nonempty subset of vertices,
then for every vertex v € V let p;(v) = min, ;p(u, v) be the
minimum distance between v and another vertex u € U.
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Agur et al’s (2002) model

Model proposed in this paper

FIGURE 2: Comparison of Agur et al’s model and the model proposed in this paper.

The state of a vertex is a 1-tuple, a 2-tuple, a 3-tuple, or
a 4-tuple depending on the cell type. The first coordinate of
the tuple denotes the cell’s type (S, T, D, or E denoting a
stem cell, a transitive cell, a differentiated cell, or an empty
space, resp.). The state of a stem cell is defined by a 4-tuple.
The second coordinate denotes the direction of proliferation,
which generally rotates clockwise or counterclockwise. An
example will later explain the implication of direction of
rotation. The third coordinate denotes the simulated time
T as an internal counter. The last coordinate denotes the
number of times the stem cell has proliferated. The state of
a transitive cell is defined by a 3-tuple. The second coordinate
denotes its generation (progeny) while the third coordinate
denotes the simulated time 7. The state of a differentiated cell
is defined by a 2-tuple and the second coordinate denotes the
simulated time 7. Finally, the state of an empty space has a
single coordinate that denotes its type.

Let p be the maximum number of immediate neighbors
possible for any cell. Thus, y also denotes the number of
directions for a stem cell to proliferate. When it proliferates, a
stem cell can occupy an empty space, if available, in its imme-
diate neighborhood. A transitive cell can go through several
generations (progeny) before it converts to a differentiated
cell. These are several differentiation stages for a transitive
cell. A transitive cell moves from one generation to the next
after its internal counter reaches a certain threshold. There
are M generations for a transitive cell, where M is greater
than or equal to 1. When a transitive cell has moved into
its last generation (i.e., the Mth generation) and when its
internal counter reaches a certain threshold, it converts to a
differentiated cell. In circumstances when there is not even a
single stem cell in the near neighborhood of a transitive cell,

) =(Sdr1l) =

(E)
(T, 1,0)

A () = 1{S,d +1,0,1+ 1), x4 () = (5,0,0,

(S,d, %, 1)
S, d, T+ 1L1I)
(D,0)
T,g+1,0
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($,0,0,0)

(T,g,t+1)

a transitive cell converts back to a stem cell (dedifferentiation
[5,17]). Such extreme rare circumstances can be observed in
very specific conditions, for example, due to radiation and
organ damage. The rules given below also capture the fact
that a transitive cell’s ability to convert back to a stem cell
diminishes with each subsequent generation. The parameter
n denotes the distance multiple for a transitive cell to convert
back to a stem cell. The conversion from a transitive cell
to a stem cell depends on the distance multiple # and its
current generation. To have nonzero near neighborhood for a
transitive cell, the generation counter for transitive cells starts
with L.

Let Q) be the set of states of a vertex.

A map x : V — Q is the state of the entire graph. The
set of all the states of the bone marrow graph G is denoted by
QY. A state x € QV of the bone marrow graph G at time ¢ is
denoted by x'. The state of a vertex v at time ¢ is denoted by
x'(v).

With the above definitions, we are now ready to define
the rules of an iterative operator on all states Q. It depends
on four positive nonzero integers: constant for stem cells
maturity ¥, constant for transitive cells maturity ®, constant
for differentiated cells maturity @, and maximum number of
stem cells renewals A. The rules for the state changes can be
regarded as describing a family of cellular automata. We have
used V for logical-or and A for logical-and.

There are four rules that describe our model, one for each
type of cell. Some rules have subrules. The order of evaluation
of subrules is based on the order they are specified in that rule.
Hence, at every time instant, for every cell, only one subrule
will be applied deterministically. Note that “«” denotes any
possible value:

ifr=¥YAl=A

fr=YAVue N®w), x' () = (S, *, %, %) W
0)} fr=YAJueN(®), x*(u)=E

ifT=VYAJueN(®W, x* () # (S, *, %, *)

otherwise,
if JueB(v,gn), x* W)= (S, ***)AT2OANg=M
if ueB(v,gn), X W) = (S, #, %, x) AT2OAg+M @

if Yue B(v,gn), x' (u) # (S, #, %, %) A1 = g®

otherwise,



Advances in Bioinformatics 5
(E) ifr=0
X W) = (D7) =" () = (3)
(D,7+1) otherwise,
X' (v) = (B) = x" (v) = (B). (4)

These rules are described in detail below.

