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A combined convolutional 
and recurrent neural network 
for enhanced glaucoma detection
Soheila Gheisari1*, Sahar Shariflou1, Jack Phu2,5, Paul J. Kennedy3, Ashish Agar4, 
Michael Kalloniatis2,5 & S. Mojtaba Golzan1

Glaucoma, a leading cause of blindness, is a multifaceted disease with several patho-physiological 
features manifesting in single fundus images (e.g., optic nerve cupping) as well as fundus videos 
(e.g., vascular pulsatility index). Current convolutional neural networks (CNNs) developed to detect 
glaucoma are all based on spatial features embedded in an image. We developed a combined CNN and 
recurrent neural network (RNN) that not only extracts the spatial features in a fundus image but also 
the temporal features embedded in a fundus video (i.e., sequential images). A total of 1810 fundus 
images and 295 fundus videos were used to train a CNN and a combined CNN and Long Short-Term 
Memory RNN. The combined CNN/RNN model reached an average F-measure of 96.2% in separating 
glaucoma from healthy eyes. In contrast, the base CNN model reached an average F-measure of only 
79.2%. This proof-of-concept study demonstrates that extracting spatial and temporal features from 
fundus videos using a combined CNN and RNN, can markedly enhance the accuracy of glaucoma 
detection.

Glaucoma is a chronic disease associated with age. It is described as an ocular disorder that encompasses a group 
of progressive optic neuropathies with established pathophysiological changes at the optic nerve head (ONH)1. 
The glaucoma continuum describes the optic neuropathy associated with progressive glaucomatous damage as 
RGC loss during the initial and asymptomatic stages of the disease followed by detectable retinal nerve fibre layer 
(RNFL) thinning and ultimately visual field (VF) defects2. Previous studies have shown that, in untreated patients, 
due to missed diagnosis, the risk of progressing from ocular hypertension to unilateral vision loss (i.e., legal 
blindness) is 1.5% to 10.5%3. Accordingly, early diagnosis is vital to prevent disease progression and vision loss.

Fundus photographs provide a 30-degree image of the ONH and an opportunity to quantify a number of 
glaucoma specific morphological features4, including neuroretinal rim loss, and an increased cup-to-disc ratio5. 
Despite the computer-aided approach for objective assessment of these features, there is well known inter- and 
intra- observer variation in analysing images obtained from the ONH6. Another major limitation of single 
fundus imaging is that it does not reveal markers associated with blood flow dysregulation, a well-established 
phenomenon in glaucoma7. To overcome this limitation, a number of recent studies have focused on analysing 
fundus videos (i.e. image sequences) in search of markers associated with blood flow. Through analysing fun-
dus videos, temporal features such as alteration in the amplitude of spontaneous venous pulsations (SVP)8 and 
blood column variations9 can be obtained, both of which have been linked to glaucoma10–12. Taken together, it 
is imperative to incorporate both spatial and temporal features for any approach aimed at glaucoma assessment.

Computer aided diagnosis (CAD) systems play an important role in making an accurate, reliable and fast 
diagnosis of glaucoma13. Recent advances in computational power capabilities have allowed implementation 
of convolutional neural networks (CNN) facilitating autonomous classification of glaucoma based on complex 
features derived from thousands of available fundus images. The specificity and sensitivity of these models 
range between 85 to 95%, with the transfer-trained models (as opposed to native trained) achieving the highest 
performance in separating glaucoma from healthy fundus images14–16. While these experimental results show 
that pre-trained CNNs have the ability to achieve superior results in classifying glaucomatous fundus images, 
the complexity of glaucoma pathology poses unique challenges for CNNs trained on fundus images only. More 
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specifically, population differences in optic disc size and colouration17 as well myopic discs18 are a potential source 
of errors for these networks as they have strong correlations with critical ONH structural parameters such as 
cup-disc ratio and neuroretinal rim thickness relevant to glaucoma diagnosis. Accordingly, such networks can 
only reach certain levels of accuracy and precision without compromising on false positive rates.

