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Powerline interference (PLI) is a major source of interference in the acquisition of

electroencephalogram (EEG) signal. Digital notch filters (DNFs) have been widely used

to remove the PLI such that actual features, which are weak in energy and strongly

connected to brain states, can be extracted explicitly. However, DNFs are mathematically

implemented via discrete Fourier analysis, the problem of overlapping between spectral

counterparts of PLI and those of EEG features is inevitable. In spite of their effectiveness,

DNFs usually cause distortions on the extracted EEG features, which may lead to

incorrect diagnostic results. To address this problem, we investigate an adaptive

sparse detector for reducing PLI. This novel approach is proposed based on sparse

representation inspired by self-adaptive machine learning. In the coding phase, an

overcomplete dictionary, which consists of redundant harmonic waves with equally

spaced frequencies, is employed to represent the corrupted EEG signal. A strategy

based on the split augmented Lagrangian shrinkage algorithm is employed to optimize

the associated representation coefficients. It is verified that spectral components related

to PLI are compressed into a narrow area in the frequency domain, thus reducing

overlapping with features of interest. In the decoding phase, eliminating of coefficients

within the narrow band area can remove the PLI from the reconstructed signal. The

sparsity of the signal in the dictionary domain is determined by the redundancy factor.

A selection criteria of the redundancy factor is suggested via numerical simulations.

Experiments have shown the proposed approach can ensure less distortions on actual

EEG features.

Keywords: EEG, spare representation, fourier transform, powerline interference, basis pursuit

INTRODUCTION

Electroencephalography (EEG) aims at measuring potentials that reflect the electrical activity of
the human brain (1). It has been recognized as a powerful tool in psychophysiology due to its
high temporal resolution and sensitivity to index different functional brain states (2). However,
because of imperfect measurement conditions, noises are likely to be incorporated in the records
of EEG. For instance, EEG signals in actual measurements can often be exposed to strong
powerline interferences (PLIs) at 50 or 60Hz, which is originated from AC power (3). In laboratory
environments, good shielding measures, such as shielded rooms, can be helpful to reduce the
influence of PLI. But shielding measures are usually impractical for healthcare practices of EEG
monitoring via mobile instrument such as wearable devices (4, 5).
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In practical applications, solutions to remove the PLI can
be roughly categorized into two types, the hardware ways and
the software ways (6). The hardware ways are referred to
active electrodes with integrated analog filters, but a significant
residual interference still remains. In contrast, the software
based solutions are more flexible and they can be combined
with hardware based techniques. To achieve a more robust
performance of the PLI removal, novel approaches based on
digital signal processing techniques are more popular and have
been extensively studied (7–9). The digital notch filter (DNF)
at the powerline frequency, which is designed based on the
theory of traditional Fourier analysis, has been widely employed
to reduce PLI in biomedical measurements (10). In spite of its
effectiveness, side effects of the DNF are also reported in related
researches. Firstly, the stop band of the DNF is difficult to be
selected. Although the main frequency of PLI stays at 50 or 60Hz
nominally, there is always a variation of±2Hz in the actual power
system. Secondly, the sampling parameters also affect the filtering
results. A phenomenon of energy leakage is likely to be produced
by sinusoidal waves whose sampling does not satisfy the full
period sampling condition (11). Thirdly, the actual EEG features
cover a comparatively broad range in the frequency domain.
Thus, overlapping between the spectral counterparts of PLI and
those of the EEG features is inevitable. As a result, DNF is not a
perfect tool for removing PLI.

