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Abstract 
The accumulation of massive data in the plethora of Cheminformatics databases has made the role of big data and artificial 
intelligence (AI) indispensable in drug design. This has necessitated the development of newer algorithms and architectures 
to mine these databases and fulfil the specific needs of various drug discovery processes such as virtual drug screening, de 
novo molecule design and discovery in this big data era. The development of deep learning neural networks and their vari-
ants with the corresponding increase in chemical data has resulted in a paradigm shift in information mining pertaining to 
the chemical space. The present review summarizes the role of big data and AI techniques currently being implemented to 
satisfy the ever-increasing research demands in drug discovery pipelines.
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Introduction

The advancements in technologies coupled with reducing 
instrumentation cost have resulted in increased data gen-
eration in both quantity and diversity, leading to numerous 
data resources [1]. Big data comprises this collection of 
data of enormous volume and complexity. The drastic incre-
ment of data has resulted in this data’s availability across 
varied platforms, in public and commercial resources [2]. 
The resulting data-centric environment has mandated the 
acquisition, integration and analysis of big data to decipher 
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complex medical and scientific problems. This gigantic com-
plex data mining to uncover the underlying meaningful hid-
den patterns is equally significant and is referred to as big 
data analytics [3]. In the modern era, the emergence of big 
data has revolutionized the process and strategies to tackle 
drug development [4]. It has also facilitated and acceler-
ated the translation of basic research discoveries into clinical 
practice and transformed the process of conventional drug 
discovery to a data-driven approach [4–6]. The availability 
of data-rich resources has encouraged the exploitation of 
artificial intelligence (AI) that mimics human intelligence 
to solve multifaceted challenges in the drug discovery pro-
cess, from design and identification of novel drug molecules, 
drug repurposing, testing and clinical trial to personalized 
medicine [7–10]. Thus, AI applications related to big data 
analytics in the pharmaceutical space are witnessing a con-
stant interest in making the multipronged approach of the 
multifaceted drug development process more promising and 
less time-consuming. However, some hurdles still need to 
be overcome despite numerous advancements, leaving suf-
ficient room for further data-driven AI-led innovations [11].

The evolution of big data and artificial intelligence has 
reformed the strategies adopted to shorten the drug devel-
opment process. The artificial intelligence approach has 
enabled the development of drug candidates in a more 
structured and economical manner and within a consider-
ably shorter time period. The computational resources and 
algorithms in the drug discovery process utilize existing data 
to provide better analytics and assessment, from identifying 
a drug candidate to the pharmaceutical industry’s manufac-
turing process [11–13]. Hence, prior to the synthesis and 
experimental evaluation of the drug molecule, the AI-driven 
analysis facilitates identifying and screening the drug candi-
dates against the desired disease effectively and efficiently.

Presently, AI is a rapidly evolving field that involves 
various domains, such as reasoning, knowledge represen-
tation, and machine learning (ML). Machine learning has 
been widely implemented for numerous drug discovery 
applications pertaining to large data sets. It uses various 
algorithms and techniques to recognize templates and pat-
terns within the given data set [14]. Its primary application 
in drug designing is to identify and exploit the relation-
ship between the chemical structure and their biological 
activities, referred to as the structure–activity relationship 
(SAR). The advent of massive sequencing approaches like 
next-generation sequencing (NGS) has resulted in the 
exponential growth of sequences, thus identifying poten-
tial fruitful putative novel drug targets [15]. Machine 
learning (ML) approaches have contributed significantly 
to drug target prediction from the available large-scale 
data sources. ML methods have been classified under two 
broad subcategories, supervised learning and unsuper-
vised learning methods. The prominent algorithms in drug 

discovery applications are random forest (RF), support 
vector machine (SVM), gradient boosted machine with 
trees (GBM), elastic net regulation (EN), deep learning 
(DL), and deep neural network (DNN) [16, 17]. The con-
tinuous increment in data and limitations within the ML 
approaches has led to the emergence of deep learning (DL) 
methodology, a subfield of machine learning that uses the 
power of artificial neural network (ANN) [7]. The quan-
titative structure–activity relationship (QSAR) methods 
widely used in drug design are regression models used to 
predict the biological activity of the chemical compounds. 
Increasingly, ANN methods are now being frequently uti-
lized in the pharmaceutical space for drug designing by 
parameterizing the QSAR model nonlinearly. The basic 
concept of ANN is to mimic the functioning of electrical 
impulses generated by neurons in the human brain. This is 
achieved by computing units referred to as ‘perceptrons’ 
which are interconnected like the neurons in the brain and 
possess self-learning capabilities [18]. The artificial per-
ceptrons in ANN constitute a set of nodes required for data 
input and output to solve biological problems. It is com-
monly used in drug discovery to resolve the complexity of 
screening compounds and to estimate the pharmacokinet-
ics and pharmacodynamics parameters [19]. Other types 
of ANN include multilayer perceptron networks (MLP), 
recurrent neural networks (RNNs), convolutional neu-
ral network (CNNs) and autoencoders, which use either 
supervised or unsupervised learning methods [20]. The 
advancement of ANN, called deep neural network (DNN), 
is now gaining attention for its successful application in 
drug discovery-related areas such as, to generate novel 
molecules, predicting the biological activity as well as the 
absorption, distribution, metabolism, excretion and toxic-
ity (ADMET) properties of the drug candidate molecules. 
Like the ML approach, deep learning method was found 
to be effective in building the QSAR/QSAP models [21].

In this review, the emphasis is on the role of big data and 
artificial intelligence in the area of drug design. It attempts 
to provide a current conceptual framework and “state-of-
the-art” snapshot of this domain. Several ML architectures, 
including the supervised and unsupervised methods and 
their application in small molecule drug discovery, have 
also been emphasized. Various other articles available in 
the public domain have focused either on the role of machine 
learning [14] or deep learning [22–24] methods, while some 
have discussed the big data resources in the drug discovery 
[10, 11, 23, 25]. However, there is currently no single review 
paper that has covered all these aspects of drug design, from 
the big data resources to an overview and explanation of the 
development of the implemented algorithms. This review 
attempts to fill these lacunae and presents in a nutshell how 
these algorithms were developed and implemented to uplift 
the drug discovery process in the modern AI era. Thus, this 
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review comprises an insight into the deployment of big data 
resources in the modern ‘big data’ era by engaging advanced 
AI algorithms and providing an integrated, synthesized sum-
mary of the current state of knowledge regarding machine 
learning and big data in drug discovery.