As glaucoma encompasses a range of spatial and temporal features, for any autonomous approach, it is essen-
tial to treat it as a video classification problem, rather than a static image problem. By taking such approach, 
spatial features such as changes to ONH morphology as well as temporal features such as amplitude of spon-
taneous venous pulsations are taken into account. In this study, we propose a novel approach through which a 
combined CNN and recurrent neural network (RNN) is used to extract spatial and temporal features embedded 
in fundus videos to detect glaucoma.

Methods
Data collection.  Fundus images and videos were collected from 489 and 206 participants attending the 
Centre for Eye Health (University of New South Wales, Sydney, Australia), Marsden Eye Clinic, and Vision 
Research Clinic (UTS). For fundus videos, participants had a bilateral dilated funduscopy and a minimum 5-s 
recording (30 frames per second at a 46/60 degrees’ field of view of the retina, and 2.2 image magnification) cen-
tred on the optic disc (Table 1). All subjects were required to be > 18 years of age, visual acuity better than 6/12, 
and have sufficiently clear ocular media for accurate capturing of fundus photos and videoscopy. 

We included patients with glaucoma who had primary open-angle (either high- or low-tension glaucoma), 
pseudoexfoliative or pigmentary glaucoma. Glaucoma patients were diagnosed clinically on the basis of charac-
teristic structural losses observed on dilated stereoscopic examination of the optic nerve head (including but not 
limited to the following features: increased cup-to-disc ratio, cup-to-disc ratio asymmetry, localised or general-
ised neuroretinal rim thinning or notching, deepening of the optic cup, and glaucomatous disc haemorrhages) 
with or without concordant visual field defects on conventional white-on-white standard automated perimetry 
(Humphrey Field Analyzer, 24-2 SITA-Standard; Carl Zeiss Meditec, Dublin, CA). Glaucomatous visual field 
defects were not attributable to other diseases of the visual pathway and were defined as any of the following: 
three or more contiguous points of sensitivity reduction with a significance level of p < 0.05, of which at least one 
point is significant at the p < 0.01 level, on the pattern deviation map; a pattern standard deviation result with 
a significance level of p < 0.05; or three consecutive Glaucoma Hemifield Tests that were outside normal limits. 
Elevated intraocular pressure was not required for a diagnosis of glaucoma. In all cases, a glaucoma specialist 
was responsible for diagnosis of glaucoma.

Normal subjects were required to have a normal visual field (pattern standard deviation not less than p < 0.05; 
Glaucoma Hemifield Test within normal limits; and no cluster of points of depression as described above), nor-
mal ocular health on comprehensive dilated fundus examination and intraocular pressure below 22 mmHg. A 
glaucoma specialist was also involved in identifying these patients as ophthalmically normal (i.e. no glaucoma). 
For all subjects, optical coherence tomography was used as an adjunct to the diagnostic process, but no specific 
numerical cut-offs were used to determine whether or not a patient had glaucoma.

This study was performed in accordance with the guidelines of the tenets of the Declaration of Helsinki and 
approved by the University of New South Wales and University of Technology Sydney’s Human Research Ethics 
Committee. Informed consent was obtained from each subject following an explanation of the nature of the study.

Preprocessing of data.  Prior to developing the deep leaning architecture, one of the authors (SG) normal-
ized all the images and frames and then marked the center of the optic disc in all of the frames in each video. 
An automated algorithm (custom written in MATLAB, The Mathworks, Massachusetts, USA) was then applied 
to crop all images to a square region centered on the optic disc and limited to two disc diameters surrounding 
the manually marked disc center. This approach was chosen as glaucoma-specific static and dynamic features 
are mainly manifested on retinal tissue surrounding the ONH. Furthermore, a previous study by Orlando and 
colleagues has shown that cropping images around the optic disc is more efficient than using the whole images 
for training CNNs19. Finally, we employed a data augmentation procedure to solve the imbalance issue in our 
dataset and to increase the amount of normal images in the training set. The training images were augmented 
through random rotation, zooming and horizontal flipping. As the default size of the input images to the net-
work is 224 × 224, we resized the images to match this specification (Fig. 1).