Rule (1) is for stem cells. The first subrule of Rule (1)
says that every stem cell renews A number of times. If the
stem cell has renewed itself A times, it dies and it is removed
from the bone marrow. The space occupied by the stem
cell then becomes empty space. Wang et al. [18] provide
experimental evidence for a differentiation checkpoint that
limits self-renewal of HSCs. The next subrule of Rule (1)
states that a stem cell converts to a transitive cell, if its
internal counter representing its cycling phase has reached
the threshold ¥ and its immediate neighborhood consists
only of stem cells. This corresponds to receiving a signal that
the microenvironment is saturated with stem cells. de Haan
et al. [3] provide the evidence for such a feedback, where the
authors show that hematopoietic cell amplification in vivo is
regulated by various mechanisms that appear to be under the
control of many hematopoietic growth factors, including the
activation and deactivation of the quiescent stem cells into
the cell cycle. The next subrule states that when a stem cell’s
internal counter reaches the threshold ¥ and there exists an
empty space in its neighborhood, then it proliferates such
that one of its descendants occupies the empty space and
the other remains in the original location. This subrule also
defines the fact that the new stem cell as well as the stem
cell at the original location receives renewed biological time.
With these subrules, we also denote a systematic way of
choosing the empty space for proliferation. The method we
propose is by adding a directional component d in the state
of every stem cell and by arranging all the possible directions
p in a circular (round-robin) order (in two-dimensional or
three-dimensional model of space). A stem cell proliferates
in the empty space in the directional component d of its
state. If the position given by the directional component
d of the state is occupied by any cell, then the stem cell
continues to choose the next direction, in the round-robin
order, for availability of the empty space. After proliferation,
the directional component of stem cell is incremented to
point to the next subsequent direction. The fourth subrule
within this rule specifies that if a stem cell’s internal counter
has reached the threshold W but its immediate neighborhood
is not saturated by stem cells and it also does not have
empty space to proliferate (as earlier subrules are already
considered), then the stem cell enters a quiescent state; that
is, it retains its state. The last subrule states that if the internal
counter of a stem cell has not reached the threshold ¥, then
it is incremented.

Rule (2) details the behavior of transitive cells. The first
and second subrules state that when a transitive cell’s internal
counter reaches the threshold ® and if there exists a stem
cell in its near neighborhood, then it moves onto the next
generation unless it is not in its last (Mth) generation. If a

transitive cell’s counter has reached the threshold ® and it is
in its last generation, then it gets converted to a differentiated
cell. Transitive cells are intermediate cells that can convert
back to stem cells if there are no enough stem cells in their
near neighborhood, a situation that can occur following
radiation or organ damage. Theise and Harris [5] detail
the dedifferentiation, that is, reversion of an intermediate
transitive cell into a stem cell. The near neighborhood of a
transitive cell is governed by a constant # and the generation
of the transitive cell. This is based on the observation that
the stemness property of a transitive cell goes on decreasing
with subsequent generations. The near neighborhood size to
find a stem cell and the duration g® required for maturity
keep on increasing with each subsequent generation of a
transitive cell, implying its reduced capacity to regenerate and
the requirement of an even stronger signal to convert back to
a stem cell. The third subrule captures this behavior. The last
subrule states that if the internal counter of a transitive cell
has not reached the threshold ©, then it is incremented.

In Rule (3), the first subrule states that when a differenti-
ated cell’s internal counter reaches the threshold @, it matures.
After maturation, the cell migrates to the blood stream
leaving the original space occupied by the differentiated
cell as empty space. The second subrule states that if the
internal counter has not reached the threshold @, then it is
incremented.

Rule (4) specifies that an empty space does not change
by itself. It does not have any internal counter and it is not
involved in any computation.

The rules defined for this model are complete and
consistent. The bone marrow has three types of cells: the stem
cells, the transitive cells, and the differentiated cells. The rules,
for all the cell types, are defined such that each state of the cell
matches some subrule. For example, in Rule (1) for stem cells,
if the internal counter of a stem cell reaches the threshold ¥
and if it has not had A proliferations, then it either can convert
to a transitive cell if it is surrounded by stem cells from all
directions or may proliferate into a new stem cell in an empty
space in its neighborhood; or if neither of this is possible,
then it would become a quiescent stem cell. Also, the rules are
entirely based on the biological observations as discussed in
the description of the rules. The ordering of subrules within
each rule defines consistent and deterministic behavior of the
model.