Advent of AI in drug design

Drug discovery is a complex and lengthy venture which 
requires a multidisciplinary approach. A drug molecule to 
reach the market passes through multiple defined stages, 
wherein each step has its challenges, timeline and cost. 
Despite numerous advancements in the understanding of 
biological systems, identifying a novel drug molecule for 
therapeutic purposes still remains largely a lengthy, costly 
and complicated process [26]. The human genome project 
(HGP) has facilitated several advancements in drug develop-
ment, including precision medicine and target identification 
for a disease. Compared to the traditional approach, both 
in vitro and in silico methods have a greater propensity to 
lower drug discovery costs. These computational approaches 
in the early stages of drug development also minimize the 
time span to distinguish a drug candidate with suitable thera-
peutic effects by excluding compounds exhibiting complex 
side effects. The modern drug discovery pipelines integrate 
hierarchical steps that engage various phases such as target 
identification, target validation, screening of lead candi-
dates against the desired target, optimization of identified 
hits to increase the affinity, selectivity, metabolic stability, 
and oral bioavailability. Once a lead molecule is recognized 
and evaluated, it undergoes preclinical and clinical trials. 

Finally, the identified molecule that complies with all these 
investigations moves forward for approval as a drug.

The advancements over time in computational chemistry 
and high throughput screening (HTS) strategies have fast-
tracked the prompt screening of millions of compounds 
against the specific identified drug targets. These techniques 
produce a large quantity of biological data accumulated in 
the databases and public repositories. The generation of 
massive data due to the advancement in technology for drug 
and drug candidates has shifted the modern drug discovery 
approaches towards the big data era. Previously, big data 
analytics was widely used in information technology, but 
nowadays, with the available large-scale data, it has been 
frequently implemented in all the engineering and science 
domains, including drug discovery. Data mining of this com-
plex and heterogeneous data across many resources is highly 
crucial. This has resulted in big data-related novel computa-
tional tools and algorithms for its curation and management 
and put forth challenges and opportunities for the research 
communities [27]. Moreover, advancements in high com-
puting facilities, together with the emergence of artificial 
intelligence (AI) and machine learning (ML) algorithms play 
a prominent part in computer-aided drug design technol-
ogy to screen and mine the lead-like molecules against the 
desired target more efficaciously with reduced cost and time 
(Fig. 1) [19].

Currently, there exist several opportunities to apply both 
AI and ML associated with big data in drug discovery appli-
cations, such as protein folding prediction, protein–protein 
interaction, virtual screening, QSAR, de novo drug design-
ing and drug repurposing. Several approaches like high 
throughput virtual screening (HTVS), molecular docking, 
pharmacophore modelling, QSAR and molecular dynamics 

Fig. 1  Growth of machine 
learning with the subsequent 
increase in big data and com-
putation power; KB—Kilobyte, 
MB—Megabyte, CPU—Central 
processing unit, GPU—Graph-
ics processing unit, HTS—High 
throughput sequencing
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simulation are widely used for drug discovery [28]. Com-
puter-based drug discovery implements virtual screening 
(VS) as the primary method to filter out novel small mol-
ecules from large compound libraries against the desired 
target for therapeutic effect in the early phase of drug dis-
covery [29]. It also helps to determine the novel scaffolds for 
further optimization of the hit molecules. Computer-based 
drug discovery can be broadly classified into structure-based 
drug discovery (SBDD) and ligand-based drug discovery 
(LBDD). In structure-based drug discovery, the target struc-
ture is used to identify a potent drug molecule against a 
particular disease, whereas the ligand-based drug discovery 
is an effective method based on the structural knowledge 
of chemical scaffolds to design compounds with improved 
biological activity. The pharmacophore modelling method 
is used in both the structure-based and ligand-based drug 
discovery approach, while molecular docking, and molecular 
dynamics (MD) simulation studies are extensively used in 
structure-based drug discovery. In contrast, scaffold hopping 
and QSAR are the widely used methods for ligand-based 
drug discovery. [19, 30].

Similar to computer-based drug design, virtual screen-
ing methods also fall under two broad categories depend-
ing on the available structural information: structure-based 
virtual screening (SBVS) and ligand-based virtual screening 
(LBVS). Structure-based virtual screening (SBVS) explores 
the interaction between the ligand molecule and binding 
site residues. In contrast, the ligand-based virtual screen-
ing (LBVS) method uses the chemical similarity approach 
to identify a drug molecule. However, both are an integral 
part of the drug design method and have their merits and 
demerits. Structure-based virtual screening is widely used 
when the structure of the target is known, and it exploits the 
information gleaned from protein–ligand interaction during 
the docking study through the scoring function analysis to 
identify the potent drug molecules against the desired tar-
get. Whereas, the ligand-based virtual screening method is 
not generally based on the availability of the target struc-
ture but on the chemical similarity approach to identify 
the drug candidate and hence may be biased towards the 
reference scaffold. The exponential increase in structural 
and protein–ligand binding data has necessitated engaging 
AI methods to deduce these interactions to enable further 
development of SBVS. ML-based methods such as support 
vector machine (SVM), random forest (RF) and boosting 
help us to establish the nonlinear dependence of molecu-
lar interactions between the ligand and target [31]. Loss of 
relevant information during feature extraction in ML can 
be solved through the deep learning (DL)-based approach. 
Deep learning methods permit automatic generation of 
higher level hierarchical abstractions from big data that can 
be used as features, thus reducing the dependency for feature 
generation in ML. Another type of DL, the convolutional 

neural network (CNN), has been notably adapted for virtual 
screening as it implements feature extraction based on small 
sections of the input image referred to as receptive fields. 
DeepVS is a deep learning-based programme that utilizes 
CNN methodology for screening compounds against the 
desired target [32]. PTPD another tool based on CNN, has 
been developed for designing peptide-based molecules [33].

Ligand-based virtual screening depends on the data set 
of ligands which are further classified into the active and 
inactive set for classification and regression purposes to pre-
dict the activity of the compounds. Based on the physico-
chemical analysis and spatial similarities between the active 
ligands, it identifies and predicts other ligand molecules with 
higher bioactivities. This method predicts the active ligand 
when the target structure is missing or structural accuracy is 
low for the known targets. Like structure-based drug design, 
the adoption of machine learning methods in ligand-based 
drug designing leads to an improved rate of predicted hits 
by minimizing the rate of false hit prediction [34]. With the 
ever-increasing data size and number of active compounds 
in the chemical space, the development of ML algorithms 
has become indispensable to handle the big data sets with-
out compromising speed and accuracy. The limitations in 
addressing the large data set were overcome by the emer-
gence of deep learning (DL) methods that could efficiently 
manage large data sets [35]. Deep learning is a sub-branch of 
machine learning. It emphasizes on the neural network with 
multiple layers of the perceptron, which help in learning 
data with multiple layers of abstraction that are beneficial for 
supervised and unsupervised learning [36]. Recent progress 
in computational power to comprehend big data and convert 
it for reusable knowledge gain has further boosted AI in the 
drug design process [37]. The popular deep learning-based 
libraries such as Tensorflow and PyTorch are widely used to 
screen big data for drug discovery applications.