Convolutional neural network (CNN): extracting spatial features from retinal images.  We 
evaluated two different deep learning architectures in this study: VGG1620 and ResNet5021. These architectures 
were selected as they have been widely used for medical image classification tasks22. Both networks have a similar 
architecture and comprise of convolutional layers, pooling layers and a final fully connected layer that produces a 

Table 1.   Participant demographics and data distribution.

Glaucoma Normal

Number of participants 379 316

Gender (female) 158 151

Gender (male) 221 165

Average age (years, SD) 65.1 ± 13 47 ± 15
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label for the input image (Fig. 2). The depth of VGG16 is 16 layers (13 convolutional layers and 3 fully connected 
layer). ResNet50 contains 50 layers (16 residual layers and 2 fully connected layers, each residual layer contains 
3 convolutional layers). The input of the networks was set to 224 × 224 pixel images that are passed through a 
stack of convolutional layers. The convolutional layers filter images with a kernel size of 3 × 3. Each convolutional 
block, a group of convolutional layers, is followed by a max-pooling layer. Applying the max-pooling layer not 
only allows the higher layer outputs to be resilient to subtle changes in the input, but also reduces the overall 
computational cost. A stack of convolutional layers is followed by fully connected (FC) layers to map the con-
volutional features to the feature vectors. The CNNs act like a feature extractor that extract static features of the 
input image.

Recurrent neural network: extracting temporal features from retinal videos.  Recurrent neural 
networks (RNN) are specifically designed to identify patterns in sequences of data or, in our scenario, images. 
In a traditional neural network, all inputs are treated as being independent of each other. The limitation of such 
approach is in tasks that require the network to remember events from previous data, such as predicating a word 
in a sentence or predicting a frame in a video. As RNNs perform the same task for every element of a sequence, 
they are called  recurrent. In these networks, the output depends on previous computations. Moreover, these 
networks have a “memory” which captures information about what has been calculated so far. The most popular 
RNN network is Long Short Term Memory (LSTM), originally proposed by Hochreiter and Schmidhuber23, to 
learn long term dependencies. The superior performance of LSTM in language translation and speech process-
ing has made it the first RNN of choice for tasks that feature extraction from a sequence of data is required (i.e. 
videos).

The LSTM architecture comprises memory blocks with each block containing a number of memory cells. Each 
memory cell consists of three gates: forget, input and output gate. The forget gate is an σ function that decides 
which information to retain and which to forget. The input gate decides what new information is to be stored in 
each cell. The output gate selects useful information from the current cell state and displays it as an output (Fig. 3).

Figure 1.   Examples of the original and cropped fundus images. All images were labeled as normal or glaucoma.
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Figure 2.   Overall framework of convolutional neural networks. (a) VGG16, (b) ResNet50.

Figure 3.   Structure of the Long Short Term Memory (LSTM), encompassing the three gates; forget, input and 
output. X denotes the input of the memory, h is the prediction at time t, and σ is a function that selects which 
information to retain or forget.
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Combining CNN and RNN.  We developed a combined CNN (VGG16 and ResNet 50) and RNN (LSTM) 
architecture to extract spatial and temporal features, respectively. The overall framework of our approach is 
shown in Fig. 4. Each video is converted into sequential images and passed onto the CNN to extract spatial 
features. The outputs are then passed into a recurrent sequence learning model (i.e. LSTM) to identify temporal 
features within the image sequence. The combined features are finally passed on to a fully connected layer to 
predict the classification for the full input sequence.