Figure 3 shows how these rules when applied progres-
sively result in one stem cell slowly occupying the entire bone
marrow. The direction component initially points to the top
right corner and then moves clockwise.

We show next that this proposed model of bone marrow
has strong homeostatic properties, similar to Agur et al’s
model.
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FIGURE 3: Stem cells proliferation shown progressively from images (a) to (d), with directional component moving clockwise.

3. Homeostasis of the Bone Marrow Model

We begin by investigating the property of stem cells to expand
throughout the bone marrow. The following lemma shows
that any vertex in the bone marrow graph eventually gets
occupied by a stem cell, given that initially there is at least
one stem cell in the bone marrow graph.

Lemma 1. For any ®, ¥, ®, and A, if there exist two vertices
u,v € V such that, at some time t, the vertex v is not occupied
by a stem cell and the vertex u is occupied by a stem cell, then
there exists a bound on the number of time steps, s > 0, such
that the vertex v will be occupied by a stem cell at the most by
s+t time steps.

Proof. From Rule (1), we conclude that if u and v are
neighbors, then © remains a stem cell as long as v is not a stem
cell. The vertex v itself turns into a stem cell in no more than
@ + V¥ time steps. This is the maximum time required which
includes the time required for cell at vertex v to migrate to the
blood stream (in case it was a differentiated cell), turn into an
empty space, and, as it is a neighbor of a stem cell, become a
stem cell after maximum pV¥ time steps. Hence, we can use
induction on the distance p(u, v) to obtain a bound on the
time that is needed for v to turn into a stem cell:

s<O+p(u,v)ul. (5)

We note that as all the new stem cells have renewal
number as zero, the new stem cells that are getting populated
nearer to vertex v would not have renewal number as A. [

The proof above conveys that the distance py,(v)
between a vertex v, which is not occupied by a stem cell at
time t, and the subset U(t) € V of vertices which includes
a stem cell vertex at time t is a nonincreasing function.
Furthermore, there exists s < @ + py()(v)u'¥ such that
Pu(ess) (V) = 0.

We now show that, for any time instant r > t+s, Pu(r) (v) <
Mp in any two consecutive time slots. This means that from
the time t + s onwards there is always a stem cell not farther
than distance M7 from v in any two consecutive time slots.
As mentioned earlier, the parameter # denotes the distance
multiple for a transitive cell to convert back to a stem cell.

Lemma 2. Suppose that a vertex v becomes a stem cell at time
t; then, for every t > t,, there is a vertex u € B(v, Mn) which
is occupied by a stem cell at time t ort + 1.

Proof. A necessary condition for the production of a stem
cell at a vertex v at time t, is that there is a stem cell V' in
the near neighborhood of v that has reached maturity; that
is, ' € N®), x ') = (S %, *). Now, the cell at
vertex v remains a stem cell until the last four conditions of
Rule (1) hold. Therefore, if the stem cell at vertex v becomes
a transitive cell at time t; > ¢, either it still has a stem
cell neighbor at t; or all of its neighbors become transitive
cells simultaneously with v. If it is the first scenario, then
the lemma holds. The second scenario can happen only if all
the stem cells have their internal counters synchronized and
reach the threshold ¥ simultaneously at ¢,. In such a case,
either there is a stem cell in the near neighborhood of size My
or vertex v will again convert from a transitive cell to a stem
cell at time ¢, + 1 as all its near neighbors are not stem cells.
Thus, if v is not a stem cell, there is a stem cell in B(v, M#) at
timet; or ¢, + 1. Applying Lemma 1 ensures that until the next
time the vertex v is occupied by a stem cell, the distance from
v to the closest stem cell will not exceed M# in any two given
consecutive time instants.

A direct conclusion from Lemma 2 is the estimation
for the density of stem cells in bounded vicinity. We state
the same in the following lemma for graphs with bounded
degree or fixed number of directions. The bone marrow can
be described as a graph of bounded degree with each vertex
connected only to its adjacent vertices.

We need two more notations: If the graph G has the
property that there exists w such that [N(v)| < w, Vv € V, we
say that G has bounded degree and write deg(G) < w. In the
regular graph that we describe here, [N(v)| = y; that is, every
vertex is connected to its neighboring vertex in all directions
(Figure 1).

The density of stem cells in a given finite subset of vertices
U c V at time step ¢ is the ratio of the number of stem cells S
in U to the total number of vertices in U at ¢. It is denoted by
6,(U).