Big data resources in drug design

The large-scale data exists in diverse forms and data types 
which can be raw or processed, standardized or unstand-
ardized. The extraction of meaningful information from 
this heterogeneous data is a challenging task. The drug 
discovery process relies on data from several disciplines 
such as clinical data, bioassay, pharmacological and struc-
tural biology. These data generated from distinct domains 
and sources encompass a divergent array of large data sets 
where artificial intelligence plays a significant role in solv-
ing the complexity present in the data [38]. The continu-
ous incrementation in big data requires greater computa-
tional resources and advanced computational algorithms 
to analyse the resulting complex data. The demand for 
enhanced computational power has resulted in a paradigm 
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shift from personal computers to high-performance com-
puting, cloud computing, and graphical processing units 
(GPUs) to analyse big data [3]. The accumulated big data 
utilized for drug discovery can be classified into various 
categories or databases such as a collection of chemical 
compounds (e.g. PubChem, ChEMBL), drug/drug-like 
compounds (e.g. Drugbank, e-Drug3D), collection of drug 
targets, including the genomic and proteomic data (e.g. 
Binding DB, Supertarget), databases containing the col-
lection of assay screening, metabolism and efficacy studies 
(e.g. HMDB, TTD) (Table 1). Over the years, several data-
sharing projects have been initiated parallel to the develop-
ment of high throughput screening (HTS) techniques [39].

Big data is required at different stages of the drug dis-
covery process. The initial step in the drug discovery 
process involves the screening of gigantic libraries con-
taining chemical compounds to wean out probable lead 
drug candidates. The chemical compound library space is 
enormous and comprises both virtual, designed, and syn-
thesized compounds with descriptions of their properties 
and distribution sourced across both public and subscribed 
databases. Thus, these data sources are massive and pro-
vide a range of multidimensional data for drug discovery 
and development, including the chemical structure, chemi-
cal assay, target structure, clinical data. The quantity and 
mass of these data resources are expanding exponentially 
with time, unlocking avenues to exploit artificial intelli-
gence and machine learning for rapid and effective drug 
discovery solutions.

Feature/descriptor representation

Most machine learning algorithms cannot use the protein 
sequence information or molecular structure information 
directly from the databases. The protein sequences and 
molecular structures need to be transformed through math-
ematical equations before they can be handled by machine 
learning algorithms. The protein sequence-based features 
like physicochemical properties, amino acid composition, 
dipeptide composition, pseudo-amino acid composition 
(captures long range sequence correlation) and amino 
acid distribution, exploit numerical techniques to convert 

these variable length protein sequences into fixed length 
feature vectors for input to machine learning algorithms. 
Similarly, numerical features consisting of 1D (molecular 
weight etc.), 2D (molecular fingerprints etc.) and 3D (vol-
ume etc.) descriptors are calculated for the molecules to 
make them suitable for machine learning-based analytics 
(Table 2). Simplified molecular-input line-entry system 
(SMILES) and strings are some of the commonly utilized 
molecular representations or notations. With an increase 
in the dimensionality of the descriptor class, informa-
tion content about the descriptors is also expanding. 
Several software resources like Open Babel [40], PaDEL 
[41], Dragon [42], MOE [43], PeptiDesCalculator [44], 
AlvaDes [45], QuBiLS-MAS [46] are currently available 
which can calculate a wide set of different descriptors 
(OD/1D/2D/3D) from the SMILES format or 2D structure 
of the chemical compounds.

Artificial intelligence methods and their role 
in drug discovery

Artificial intelligence (AI) can explore and sort through 
available data, recognize and learn patterns from the input 
unstructured/structured data to extract gainful insights from 
the input data. AI can be classified into different categories 
such as reasoning and problem solving, representation of 
knowledge, planning and social intelligence, perception, 
machine learning, robotics and natural language process-
ing (NLP) [47]. General intelligence remains amongst the 
long-term goals of AI. The various tools exploited in AI 
include statistical methods, computational intelligence, opti-
mization, logic, methods based on probability and related 
methods to solve problems of interdisciplinary areas such 
as, computer science, mathematics, psychology, linguistics, 
drug discovery, and neuroscience. Speech recognition tech-
nology has also been empowered by the use of AI to auto-
mate transcription service. In speech recognition, AI enables 
us to convert the voice message into text and aids individual 
recognition based on their voice command.

On the other hand, NLP enables us to understand the 
natural human language and categorize it into different sub-
sets such as classification, machine translational, and text 

Table 2  Different classes of descriptors with their examples

S. no. Descriptor class Property of particular class of descriptors

1 0D or count descriptors Atom counts, bond counts, molecular weight
2 1D or fingerprints Molecular weight
3 2D or topological descriptors Atom and bond count, connectivity between atoms, Pharmacophore 

features, adjacency and distance matrix, molecular fingerprint
4 3D or geometrical descriptors Potential energy, surface area, volume and shape, conformational 

charge
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generation based on their utility. The popular examples of 
NLP currently widely accepted are virtual assistants like 
Google assist, Siri and Alexa [48]. Machine learning (ML) 
and deep learning (DL) are the subsets of AI technology 
and are extensively used for prediction and classification 
purposes. ML algorithms recognize patterns from the data 
set for further classification [14]. DL, a subfield of machine 
learning, deploys artificial neural networks (ANNs) for dif-
ferent tasks. Adopting AI for solving data-intensive pro-
cesses has opened up newer possibilities in the drug design 
space [7]. AI has, thus, revolutionized and accelerated 
rational drug designing from machine learning and finally 
to deep learning in the present big data era.

Artificial intelligence methods: advantages 
and pitfalls

Machine learning

Machine learning methods can be defined as a set of algo-
rithms that do not require human intervention and explicit 
instructions for learning [71]. Big data has opened immense 
opportunities for machine learning methods to be developed 
specifically to handle the four V’s: Volume, Variety, Veloc-
ity and Veracity, and mine interesting patterns [72]. Big 
data’s sheer size or volume presents several challenges for 
traditional machine learning algorithms, such as processing 
time and memory requirement [73]. The second ‘V’, vari-
ety, comprises different forms/structures of data that can be 
unstructured, semi-structured, or structured. Velocity refers 
to the speed/ frequency with which the incoming data needs 
to be processed. Veracity concerns the trustworthiness/ 

reliability of the data. Machine learning algorithms are 
generally employed for classification and regression tasks. 
In the former case, the objective is to discriminate between 
two or more classes (binary and multiclass classification 
problems). In contrast, the problem of regression involves 
predicting a real-valued quantity or variable [74]. The typi-
cal steps for implementing machine learning-based predic-
tion methods consist of data preprocessing, model learn-
ing, and evaluation. The data preprocessing steps comprise 
preparing the data suitable for the various machine learning 
algorithms, such as discretization and standardization. The 
model learning phase constitutes the actual implementation 
of the machine learning algorithms. The final phase involves 
performance evaluation methods and metrics to assess the 
numerous trained machine learning models (Fig. 2).