Network training.  We evaluated the networks described earlier using transfer learning. In transfer learn-
ing, as opposed to native training, model weights are initialized based on the ImageNet dataset, a large bench-
mark dataset in object category classification and detection on hundreds of object categories and millions of 
images. Transfer learning is to initialize the model weights based on a huge general image dataset, except for the 
fully connected layers which are trained on our constructed fundus dataset. To train and evaluate the models, 
we divided the dataset randomly into three subsets: training (85% of total images), testing (10% of total images), 
and validation (5% of total images) and quantified the F-measure, precision and recall. This procedure was 
repeated ten times and the average of F-measures, precisions and recalls are reported. To ensure a homogenous 
training and testing, all images and videos from an individual participant were included in the same subset. In 
other words, all the images and videos used for testing the network were not “seen” by the network as part of the 
training and validation step.

Local interpretable model‑agnostic explanations: uncovering the black box.  We employed the 
Local Interpretable Model-Agnostic Explanations (LIME) algorithm to visualize sections of the image that the 
model is using to produce its final prediction. Briefly, LIME works based on creating a new dataset that contains 
permuted samples and the associated predictions. The new dataset is then used to train a new model which is 
weighted by the proximity of various features in the input image to the feature of interest. As a result, the weights 
are continuously updated based on whether they are contributing to the prediction or are against it. The fully 
trained new model is then used to interpret and explain the predictions24.

Network evaluation.  For each of the models; VGG16, Resnet50, VGG16 + LSTM and Resnet50 + LSTM, 
the performance was evaluated on the training and test datasets using sensitivity, specificity, and F-measure. The 

Figure 4.   Overall framework of the fused Convolutional Neural Network-Recurrent Neural Network (CNN-
RNN). The extracted spatial features from the CNN passes through the RNN to create the temporal features.
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area under the receiver operating characteristics curve (AUC) was also used to evaluate the performance of each 
model.

Results
The combination of VGG16 and LSTM achieved the highest performance.  To determine the best 
performance for each model, we ran several experiments varying the number of epochs, batch size and learning 
rate. A batch size of eight, 20 epochs, and a learning rate of 0.001 were determined as the optimum values to 
achieve the best performance. Table 2 summarizes the sensitivity, specificity and F-measure achieved for each of 
the models, using the aforementioned parameters. Our results show that the combination of VGG16 and LSTM 
achieved the highest accuracy, outperforming the models trained and tested on spatial features only.

As our overall database had a significant age difference between the glaucoma and normal group, a subsequent 
analysis was performed on a subgroup of age-matched glaucoma and normals to determine whether age may 
have a likely effect on the end results. A total of 23 glaucomatous fundus videos (obtained from 22 glaucoma 
participants, 67 ± 12 years) and 26 normal fundus videos (obtained from 17 healthy participants, 64 ± 18 years) 
were selected and tested using each of the models (no significant difference in age; p > 0.05). Table 3 summarizes 
the sensitivity, specificity and F-measure achieved for each model. Consistent with earlier results, aggregation of 
VGG16 and ResNet50 with LSTM achieved the higher F-measure, sensitivity and specificity, with the combined 
VGG16 and LSTM achieving the highest performance amongst all the models.

Combined CNN and RNN models achieved significantly higher performance than CNNs 
alone.  An inter-group analysis was performed to evaluate the performance of each model in comparison to 
others. A one-way ANOVA applied to the average sensitivity, specificity and F-measure revealed a significant 
difference amongst all models (p < 0.0001, p < 0.001, p < 0.0001, respectively). Post-hoc analysis showed that a 
combined CNN and RNN, outperformed sole CNN models across all measures of sensitivity, specificity, and 
F-measure. The combination of VGG16 and LSTM achieved the highest performance in comparison to VGG16 
for separating glaucoma from healthy image and videos, with a sensitivity of 0.95 (vs. 0.59; p < 0.0001) , specific-
ity of 0.96 (vs. 0.65; p < 0.0001), and F-measure of 96 (vs. 70; p < 0.0001). (detailed post-hoc results available in 
supplementary file, tables S1-S3).