Lemma 3. Let G be a graph of bounded degree. Suppose that at
some time t, a vertex v is occupied by a stem cell; then, for every
ball B = B(v, Mn) G, lim,_,,6,(B) > (1 = 1)/ (™" - 1).

Proof. By Lemmas 1 and 2, any ball of radius M#x admits a
stem cell from a certain moment for any two consecutive
time slots. Such a ball contains vertices less than or equal
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to (@™ - D/(w - 1). As w = ¢ in our graph, hence,
lim,_,,8,(B) = (u— 1)/(u™" - 1). O

Claim 1. In essence, Lemmas 1, 2, and 3 show that not only is
it true that one stem cell is sufficient to bring back the bone
marrow system homeostasis, but also it is true that the bone
marrow has a built-in mechanism guaranteeing that stem
cells do not become too scattered. Every ball of radius My
is occupied by at least one stem cell at any two consecutive
time steps from the moment it was occupied by a first stem
cell. Also, the density of such a ball in our proposed model is
at least (4 — 1)/ (uM” — 1). Our claim is ratified by Parmar et
al. in [19].

In the next section, we show that the proposed model has
steady production of differentiated cells.

4. Steady Production of Differentiated Cells

In this section, we show that the system generates enough
mature differentiated blood cells. Before proving the same, we
mention some observations:

(i) When a transitive cell is created and if it has a
stem cell in its near neighborhood, then it would
always proceed to create a differentiated cell. This
stem cell will remain a stem cell at least till the time
the transitive cell becomes a differentiated cell, the
differentiated cell becomes an empty space, and the
empty space is occupied by another stem cell.

(ii) If the bone marrow graph is to be completely filled
with stem cells, then every stem cell should divide into
two stem cells and any stem cell should neither con-
vert to a transitive cell nor die. If any stem cell converts
to a transitive cell, then the condition described above
will ensure that it becomes a differentiated cell.

An extremely rare situation can occur, when the bone
marrow system contains only stem cells at time ¢ and the
internal counters of all stem cells are synchronized. In such
a case, all the stem cells will convert to transitive cells on or
before t + . At the next time instant, all these transitive cells
will convert back to stem cells, as there will not be a single
stem cell in their near neighborhood. This system would not
produce any differentiated cells but will also not die out. We
can call such a state as a resonant state as the cells will resonate
between stems cells and transitive cells without producing
any differentiated cells. The resonant state is an artifact of the
model. Later, in this section, we show that the possibility that
the model will be in a resonant state is extremely rare.

Lemma 4. Suppose that a vertex v € V is occupied by either a
stem cell or a transitive cell at time t. Then, either v or one of its
near neighbors in B(v, Mn) will be occupied by a differentiated
cell within (u+ 1)¥ + M® + 1 iterations unless the system is in
a resonant state.

Proof. Assume that at vertex v there is a stem cell that has no
differentiated neighbors. If there is a differentiated neighbor,

then the above lemma trivially holds. N(v) will consist only
of stem cells for at most y'¥' time steps. Then, vertex v or one
of its neighbors will convert to a transitive cell after ¥ time
steps. Such a transitive cell will always have a stem cell in its
near neighborhood. Then, after M generations of a transitive
cell, it would convert to a differentiated cell, that is, after M©
time steps.

Now, let us assume that at vertex v there is a transitive
cell and v has a stem cell in its near neighborhood B(v, M#);
then, after (M — 1)® time steps, v enters the Mth generation
and in next ® time steps it becomes a differentiated cell. If
v is a transitive cell and if v does not have any stem cell in its
near neighborhood that can be at a maximum distance of My
from v, it becomes a stem cell in the next time instant and the
argument above follows.

Thus, except in the case of a resonant state, there is a
differentiated cell generated within every (¢ + 1)¥ + MO + 1
time steps in B(v, M#). O

Claim 2. Lemma 4 shows that, in case of severe perturba-
tions, a transitive cell will convert back to a stem cell. This
stem cell would potentially enable the bone marrow system
to begin production of differentiated cells.

Note that, in this model, one cannot guarantee that
a particular stem cell will eventually be converted to a
differentiated cell. The lemma above does guarantee that in
the close vicinity of any stem cell some cell differentiates
within a fixed bounded time interval unless the system is not
in a resonant state. An immediate consequence of this is a
lower bound on the supply of differentiated cells to the blood
stream.