Big data also presents a challenge in evaluating the imbal-
anced distribution of available data [75, 76]. The dataset is 
imbalanced when the instances for a particular class over-
whelms the instances of other class/classes with its sheer 
number [77, 78]. When the dataset is imbalanced, the accu-
racy of the learned model tends to shift towards the majority 
class compared to the minority class resulting in majority 
class classifiers [79, 80]. The models trained on imbalanced 
datasets are biased towards predicting the majority class 
over the minority class (which is often the class of inter-
est). To diminish the effects of imbalanced datasets, gener-
ally, two types of approaches are undertaken: (i) changes at 
the algorithm level to make them suitable for handling the 
imbalanced datasets, (ii) Resampling methods: which are 
non-algorithm specific and consist of different types of sam-
pling methods. Random undersampling concerns balancing 
the majority and minority class instances and involves the 

Fig. 2  Workflow of machine 
learning (ML) process in drug 
discovery
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random removal of a percentage of majority class instances. 
Since this engages random deletion of instances, it can lead 
to bias and drop of information triggering loss of unique 
instances. To mitigate the shortcomings of random under-
sampling, K-means clustering based sampling and Kennard 
stone sampling is exploited [80]. Other variants of under 
sampling in practice include cluster centroid-based, K-near-
est neighbour-based, etc. [81]. Another approach to handle 
imbalanced datasets is oversampling. Random oversampling 
may result in sample redundancy as there is ample chance 
that similar instances are replicated during balancing. Ran-
dom oversampling is just the reverse of random undersam-
pling, where a fixed proportion of minority class samples 
are randomly replicated. The outcome is duplication of sam-
ples culminating in redundant information. These methods 
are significant for clinical research in drug sampling and 
drug epidemiology. SMOTE [82] and its variants, such as 
borderline-SMOTE, SVM-SMOTE [83], present an effective 
way of balancing without much bias [84]. K-means, along 
with SMOTE, further reduces the bias. SMOTE is a nearest 
neighbour-based method that uses a predefined number of 
neighbouring minority samples to interpolate a new syn-
thetic minority sample [77].

Deep learning

The rise of deep learning neural networks (DLNN) has rev-
olutionized the analysis of big data. DLNNs have greatly 
benefitted from using ReLu activation function to avoid the 
vanishing gradient problems, which have plagued the shal-
low neural networks since their inception. They consist of an 
input layer, an output layer and more than two hidden layers 
in their architecture [85]. As the number of hidden layers 
increases, the network’s capability to extract more and more 
features enhances. Hence, the complexity of the features to 
be extracted is directly proportional to the number of hidden 
layers. The successful training of DLNNs usually requires 

vast amount of data as the number of parameters is quite 
large (e.g. every weight associated with each connection 
between the neurons in the network can be considered as a 
parameter). It has been observed that using a small amount 
of data for training results in suboptimal trained networks. 
Apart from parameters learned during the training process, 
some hyperparameters are also to be considered for opti-
mal training of a DLNN [86]. Hyperparameters are crucial 
as they decide how the network is trained and significantly 
impact the model’s performance. These are also referred to 
as the ‘tuning parameters’ as some of them are iteratively 
fine-tuned using an appropriate algorithm. In DLNN, the 
number of layers, number of neurons per layer, activation 
function are some of the common hyperparameters [87]. 
Optimal hyperparameter setting changes with each dataset, 
as they are tuned for the individual datasets. When DLNNs 
are trained with a stochastic gradient descent algorithm, the 
network weights are updated depending on the learning rate 
(a hyperparameter). A large learning rate results in faster 
training of the model but may result in suboptimal solu-
tions, while a smaller learning rate results in slow training 
of the network. A suitable learning rate results in the best 
approximate solution depending on the predefined number 
of training epochs. For obtaining the optimal set of hyperpa-
rameters, random search along a grid is often used. Overfit-
ting occurs when the learning algorithm learns the minute 
details of the dataset instead of generalization. The accuracy 
of DLNNs can be improved by employing regularization 
parameters, such as L1 (lasso regression) and L2 (ridge 
regression) regression models, which help to avoid over-
fitting. Regularization imposes higher penalty on complex 
models as compared to simpler models but not at the cost of 
reduction in predictive performance. L1 regularization adds 
the absolute value of the coefficient and results in shrinking 
the less significant feature’s coefficients to zero and facili-
tates feature selection since features with zero coefficients 
can be removed from the model.

Fig. 3  a Deep learning neural network (DLNN) without dropout b Deep learning neural network (DLNN) with dropout
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Loss function with L1 regularization can be given by 
Eq. (1)

where y = true value; ŷ  = predicted value; λ = parameter gov-
erning the magnitude of penalty applicable to the model; 
n = number of features; βi = model coefficient.

In contrast, L2 regularization utilizes the square mag-
nitude of the feature’s coefficients and results in shrinking 
coefficients evenly. It prevents overfitting of data and is espe-
cially useful in cases where collinear features are present.

Loss function with L2 regularization can be given by 
Eq. (2)

where y = true value; ŷ  = predicted value; λ = parameter gov-
erning the magnitude of penalty applicable to the model; 
n = number of features; βi = model coefficient.

Dropout has also proved to be an important technique 
in reducing the effect of overfitting [88]. Dropout involves 
the random deletion of a specified percentage of neurons 
and their connections in different deep network layers. This 
results in making the network more robust to memorization 
and increases generalization (Fig. 3).

Deep learning variants

Generative adversarial networks (GANs) are combination of 
two competing neural networks; a generative network and 
a discriminator network. The purpose of the discriminator 
network is to classify and distinguish the real data from the 
fake data. The generative network produces the fake data by 
using feedback from the discriminator which is trained on 

(1)loss = (y, ŷ) + 𝜆

n∑

i=1

|
|𝛽i

|
|

(2)loss = (y, ŷ) + 𝜆

n∑

i=1

𝛽2
i

real labelled data (i.e. consisting of class information). The 
iterative procedure of optimizing fake data to resemble the 
real data by the generative network and its discrimination 
by the discriminative network continues until local Nash 
equilibrium is attained, at which there is no further reduc-
tion in the cost of both generator and the discriminator [89]. 
Many novel applications of GANs in cheminformatics and 
computer-aided drug design have emerged recently [90]. 
The modification of GANs such as conditional GAN [91] 
and Wasserstein GAN [92] have proved to be very useful 
in various tasks such as novel molecule design (Fig. 4) [93, 
94] and for optimization of molecules with desired proper-
ties [95, 96].

Convolutional neural networks (CNN) (such as VGGNet, 
VGG19) [97] are variants of DLNNs, which are mainly used 
for computer vision and image classification. CNNs consist 
of three components—convolution layer, pooling layer and 
the fully connected layer. The convolution layer is involved 
with recognizing the colour and edges of an image and 
results in the generation of activation maps. The pooling 
layer reduces the spatial dimension of the activation maps, 
and the fully connected network executes the image clas-
sification. A different variant of CNNs such as Inception 
[98] and ResNet are considered state of the art in computer 
vision/ image classification [99]. High-accuracy CNN mod-
els have been implemented for the diagnosis of diseases such 
as cancer [100]. Recently, CNNs are being trained to mine 
protein–ligand interactions [101, 102], text mining [103] and 
toxicity prediction of compounds from their graphic images 
[104]. Recurrent neural networks (RNN) [105] can model 
sequential information. Long short-term memory (LSTM) 
units are primarily used for constructing the RNNs [106]. 
They can also be used for generative purposes [35, 107]. The 
concept of multitask learning [108, 109] involves training a 
learning algorithm on similar tasks rather than on a single 
task, proving to be very effective in cheminformatics, such 
as toxicity prediction [110, 111].