Combined VGG16 and LSTM achieved the highest AUC in separating glaucoma from healthy 
eyes.  To evaluate each model’s performance in separating glaucoma from healthy eyes, we compared the 
area under the Receiver Operating Characteristic Curves (AUC). The VGG16 and ResNet50 models achieved 
an AUC of 0.6 and 0.83, respectively. However, these values increased to 0.99 and 0.97 for VGG16 + LSTM and 
ResNet50 + LSTM, respectively. Consistent with previous results, the combined VGG16 and LSTM achieved the 
highest AUC (Fig. 5).

The loss and accuracy plots over the epochs for the train dataset are shown in Figs. 6 and 7. From the curves, 
we can see that our methods have a good behavior of convergence.

Temporal features drive the accuracy of the end prediction.  To evaluate whether the increased 
accuracy observed in the combined models are driven by temporal features (and is not due to the increased 

Table 2.   Performance of the various models on the total dataset.

Models Sensitivity Specificity F-measure (%)

CNN

VGG16 0.59 ± 0.1 0.65 ± 0.23 70.3 ± 5

Resnet50 0.71 ± 0.19 0.76 ± 0.13 79.2 ± 11.6

CNN + RNN

VGG16 + LSTM 0.95 ± 0.02 0.96 ± 0.02 96.19 ± 1.7

Resnet50 + LSTM 0.89 ± 0.04 0.97 ± 0.02 94.03 ± 2.1

Table 3.   Performance of the various models on the age-matched dataset.

Models Sensitivity Specificity F-measure (%)

CNN

VGG16 0.59 0.55 56.4

Resnet50 0.72 0.70 70.3

CNN + RNN

VGG16 + LSTM 0.94 0.86 89.9

Resnet50 + LSTM 0.88 0.79 83.9
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Figure 5.   The receiver operating characteristic curves (AUC) for all the different models.

Figure 6.   The loss over the epochs for the train dataset.

Figure 7.   The accuracy over the epochs for the train dataset.
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sample size as result of multiple frames), we trained the combined models using fundus images, tested with 
sequential frames, all whilst eliminating the sequential frames from the training set. A significant decrease in the 
performance of both combined models was noted, further confirming that temporal features played a significant 
role in achieving the higher performance shown earlier (Table 4).

Vascularized regions were predominantly influential in predicting end‑classification.  The 
LIME algorithm was employed to uncover regions of the image that the combined CNN/RNN model is using 
to extract spatial and temporal features and to produce its final class prediction (i.e., glaucoma or normal). The 
vascularized regions of superior and inferior retina were identified as regions of “influence” the VGG16 + LSTM 
has utilized in determining the final classification (Fig. 8). As we applied CNN + RNN on sequential frames of a 
video, the LIME algorithm is applied on one frame of a video to visualize the difference between a healthy and 
a glaucoma eye.

Discussion
In this study, we show, for the first time, that training a combined CNN and RNN on retinal image sequences, 
can extract both spatial and temporal features, resulting in significantly improved detection of glaucoma. More 
specifically, the combination of a VGG16 or ResNet50 network with an LSTM architecture, reached significantly 
higher sensitivity and specificity rates compared with a base VGG16 or ResNet50 network. The VGG16 + LSTM 
combination reached the highest performance, amongst all other networks, achieving a sensitivity of 0.95, speci-
ficity of 0.96, F-measure of 96.19% and an AUC of 0.99 in separating glaucoma from healthy eyes. The concept 

Table 4.   Performance of combined CNN with RNN trained on images and tested on sequential images.