Lemma 5. Suppose that, at some time t,,, a vertex v is occupied
by a stem cell; then, every ball of radius 2Mn eventually supplies
at least one mature differentiated cell within (u+ 1)V + MO +
1 + @ time steps unless the system is in a resonant state.

Proof. By Lemma 3, every ball of radius M7 admits a stem
cell from a certain moment onwards in any two consecutive
time instants. Lemma 4 states that either this stem cell or one
of its near neighbors (and so we argue about balls of radius
2Mpn) converts to a differentiated cell within (¢ +1)¥ + M® +
1 time steps and migrates from the bone marrow as mature
differentiated cell after ® additional time steps. Thus, every
ball of radius 2M# eventually supplies at least one mature cell
within (¢ + 1)¥ + MO + 1 + O time steps. O

We will now try to reason out the fact that the chances
of occurrence of a resonant state are rare. A resonant state
can occur for a block of holding capacity of 2# cells if it
is occupied completely by stem cells starting from a single
stem cell in p¥ time steps. The physical occupancy of
stem cells in a given block depends largely on the initial
stem cell population and the round-robin way of choosing
the directions. If the manner in which the round-robin
arrangement of directions is clockwise or counterclockwise,
then the resonant state would not occur if starting with a
single cell in two-dimensional space, as 2#/u” is greater than



1 when p is greater than 4. For example, with ¢ = 8 in a
two-dimensional space, 2% = 512; thus, in 8¥ time steps, 512
cells would be generated from a single stem cell, but the ball
of radius 8 from the vertex v can hold at a maximum only
(8 + 1 + 8)? = 289 number of cells. Thus, there will be at least
one stem cell, which would have all its neighbors as stem cells
within 8V time steps, and hence it would get converted to a
transitive cell. In our model, since the directional component
is assumed to be clockwise, the resonant state will never
occur. The resonant state may occur rarely in cases when the
directional component is chosen arbitrarily. The possibility
of reaching a resonant state drops further after considering
the coordination of a similar event in neighboring blocks,
required for the entire bone marrow system to be in the
resonant state.

It is observed that several stem cells do remain in
quiescent state [8]. Quiescent state is defined as the state of
a stem cell such that even after the cycling phase has reached
the threshold ¥, it remains a stem cell instead of converting
to a transitive cell.

Lemma 6. Forevery ®, ¥, and © and with A sufficiently large,
several stem cells remain in quiescent state.

Proof. The above analysis shows that if the number of
renewals A, allowed for stem cells, is sufficiently large,
then the stem cells would not die for a sufficiently long
time; instead, they would proliferate and fill up the entire
surrounding space. Thus, in case when a stem cell s turns to
a transitive cell, the stem cells in the near neighborhood of s,
that is, N(s), would neither be able to proliferate nor convert
to a transitive cell, as they are no longer surrounded by stem
cells from all directions. These stem cells would then enter
quiescent state after ¥ time steps. O

5. Steady States and Dying Out States

We consider the unique state of the bone marrow satisfying
Vv € V, x(v) = (E) as the death state of the system. A state
x', for which there exists k € Z* such that x'™* is the death
state, will be called a dying out state.

Lemma 7. The dying out states of the bone marrow are only
those consisting of no stem cells or no transitive cells or the states
which reach Vv € V, x(v) = (S,d, ¥, A).

Proof. Let x' € Q be a state of bone marrow, which is not one
of the dying out states. Let us assume that at time ¢ there is a
vertex u, which has a stem cell. If there exists a vertex v € V,
which is not a stem cell at time ¢, v becomes a stem cell by
Lemma 1. So, by Lemma 2, there always exists a stem cell in
B(v, M#) in any two consecutive time instants after vertex v
is occupied by a stem cell. The system does not die out. Even
if v is a transitive cell, then it will become a stem cell if there
is no stem cell in its near neighborhood. So, again, the system
does not die out.