Fig. 4  De novo chemical design 
using generative adversarial 
networks (GANs)
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Hybrid approaches like LSTM-GAN (long short-term 
memory–generative adversarial network), DCGAN (deep 
convolutional generative adversarial network), gcWGAN 
(guided conditional Wasserstein GAN), which are con-
structed using different deep learning paradigms, have been 
successfully used in de novo protein design [112, 113].

One major drawback of DLNNs is that they are like black 
boxes and do not interpret the decision-making/classifica-
tion process. Recently, to mitigate the black box assump-
tion, VIP (Variable Importance) charts and SHAP (SHapely 

Additive exPlanations) plots were introduced, which have 
lessened the black-box nature of DLNNs to some extent. 
SHAP is based on game theory and has been mainly adopted 
to deduce the importance of an individual feature and its 
distribution over the target variable [114, 115]. Platforms 
like H2O (https:// www. h2o. ai/), TensorFlow [116], Keras 
(https:// keras. io/) are being implemented to train DLNNs 
with big data. Traditional visualization methods may not be 
optimal for these enormous datasets, whereas newer meth-
ods such as t-sne can be exploited readily [117].

Autoencoder

Autoencoders are unsupervised neural networks that are 
trained to reproduce the input (reconstructed input) at its 
output nodes (Fig. 5). In between the hidden layers, the 
autoencoders transform the input into hierarchical higher-
order representations (Fig. 6). As different attributes/fea-
tures of the data present a different facet, therefore, it is not 
known in prior as to which feature /attribute will result in 
better training for a machine learning algorithm [118]. These 
higher-order representations can be used as features/attrib-
utes in the training of learning algorithms. Autoencoders 
are mainly used for dimensionality reduction and anomaly 
detection [119]. In relation to drug discovery, they have been 
mainly practised for dimensionality reduction of features 
for drug target interaction prediction [120], initialization 
of model parameters [121] and assessing drug similarities 
[122].

Ensemble learning

It is also possible to apply several different classifiers 
together for constructing the final classification and regres-
sion tasks. The ensemble learning approach [123] utilizes 
many different base classifiers in the initial phase and their 
decision fusion in the final stage. This provides a critical 
advantage as each base classifier’s deficiency can be possibly 
compensated by other different base classifiers. Stacking, 
StackingC, and Voted ensemble classifiers are most com-
monly used to construct ensemble classification systems 
[124]. In stacking, the first step involves training different 
base classifiers, and the second step consists of combining 

Fig. 5  Representation of an autoencoder. The green circles represent 
the hidden layer

Fig. 6  A deep autoencoder with hidden layers. The hierarchical repre-
sentations from the hidden layers can be used as features in the train-
ing of learning algorithms

Fig. 7  Schematic representation 
of stacking ensemble approach

https://www.h2o.ai/
https://keras.io/
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the outputs of the base classifiers using a metaclassifier 
(Fig. 7). Voted ensemble classifiers can be constructed by 
using the more popular majority voting scheme where the 
class is predicted based on the votes by different base clas-
sifiers. It can also be implemented using the average vote 
rule, maximum and minimum probability rule, and product 
probability rule [125]. The concept of ensemble learning 
has also been implemented for regression problems where 
instead of a discreet class, a real numbered value (target 
variable) is being predicted [126]. Two prominent ensemble 
learning algorithms are Bagging and AdaBoost employed 
for QSAR modelling.

Deep belief networks

Deep belief networks (DBN) are generative graphical deep 
learning networks [13] that consist of restricted Boltzmann 
machines or autoencoders and are characterized by the 
absence of connections between units present in the same 
layer. They can be employed to train both in a supervised 
and unsupervised manner [127]. They have found definitive 
applications in virtual screening [128], multilabel classifica-
tion of multi-target drugs [129] and in the classification of 
small molecules into drugs and non-drugs [130].

Performance evaluation metrics

The machine learning algorithms have to be assessed criti-
cally for their performance. The performance evaluation 
metrics such as accuracy, sensitivity, specificity, G-means 
are commonly used, which are calculated from the various 
quadrants of a confusion matrix (TP: true positives, TN: true 
negatives, FP: false positives, FN: false negatives) [131]. 
The evaluation of regression models is mainly assessed by 
determining the mean absolute error, mean squared error, 
and root-mean-squared error. The various evaluation param-
eters for measuring the performance of machine learning 
algorithms include:

Accuracy: This is the total number of all correct predic-
tions out of the total number of samples as shown in Eq. (3).

Sensitivity:  It is the percentage of the correctly predicted 
positive class represented by Eq. (4).

Specificity: It is the percentage of the correctly predicted 
negative class (Eq. (5)).

(3)Accuracy =
TP + TN

TP + TN + FP + FN

(4)Sensitivity =
TP

TP + FN

G-means: It is a very useful metric to gauge the machine 
learning model’s performance in class imbalance scenarios, 
as shown in Eq. (6).

F-score: It is also known as the  F1 score and is defined 
as the harmonic mean of precision and recall, as given in 
Eq. (7).

Cohen’s Kappa (K): It is a quantitative measure of the 
reliability of two classifiers that classify the same thing and 
quantify the agreement between the classification outcomes 
(Eq. (8)). A score of 0 means there is an agreement due to 
chance alone, a score of 1 means complete agreement and 
a score below 0 means less agreement than expected due to 
chance alone

where P0: observed agreement; Pe: the expected probability 
of chance agreement.

Mean absolute error (MAE): It is defined as the abso-
lute difference between the actual target value and the value 
predicted by the trained model. It is represented as Eq. (9).

where n: number of samples; Y: actual target value; 
∧

Y  : pre-
dicted target value.

Mean squared error (MSE): It is defined as the average of 
the squared differences between the actual target values and 
the predicted target values (Eq. (10)).

where n: number of samples; Y: actual target value; 
∧

Y  : pre-
dicted target value.

Root-mean-squared error (RMSE): It is defined as the 
square root of the average of the squared differences between 
the actual target values and the predicted target values. 
RMSE is used in cases where large errors are to be penal-
ized as represented by Eq. (11).

where n: number of samples; Y: actual target value; 
∧

Y  : pre-
dicted target value.