Models Sensitivity Specificity F-measure (%)

VGG16 + LSTM 0.51 0.58 63

Resnet50 + LSTM 0.76 0.64 82

Figure 8.   Average intensity map (60 sequential frames) from the LIME algorithm applied to the combined 
models showing significant regions of the image used to predict glaucoma and healthy. Regions with brighter 
intensity (green) indicate a larger impact compared to regions with lower intensity (yellow).
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described here provides the first solid evidence that by treating glaucoma as a video classification task, a highly 
accurate and autonomous AI-based approach for glaucoma detection can be developed.

While the retinal structures are static in nature, our reasoning for improved performance of the combined 
model is based on the dynamic changes of retinal vasculature observed at the ONH. More specifically, there is 
now evidence that the amplitude of spontaneous venous pulsations (SVP) are linked to glaucomatous pathology 
with lower SVPs associated with thinner RNFL thickness and visual field defects25. While the origin of SVPs is a 
matter of debate, there is a consensus that the trans-laminar pressure difference is the main driver behind these 
pulsations. The translaminar pressure is governed by the difference in IOP and the pressure of the cerebrospinal 
fluid surrounding the optic nerve sheath; both of which have been linked to glaucomatous pathology26,27. Fur-
thermore, using a modified photoplethysmography tool (i.e., using the green channel of a colour fundus video 
to visualise blood column variation in the axial direction and across all regions of the retina.), Morgan et al. have 
shown a reduction in blood column intensity of glaucoma patients compared to normal9. It is these vascular 
changes that manifest themselves through temporal features of a fundus video and in combination with spatial 
features of the ONH, result in an overall improved performance of the combined model, as demonstrated in 
this study.

Deep CNNs have proven to be an efficient AI-based tool in identifying clinically significant features from reti-
nal fundus images28–31. Deep CNNs trained on glaucomatous fundus images have achieved a varied performance 
ranging from 0.75 to 0.9 in sensitivity and 0.65 to 0.97 specificity16,32,33 and these differences may be related to 
sample size. A recent study by Liu et al.34, using a deep CNN architecture applied to 3,788 fundus photographs, 
showed a 87.9% in sensitivity and 96.5% in specificity in glaucomatous disc identification. A follow-up study by 
Christopher et al.15, using a similar approach on 14,822 fundus photographs, showed a network sensitivity and 
specificity of 0.84 and 0.83 in distinguishing glaucoma eyes from healthy eyes. There have been other attempts 
at applying deep learning to a combination of retinal imaging modalities, mainly fundus images and optical 
coherence tomography (OCT) scans, to improve network performance. Such networks have achieved an area 
under the ROC curve of 0.94 in separating glaucoma from normal healthy eyes35. While promising, the approach 
requires access to both modalities and double the data, limiting scaling for large screening programs, mainly 
in remote and rural areas where access to OCT can be scarce. Furthermore, such approach is, again, based on 
spatial features only, neglecting the potential impact of temporal features. In contrast, our approach only requires 
a single device that can capture retinal image and videos.

Collectively, while deep learning methods have been capable of classifying glaucoma based on fundus images, 
they are yet to be utilised in a clinical setting mainly due to a high proportion of false positive rates and low 
precision. To overcome this limitation, we developed a model combining a deep spatial feature extractor (i.e. 
VGG16 and ResNet 50) with a model that can learn to recognize and synthesize temporal features (i.e. LSTM). 
By taking this approach, our aim was to combine glaucoma-specific temporal features (extracted from image 
sequences) with spatial biomarkers (extracted from fundus images) to significantly improve classification results 
compared with a model trained on fundus images only.

To compare results between base and combined models, we constructed and trained a number of architec-
tures; VGG16, ResNet50, VGG16 + LSTM, and ResNet50 + LSTM. For all networks, a transfer training approach 
was used. This method was chosen mainly for two reasons. First, Christopher et al.15, has shown that a model 
encompassing transfer learning achieves a statistically significantly higher performance than natively trained 
models. Second, our sample size is relatively small and thus native training may not have achieved the intended 
results we were anticipating. All networks were trained and tested on images and sequential frames extracted 
from the videos. Our results showed that overall a combined CNN and RNN outperforms sole CNNs.