Consider an extremely rare case where the bone marrow
system is occupied by synchronized stem cells that all have
reached the maturity time ¥ and that all already have had A
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proliferations; that is, Vv € V, x(v) = (S,d, ¥, A). In such a
scenario, all the stem cells of the bone marrow would execute
first subrule of Rule (1) and would become empty spaces.
The system would die out. Thus, assume that V admits only
stem cells at time ¢. If the counters are not synchronized, they
do not convert to transitive cells at the same time instant
and the system does not die out. If the counters of all stem
cells are synchronized and all the stem cells have not had
A proliferations, they enter the resonant state and again the
system does not die out. If the counters of all stem cells are
synchronized and all the stem cells have had A proliferations,
only then the system dies out. O

We have shown that except for the rare chance of
occurrence of a death state, the system never dies out. The
chance of the bone marrow system being in a resonant state
is also low. Thus, we have shown that the model representing
the bone marrow is in the state of dynamic equilibrium that
it continuously changes in its constitution and arrangement,
and these changes occur at varying rates depending on the
constants O, ¥, ®, and A. Thus, the bone marrow model can
be considered as if it is in homeostasis.

If there exist states x € ( in which, for some k €
Z*, x"* = X', then all these states from x' to x'™ are the
steady states of the system.

Lemma 8. For every ®, ¥, ©, and A, the model reaches a
steady state.

Proof. Given the fact that the number of states is finite, the
model will eventually repeat states. O

Claim 3. The bone marrow model displays homeostatic
behavior except if it is in a death state or in a resonant state.

6. Discussion

In this paper, we have proposed a biologically consistent
deterministic model of bone marrow by extending the model
proposed by Agur et al. The proposed model not only retains
homeostatic properties of Agur et al’s model but also adds
the ability to recover from severe perturbations of the bone
marrow by adding rules that can convert a transitive cell
back to a stem cell and bring back the system homeostasis.
The model demonstrates consistency to assume a certain
apoptosis rate in the stem cell population.

The main properties of our model are achieved from the
feedback demand of Rule (1); namely, a stem cell does not
convert to a transitive cell unless its immediate microenvi-
ronment is saturated with stem cells. The feedback demand
in Rule (2) is also significant in the sense that a transitive cell
can convert back to a stem cell in cases of severe perturbations
resulting in loss of several stem cells. We obtain the results
that stem cells are eventually dense (Lemmas 2 and 3) and
that, except for the cases when there is no stem cell or no
transitive cell or bone marrow state having all synchronized
stem cells having had A renewals, the bone marrow system
never dies out (Lemma 7). Even though our extension of Agur
et al’s model is relatively simple, the properties that emerge
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are general and hold for more complex descriptions. It is a
step ahead in the direction to model the immensely complex
bone marrow system.

Our extension of Agur et al’s model removes the draw-
backs associated with it. To summarize, note the following:

(1) The model demonstrates that a single HSC is suffi-
cient to bring back bone marrow homeostasis. Osawa
et al. [13] have also shown that injection of a single
HSC resulted in a long term reconstitution of the
hematopoietic system.

(2) The model demonstrates consistency with apoptosis
observed in the stem cell population. As pointed out
by Roeder and Radtke [1], stem cells accumulate DNA
damage with each cell division. DNA damage that
exceeds a certain level induces apoptosis or cell cycle
arrest [15].

(3) In the model, a stem cell division is explicitly rep-
resented. A stem cell’s internal counter comes back
to its initial state after division; that is, it becomes a
true daughter stem cell. Thus, a stem cell divides into
two identical daughter stem cells. Yamamoto et al.
[20] demonstrated symmetric self-renewal division of
HSCs as an actual event.

(4) One stem cell divides into a single empty space. For
another division, the stem cell has to wait for the
internal counter to again reach threshold V.

(5) Our model shows that a stem cell can enter and exit
a quiescence and a proliferative state. Wilson et al.
[21] have discussed that the HSCs regularly enter and
exit cell cycle. After reestablishment of homeostasis,
HSCs return to quiescence, suggesting that HSCs are
not permanently entering the cell cycle but reversibly
switch from quiescence to self-renewal under certain
conditions.

(6) Transitive cells that have limited ability to convert
back to stem cells are represented in our model.
Their ability to convert back to a stem cell dimin-
ishes with subsequent generations. Yin et al. [14]
have shown that the intermediate cells can reconsti-
tute hematopoietic stem cells. They also show that
these dedifferentiated HSCs can reconstitute entire
hematopoietic function.

(7) Our model has empty spaces but they no longer need
any counters.

(8) The results hold in two-dimensional or three-
dimensional model of space.

(9) The homeostatic model allows flexibility in choosing
model parameters that permits several different sim-
ulations to be carried out in silico (Claim 3).