(5)Specificity =
TN

TN + FP

(6)g-means =
√
Sensitivty × Specificity

(7)F score = 2 ×
Precision × Recall

Precision + Recall

(8)K =
Po − Pe

1 − Pe

(9)MAE =
1

n

∑
Y −

∧

Y

(10)MSE =
1

n

∑
(Y −

∧

Y)
2

(11)RMSE =

√
1

n

∑
(Y −

∧

Y)2
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Applications in drug discovery

Computer resources are essential for effective AI execu-
tion. Thus, the rise of high-performance computing clus-
ters, development in graphics processing unit (GPU) power, 
cloud-based sources and accumulation of massive chemical 
informatics data have further augmented the evolution of 
artificial intelligence (AI) technology [132]. This technology 
has turned the drug discovery paradigm uphill and com-
pletely transformed the pharmaceutical space work culture. 
AI capitalizes on the predictive hypothesis from the avail-
able large data sets compared to the traditional trial and 
error approach for drug discovery [1]. Currently, R&D sec-
tors of renowned pharmaceutical companies such as Pfizer, 
GlaxoSmithKline, Novartis, Merck, Sanofi, Genentech and 
Takeda are adopting machine learning and artificial intel-
ligence to manage the enormous generated data to deliver 
cost-effective solutions. It is proposed that the market of 
AI-based drug discovery will reach $1.43bn dollars in 2024, 
with an annual enhancement of 40.8%. The increase in the 
number of cross-industry collaborations and partnerships to 
control the escalating drug discovery costs are major factors 
responsible for the rise of the AI market in drug discovery 
and development [24, 133].

The drug discovery approach encompasses various steps 
from target identification to the clinical phase. The recent 
breakthrough in AI technology and its incorporation has 
benefitted the various phases of drug discovery and the phar-
maceutical industry. This technology provides innovative 
solutions in all aspects of the multifaceted drug discovery 
process such as, in the identification of drug targets, screen-
ing of lead compounds from data libraries, drug repurposing, 
predicting the toxicity of compounds, predicting bioactivity 

of compounds, de novo design and in automation of com-
pound synthesis [134–136]. The different areas where AI has 
significantly contributed to the various stages of drug design 
are shown in Fig. 8.

In structure-based drug discovery, a target is essential for 
the successful design of a drug molecule. Homology model-
ling and de novo protein design are the traditional methods 
for structure modelling. The emergence of AI technology has 
contributed enormously in predicting the 3D structure of the 
protein as well as in determining the effect of a compound 
on the designed target. Recurrent neural network (RNN) 
and deep neural network algorithms are widely exploited in 
target modelling studies. Alpha fold, an AI tool that relies 
on DNN, is widely used to predict the 3D structure from its 
primary sequence [137]. The feature extraction potential of 
deep learning makes it a promising method to predict the 
secondary structure, backbone torsional angle and residue 
contacts in protein. Thus, protein folding study can be deter-
mined from its sequences with the help of AI methods [138, 
139]. DN-fold is another deep learning network method 
widely used for protein folding and can efficiently predict 
the structural fold of the protein [140]. With the growth of 
protein sequence data, AI methods also significantly contrib-
ute in predicting the protein–protein interaction studies by 
using the DNN called DeepPPI, which outperforms (predic-
tion accuracy 80.82%) the traditional ML-based approach 
(prediction accuracy 65.80%), as the latter approach is faced 
with the problem of manual feature extraction [141].

Apart from protein modelling, AI has a role in drug 
screening, where it reduces the time to identify a drug-like 
compound. ML algorithms such as nearest neighbour classi-
fiers, RF, extreme learning machines, SVMs, and DNNs are 
used for the drug molecule’s virtual screening and synthetic 
feasibility. ML-based drug screening has been success-
fully applied to identify drug-like molecules against vari-
ous diseases such as cancer and neurogenerative disorders 
[142–144]. The incorporation of AI has opened up newer 
avenues and transformed the drug discovery process. AI 
and ML implementation has guided the exploration of low 
molecular weight compounds for their therapeutic potential. 
Zhavoronkov et al. performed a deep learning analysis to 
discover novel inhibitors of an enzyme, DDR1 kinase [145]. 
McCloskey et al. employed ML models like Graph CNN and 
RF to identify novel small drug-like molecules against three 
different proteins [146]. Small molecules were predicted 
against rheumatoid arthritis using an integrated approach 
of ML and DL [147]. Another study performed using an 
AI-based method identified the hepatotoxic ingredient from 
Chinese traditional medicine [148]. Predictive models have 
been developed for screening liver toxicity induced due to 
drugs using ML algorithms [110]. This technology has con-
tributed to the current pandemic scenario to recognize drug-
like molecules against the different SARS-CoV-2 targets. 

Fig. 8  Role of AI technology in different phases of drug discovery
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Numerous studies have been performed to identify potent 
lead molecules against the novel coronavirus using tradi-
tional medicine. Xu et al. used ML and molecular modelling 
to identify the inhibitors against 3CL proteinase [149]. The 
deep learning approach has also assisted in the identifica-
tion of potential drug targets for SARS-CoV-2 [150]. Studies 
have also encompassed drug repurposing approaches against 
targets of novel coronavirus using AI methods [151, 152]. 
DL-based platform DeepDTA has been deployed on mar-
keted antiviral drugs to predict possible therapeutic agents 
against COVID-19 [153].

Pharmaceutical industries, namely Bayer, Roche, and 
Pfizer, have collaborated with the IT companies to develop 
an AI-enabled platform for therapeutics discovery in areas 
such as immune-oncology and cardiovascular diseases [154]. 
Apart from drug screening, AI has considerably improved 
the scoring functions of docking methods to evaluate drug 
molecule binding affinity towards the target. ML-based 
approaches such as RF and SVM aided the development 
of scoring functions by effectively extracting the geomet-
ric, chemical and physical force field features. Due to the 
advancement of deep learning methods in image processing, 
CNN has been incorporated successfully to extract features 
from the protein–ligand image and predict protein–ligand 
binding affinity [155, 156]. DeepVS, a deep learning-based 
software used for molecular docking studies, is extensively 
employed over traditional docking programmes based on its 
scoring functions [32].

After identifying the hit or lead molecules in the drug 
discovery pipeline, a series of tests and evaluation studies 
are executed to assess the physicochemical and toxicity 
properties of the candidate drug molecule. Thus, early 
identification and weaning of drug candidates with poor 
physical and chemical properties reduce the failure rate 
during the drug discovery process [157]. The AI-based 
methods aid the execution of this process in a time-effi-
cient manner from a large dataset to effectively predict 
the physicochemical properties of the compounds [158, 
159]. Both ML and deep learning-based algorithms are 
employed in this process. Various tools based on CNN, 
deep neural network, RF are available, namely Targe-
Tox [160], DeepTox [110], DeepNeuralnetQSAR [161], 
eToxPred [162], DeepDTA [163], GraphDTA [164], and 
DeepAffinity [165], which can afford the prediction of the 
toxicity and physicochemical properties of the compounds 
from the large compound libraries.