Amongst all the models trained, the combined VGG16 and LSTM achieved the highest performance. Intra-
group analysis revealed a marginal statistically significant difference between the VGG16 and ResNet50 network 
(p = 0.04), with the latter achieving a higher F-measure. This is consistent with a previous report demonstrat-
ing higher performance of ResNet50 compared with VGG1615. We also observed a non-significant difference 
between the VGG16 + LSTM and ResNet50 + LSTM (p = 0.19). While ResNet50 outperformed VGG16, it was 
the combination of VGG16 and LSTM that achieved the highest performance. This could be attributed the 
network structure within each model. Our trained ResNet50 had a total of 50 layers compared with 16 layers 
in the VGG16. Deeper networks extract more complicated features and achieve higher accuracy. The fact that 
the combination of VGG16 with LSTM achieved higher performance, demonstrates that the temporal features 
are possibly a dominant factor in predicting output classification compared to spatial features. As the output 
dimension of the ResNet50 is higher than VGG16, its connection with the LSTM needs more parameters. Both 
networks, VGG16 + LSTM and ResNet50 + LSTM are trained with the same dataset. However, Resnet50 + LSTM 
requires more training data since it has more free parameters. Therefore, under similar conditions, the network 
with more free parameters (i.e. VGG16 + LSTM) achieves higher accuracy.

To help understand and visualize the temporal features of the image sequence the combined model is utilizing 
to distinguish glaucoma from healthy videos, we used the LIME algorithm. Results showed that the vascular-
ized regions of superior and inferior retina have the greatest impact on the model prediction. This is consistent 
with our previous studies that showed a dynamic vascular change in glaucoma eyes10,36. We further evaluated 
the significance of temporal features on the model prediction by training the combined models using fundus 
images and testing with sequential images. This resulted in an average 22% decrease in the F-measure of the 
combined models, further proof that temporal features play a significant role in increasing model performance.

Limitations.  Our study has a number of limitations. First, our sample size is relatively small and is from a 
racially homogenous population. This has resulted in lower network accuracy of the stand-alone VGG16 and 
ResNet50 compared to other research reports. However, the primary goal of our study was not to develop a 
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highly precise model for glaucoma detection, but rather demonstrate that adding recurrent connections to 
stand-alone CNNs could significantly increase a network’s performance in separating glaucoma from healthy 
images .Nonetheless, we acknowledge that a larger and heterogeneous sample size is required to further sup-
port our findings. Second, videos obtained from glaucoma and normal participants, encompassing our final 
dataset, were not age-matched. However, we performed an analysis on a subgroup of age-matched glaucoma and 
controls, with results confirming our initial findings; combined CNN/RNN performed superior compared with 
CNN-only models. Third, the ground truth was based on the clinical evaluation of two different expert clini-
cians, with one labelling the images and the other labelling the videos. Accordingly, we cannot determine agree-
ment. However, given that a benchmark inclusion and exclusion criteria was used for each of the two groups, we 
do not anticipate a significant impact on our findings. Finally, the camera used to capture retinal fundus videos 
was different to that of used for capturing retinal fundus images. As a result, the effect of such approach on our 
results cannot be determined.

In conclusion, this study presented a novel AI-based approach for glaucoma detection based on unification 
of spatial (static structural) and temporal (dynamic vascular) features. By considering glaucoma as a video 
classification task, our proposed method demonstrated promising performance in separating glaucoma from 
healthy compared with models solely reliant on spatial features as their input. Static features such as disc size, 
cup and rim size, and cup-to-disc ratio are variable across different populations37, and therefore, have hindered 
development of models with high sensitivity and specificity38. The method proposed here achieved a sensitivity 
of 0.95 and specificity of 0.96 in identifying glaucoma and thus, may provide an impetus for large-scale screening 
programs. However, further evaluation on a larger, heterogeneous population is required.
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