Our model overcomes the drawbacks of Agur et al’s
model. It also does not require explicit message passing
between cells and the controlling microenvironment, as
required by the model of D’'Inverno and Saunders [7]. Com-
pared with the other proposed models [10, 11, 16], our model
has transitive cells with several generations; homeostasis

prevails for a larger range of parameter values; and there
is no fixed turnaround rate between the proliferative state
and the quiescent state of the stem cells. Hence, it is much
closer to biologically observed behavior of bone marrow than
the earlier reported deterministic models. The properties of
the proposed model proved in this paper are also observed
in the agent-based simulations that we have carried out.
These simulations also demonstrate that, as predicted, large
fractions of stem cells do remain in quiescent state [8].

There are other advantages of our model. It can be
modified to qualitatively study some of the blood related
diseases. For example, anemia is usually defined as decrease
in the number of red blood cells (RBCs). Aplastic anemia
is a type of anemia that is caused by the disturbance
of proliferation and differentiation of hematopoietic stem
cells. Aplastic anemia can be caused by exposure to certain
chemicals, drugs, radiation, infection, immune disease, and
heredity. Yet in about half the cases, the cause is unknown
[22]. In essence, if the maturing and dying differentiated cells
are not replaced by newer differentiated cells at the same rate,
then it may lead to aplastic anemia. A stem cell converts
to a transitive cell in W time steps if it is surrounded by
stem cells in all directions. Each of these conversions will
potentially create a differentiated cell. These differentiated
cells would mature and die in @ time steps. Thus, the number
of live differentiated cells would largely depend upon the ratio
(®/V¥). Thus, if the ratio (O/¥) is very low then it may cause
aplastic anemia. This is one example of a possible extension
of the model defined in this paper.

There are several other options of bringing the proposed
model even more close to biologically observed complexity.
We would like to increase the scale of simulation of the bone
marrow system so that it can hold 10 to 10'* number of cells
[23]. We would also like to perform simulations in three-
dimensional space. In future, we would also like to model
leukemia as has been done in other models [16].

Appendix

Results of the Agent-Based Simulation

An agent-based simulation was developed for the bone
marrow system proposed in this paper. We have imple-
mented the program in the C programming language
and it is made available at a publicly available website:
https://sites.google.com/site/deterministicstemcellmodel/.

The results given below are for a two-dimensional grid of
size 30 x 30 for the following constants (in figures, blue is used
for stem cells, green is used for transitive cells, and maroon is
used for differentiated cells):

A =100, number of maximum renewals for a stem cell.
® =2, constant for differentiated cells maturity.

Y =8, constant for stem cells maturity.

©® =3, constant for transitive cells maturity.

1 =1, constant for distance measure for near neigh-
borhood.
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FIGURE 5: After 20 time steps, 0% stem cells quiescent.

y = 8, number of directions in a two-dimensional
space.

M = 3, number of generations for a transitive cell.

We have considered the two-dimensional space as circu-
lar; that is, the last column is neighbor to the first column
and the last row is neighbor to the first row. The directional
component initially points to the top right corner and then
moves in a clockwise manner.

Simulation 1 (starting with a single stem cell in the center
of the grid (Figures 4-9)). This simulation captures the
emergent phenomenon of different cells occupying the entire
bone marrow starting with a single stem cell. The simulation
demonstrates the ability of the bone marrow to recover from
severe perturbations. It shows the production of differenti-
ated cells. It also shows that some stem cells are in quiescent
state.

Simulation 2 (starting with 20% evenly distributed stem
cells (Figures 10 and 11)). This simulation demonstrates the
emergent properties for a normal bone marrow. In a normal
bone marrow, the stem cells would be distributed across the
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FIGURE 8: After 200 time steps, 60.56% stem cells quiescent.

tissue. Hence, this simulation starts with evenly distributed
stem cells in the bone marrow. Eventually, different cells,
including differentiated cells, occupy the entire bone marrow.

Simulation 3 (number of differentiated cells depend on the
(O/V¥) ratio (Figure 12)). The figure shows a plot of (©/¥)
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FIGURE 11: After 500 time steps, 58.95% stem cells quiescent.

ratio against the number of live differentiated cells over 1000
time steps. This graph is plotted by varying values of ¥
while keeping all the other constants unchanged. It can be
observed that if the (®/¥) ratio is low, then the number of live
differentiated cells is also low, and that may result in aplastic
anemia.
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FIGURE 12: Number of differentiated cells (y-axis) against (®/¥)
ratio (x-axis) over 1000 time steps.
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