AI-based methods are comparatively more effective 
and widely used nowadays in de novo drug design and 
compound synthesis automation [166]. Established auto-
mated techniques such as solid phase are currently used 
to synthesize several compounds, including peptides and 
oligonucleotides. This method suffered from the lack of 
standardized digital automation to control the chemical 

reaction due to the absence of a suitable universal pro-
gramming language. Thus, with the advancement of AI 
methodology, the deep learning approach has been incor-
porated to generate new chemical entities with its powerful 
learning capabilities. Deep neural network (DNN), rein-
forcement learning (RL), variational autoencoder (VAE) 
and multilayer perceptron (MLP) are currently adopted for 
de novo drug design and automation process [167, 168]. 
Chemputer is a recently developed platform that gives a 
detailed recipe for molecule synthesis and is exercised 
in compound synthesis automation. Three pharmaceuti-
cal compounds, diphenhydramine hydrochloride, rufina-
mide, and sildenafil, have been successfully automated 
through this method [169, 170]. The purity and yield of 
the synthesized compounds were comparable with or bet-
ter than the manual synthesis. Thus, AI has moved forth in 
the pharmaceutical industry to automate and up scale the 
bench chemistry with an edge over the safety, efficacy and 
accessibility of the identified complex molecules.

AI has also contributed immensely to the various steps 
involved in clinical trial research. It can be deployed for 
remote surveillance to access real-time data with increased 
efficacy. AI can assist in decision-making for patient 
recruitment from a defined cohort, replanning patient 
treatment regime through patient response monitoring 
to a drug, determining patient dropout rate and the final 
efficacy of the drug [171]. BioXcel Therapeutics (https:// 
www. bioxc elthe rapeu tics. com/) have successfully identi-
fied BXCL701, a candidate molecule using AI technology 
that is effective against schizophrenia and bipolar disorder. 
BXCL701 is also currently in different phases of clinical 
trials against pancreatic cancer, for which it has obtained 
FDA approval [172]. Thus, conventional drug discov-
ery concepts combined with advanced computational 
approaches provide an excellent platform for research and 
development to enhance the drug discovery and develop-
ment process.

Available AI computational tools for drug 
design

The power of computer software in the area of drug design 
is evident from the initial stages of drug discovery. The 
advancement in software and its availability opens new 
opportunities for their application in research and learning 
processes. Open-source software has gained popularity due 
to its easy availability and accessibility. Many researchers 
also share their programmes on Github and other platforms 
to accelerate and permit widespread use of the drug dis-
covery process through these AI resource (Table 3). Sev-
eral open-source deep learning frameworks are also avail-
able for users, such as TensorFlow, Pytorch, Keras, scikit 

https://www.bioxceltherapeutics.com/
https://www.bioxceltherapeutics.com/
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learn, MXNet, Gluon, Swift, and Chainer ONNX. These 
frameworks require high-performance computing resources 
across various platforms, including CPUs, GPUs, and ten-
sor processing units (TPUs) [173]. The inbuilt libraries are 
based on the deep learning framework and are applicable in 
multiple areas of science and technology, including health 
care. TensorFlow, Pytorch, Keras, and Scikit-learn based 
on python-based libraries are widely used in drug discov-
ery where large datasets are present. TensorFlow (TF) is a 
framework from Google that can be utilized to develop mod-
els to predict the molecular activity of the compound dataset 
using the deep learning approach. Keras is an advancement 

over TensorFlow and is user-friendly and easy to debug. 
Pytorch is also an open-source project used to define and 
train models to gain insight into the complex link between 
the drugs and accelerate the drug discovery process [174]. 
Scikit-learn presents an open-source, user-friendly platform 
for classification, regression, and dimensionality reduction 
purposes. Some softwares are also available such as Weka, 
which is extensively utilized for machine learning-based 
applications in drug discovery, classification and clustering 
purposes.

Apart from the freely available resources, some com-
panies, namely, Janssen, AstraZeneca, Novartis, Sanofi, 

Table 3  AI computational tools for drug design

S. 
no.

Tools Algorithm used Url References

1 AlphaFold Predicts tertiary structure of a protein using 
deep neural network

https:// deepm ind. com/ blog/ alpha fold [175]

2 Chemputer Give detailed recipe for compound synthesis https:// zenodo. org/ record/ 14817 31 [170]
3 Conv_qsar_fast Predict molecular properties based CNN method https:// github. com/ conno rcoley/ conv_ qsar_ fast [176]
4 Chemical VAE Automated chemical design using variational 

autoencoder (VAE)
https:// github. com/ aspuru- guzik- group/ chemi 

cal_ vae
[177]

5 DeepChem An open-source Python library uses a deep 
learning algorithm for compound identifica-
tion

https:// github. com/ deepc hem/ deepc hem [23]

6 DeepTox Predict the toxicity of chemical compounds 
using deep learning algorithm

www. bioinf. jku. at/ resea rch/ DeepT ox [110]

7 DeepNeuralNetQSAR Predict molecular activity using multilevel deep 
neural network (DNN)

https:// github. com/ Merck/ DeepN eural Net- 
QSAR

[161]

8 DeltaVina Predict small molecule binding affinity with 
drug with a combination of random forest 
(RF) and AutoDock scoring function

https:// github. com/ cheng wang88/ delta vina [178]

9 Hit Dexter Predict frequent hitter by using machine learn-
ing (ML) algorithm

http:// hitde xter2. zbh. uni- hambu rg. de [179]

10 InnerOuterRNN Predicts the physical, chemical and biological 
properties using inner- and outer recursive 
neural networks

https:// github. com/ Chemo infor matics/ Inner 
Outer RNN

[180]

11 JunctionTree VAE De novo molecule design using junction tree 
variational autoencoder (VAE)

https:// github. com/ wengo ng- jin/ icml18- jtnn [181]

12 Neural graph fingerprint Predict the property of novel compounds using 
CNN

https:// github. com/ HIPS/ neural- finge rprint [182]

13 NNScore Predict the affinity of protein–ligand interaction 
using neural network-based scoring function

http:// www. nbcr. net/ softw are/ nnsco re [183]

14 ORGANIC De novo design of organic molecule and poly-
mer using ML algorithm

https:// github. com/ aspuru- guzik- group/ ORGAN 
IC

[184]

15 Open Drug Discovery 
Toolkit (ODDT’s)

Chemoinformatics pipeline using random forest 
score (RF)-Score and NNScore

https:// github. com/ oddt/ oddt [185]

16 PotentialNet Predict binding affinity using graph convolu-
tional neural network (CNN)

https:// pubs. acs. org/ doi/ full/ 10. 1021/ acsce ntsci. 
8b005 07

[186]

17 PPB2 Predict the target of query molecule using near-
est neighbour and machine learning algorithm

https:// ppb2. gdb. tools/ [187]

18 QML Python toolkit for quantum machine learning https:// www. qmlco de. org/ [188]
19 REINVENT De novo design of molecule using RNN (recur-

rent neural network) and RL (reinforcement 
learning)

https:// github. com/ Marcu sOliv ecrona/ REINV 
ENT

[189]

https://deepmind.com/blog/alphafold
https://zenodo.org/record/1481731
https://github.com/connorcoley/conv_qsar_fast
https://github.com/aspuru-guzik-group/chemical_vae
https://github.com/aspuru-guzik-group/chemical_vae
https://github.com/deepchem/deepchem
http://www.bioinf.jku.at/research/DeepTox
https://github.com/Merck/DeepNeuralNet-QSAR
https://github.com/Merck/DeepNeuralNet-QSAR
https://github.com/chengwang88/deltavina
http://hitdexter2.zbh.uni-hamburg.de
https://github.com/Chemoinformatics/InnerOuterRNN
https://github.com/Chemoinformatics/InnerOuterRNN
https://github.com/wengong-jin/icml18-jtnn
https://github.com/HIPS/neural-fingerprint
http://www.nbcr.net/software/nnscore
https://github.com/aspuru-guzik-group/ORGANIC
https://github.com/aspuru-guzik-group/ORGANIC
https://github.com/oddt/oddt
https://pubs.acs.org/doi/full/10.1021/acscentsci.8b00507
https://pubs.acs.org/doi/full/10.1021/acscentsci.8b00507
https://ppb2.gdb.tools/
https://www.qmlcode.org/
https://github.com/MarcusOlivecrona/REINVENT
https://github.com/MarcusOlivecrona/REINVENT
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are currently exploring the potential of AI technology in 
the healthcare sector. They have collaborated with the 
software and data science companies namely IBM Wat-
son, Microsoft, PointR data, Numerate, BenevolentAI, 
Atomwise which provide them support and a cloud-based/
server to implement AI according to their requirement for 
research purposes in drug discovery against various dis-
eases (Table 4).

Challenges and future perspectives

The advent of faster and lower-cost technology coupled 
with development in computing power has accelerated the 
pace for data generation leading to several enormous com-
pound data sources. This mandated implementing numer-
ous artificial intelligence and machine learning approaches 
at various drug discovery stages to mine pharmaceutical 
knowledge from large-scale ‘big’ data. The knowledge 
gleaned from applying these AI algorithms in big data 
has provided a stimulus to design and discover novel 
molecules and their further optimization. This technique 
has helped push forward the drug discovery process by 
automating and customizing the process and affirming big 

Table 4  Collaborations of AI organization with pharmaceutical companies

S. 
no.

Company Role of AI Collaboration with 
the pharmaceutical 
company

Platform developed/Clinical trial candidates

1 Numerate A platform for AI-based drug design 
against oncology and gastroenterology

Takeda Drug candidate S48168 in Phase 1 clinical 
trial against Ryanodine receptor 2

2 Numerate A platform for AI-based drug design 
against oncology and gastroenterology

Servier Drug development for oncology, gastro-
enterology and central nervous system 
disorders

3 Atomwise A platform for AI-based structure model-
ling

Lilly Drug candidate BBT-401 in Phase 2 clinical 
trial

4 Atomwise A platform for AI-based structure model-
ling

Bridge Biotherapeutics Expansion of Pellino Inhibitor Pipeline; 
BBT-401 in Phase-2a clinical trial

5 Benevolent AI AI-enabled Judgement Augmented Cogni-
tion System (JACS) to develop novel 
clinical candidate against neurodegen-
erative diseases

Janssen New range of drug molecules to be devel-
oped through this collaboration

6 Benevolent AI AI enable platforms to develop novel 
clinical candidate against chronic kidney 
diseases

AstraZeneca Drug candidate Placebo in Phase 2b clini-
cal trial as a drug candidate for chronic 
kidney disease

7 Exscientia A platform for AI-based drug discovery 
and lead optimization

Sanofi Research in obsessive–compulsive disorder, 
Drug candidate DSP-1181 in Phase I clini-
cal trial. Developed Centaur Chemist™ 
platform for AI-based drug discovery

8 IBM Watson Health Provide a platform for clinical and health-
related data research

Pfizer Fast-tracking drug discovery research in 
immuno-oncology

9 IBM Watson Health Provide a platform for clinical and health-
related data research

Novartis Real-time monitoring of patients to improve 
breast cancer patient outcome

10 Microsoft A platform for image processing and cell 
and gene-based therapeutics

Novartis Establishing an AI Innovation lab to trans-
form the drug discovery process and its 
commercialization

11 Owkin Provide a platform for a clinical trial based 
on ML technology

Roche Developed Owkin’s Studio platform using 
AI technology

12 Sensyne health A platform for clinical AI technology Bayer Developed Sensyne Health’s propri-
etary clinical AI technology platform

13 XtalPi A platform for Target identification 
and validation based on QM and ML 
algorithm

Pfizer Prediction and Optimization of crystalline 
forms of drug candidates for early drug 
screening

14 BioXcel therapeutics A platform for the drug discovery applica-
tion using AI technology

Pfizer Drug candidate BXCL501-in Phase 3 
clinical trial Drug candidate BXCL701-in 
Phase 2 clinical trial
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data’s significance. The impact of artificial intelligence is 
gaining steadily in the academic sector and the pharmaceu-
tical companies concomitantly with a surge of startups and 
AI-based R&D companies. Compared to the traditional 
high throughput screening methodology, an AI-based com-
putational pipeline can screen virtual compound libraries 
rapidly to identify preclinical candidates. Besides drug 
screening, AI tools can be witnessed in different stages of 
the drug discovery cycle, such as predicting the physical 
properties, bioactivity, toxicity of the molecules, ADME 
properties, protein structure prediction and patient recruit-
ment and surveillance.

Apart from the varied application of AI-based technol-
ogy, some limitations and challenges still need to be over-
come. The triumph of AI-based technology relies on the 
ease and frequency of data availability to the users. The 
multiple ‘V’ features of big data such as volume, velocity, 
variety, and volatility require improved data curation and 
management and user-friendly web portals. Thus, reliable 
and high-quality curated data is essential to glean insightful 
information. Though AI technology is slowly revolution-
izing the drug discovery process through accelerated drug 
design methods and lower failure rates, the lack of adequate 
curated data and data accessibility can prove to be a hurdle. 
Other rate limitation steps include difficulty in the constant 
and expeditious updation of the available software as per the 
format of generated data and recently developed algorithm. 
Additionally, skilled personnel for the full-fledged operation 
of AI-based applications in drug discovery are not readily 
available. Despite the advances and popularity of machine 
learning approaches, some aspects still remains to be exten-
sively explored, such as predicting conformational changes 
in protein and the binding affinity between the drug molecule 
and the target. Since deep learning requires massive data, 
this technique is limited only by the data extent and quality. 
Thus, rapid transfer of learning technology development can 
be a better approach to solving this problem. Although these 
advanced approaches displayed high prediction accuracy 
and performance, deep learning still works as a “black box” 
approach and its mechanism to solve the problem remains 
unclear. Moreover, though AI technology and gigantic data 
sources have contributed enormously to speeding up the 
drug design pipeline, experiments still need to be conducted 
before the drugs can be approved. Regardless of the limita-
tions, AI has changed the landscape of drug discovery, and 
with its surging demand, it will soon become an essential, 
integral tool in the search for novel drugs and their targets 
and the pharmaceutical sector in the not too distant future.
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