Multiresolution analysis (MRA) is a powerful tool to
characterize non-stationary and transient components. The past
three decades have witnessed the rapid development of MRA.
As a concrete example of MRA, discrete wavelet transform
(DWT) is implemented using a scaling function and a wavelet
function (12). DWT has been widely utilized to separate signal
components in many scientific researches. On the other hand,
flexible DWTs, based on parameter optimization schemes, are
also employed to extract transient features (13). In the field
of biomedical signal processing, wavelet transform can reveal
weak features related to the transient nature of biomedical
measurements which are not so obvious by using spectrum
analysis. In the literature, it has been reported that DWT can be
used as an effective tool in dealing noises such as PLI and baseline
wandering from a corrupted biomedical measurement (14).
DWT can be also combined with artificial intelligence methods
(15, 16), such as deep learning and support vector machine, to
realize signal classification applications. However, in suppressing
the PLI components, which are more similar to stationary
contents in waveform, DWT may be not perfect. Recently,
compressed sensing and sparse representation, which still rely on
the idea of signal representation, emerge as enhancements to the
conventional DWT.

In this paper, to achieve a better PLI suppressing performance,
we proposed a novel adaptive detector (ASD). It can be regarded
as an improvement to fast Fourier transform, which is a classical
spectral analysis tool. Within the proposed method, a redundant
Fourier dictionary, developed from the orthogonal Fourier
basis, is employed as an over-complete dictionary. The linear
combination coefficients with respect to the redundant dictionary
are optimized to achieve a sparse representation. Therefore, a
sinusoidal wave can be expressed as a combination of a very

limited number of sinusoidal atoms. Due to the narrow band
property of PLI in the spare representation, they can be more
easily isolated from other contents. The performance of the
proposed method is verified by numerical simulations and a case
study of actual EEGs.

MATERIALS AND METHODS

Signal Modeling and Notations
For the convenience of discussion, we use the following notations
for mathematical argument. Let {x(n)|, n ∈ Z

+⋃{0}} be a
corrupted EEG signal containing both the actual brain potential
waveform s(n) and the PLI component p(n). That is to say,
x(n) = s(n) + p(n). Let the sampling length and the sampling
frequency of x(n) be denoted as N and fs. The estimated signal
after PLI cancellation using some specific algorithm is expressed
as s̃(n). In this article, p(n) is modeled as a simple harmonic wave
characterized by the harmonic parameters of amplitude (Amppli),
frequency (fpli), and initial phase (ϕpli).

p(n) = Amppli · cos(2π fpli(n− 1)1t)+ ϕpli) (1)

where the time interval1t = 1/fpli. To remove PLI, an important
task lies in accurate estimation of these harmonic parameters
such that a compensation signal can be reconstructed. The actual
EEG waveform s(n) is by nature non-stationary and its spectrum
covers a comparatively wide range of area in the spectral domain,
which is essentially different from that of p(n).

In optimization theory, the norms of x(n) are indispensable.
Two types of commonly used norms are the ℓ1 and ℓ2 norms.
They are computed using the following formulae.

ℓ1 norm : ||x||1 : =
N−1
∑

i=0

∣

∣x(i)
∣

∣

ℓ2 norm : ||x||2 : =
(

N−1
∑

i=0

∣

∣x(i)
∣

∣

2

)1/2

(2)

The ℓ1 is essential to ensure sparse representation using
redundant dictionaries. The ℓ2 is strongly connected to
least squares approximation, and it is also known as the
Euclidean distance.

Notch Filters Based on Fourier Transform
Theory
Fast Fourier transform (FFT) is a fundamental tool for discrete
signal analysis. It is an orthogonal decomposition of input signal
x(n) of length N via a orthonormal basis ΦFourier .

Φ
Fourier

= 1√
N

[φ0 φ1 . . . φN−1] (3)

The k-th sinusoidal atom in the Fourier dictionary can be
defined as

φk =
(

ej·
2π
N ·k·0, ej·

2π
N ·k·1, ej·

2π
N ·k·2, . . . , ej·

2π
N ·k·(N−1)

)T
(4)
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where j =
√
−1 is defined as the imaginary number and T means

the transpose operation in matrix algebra. That is to say, the
frequency of the sinusoidal atom φk is 2π(k − 1)/N. A uniform
step of 2π/N is assumed for angular frequencies of two adjacent
atoms in the Fourier dictionary. The transform coefficient is
computed using the following formula

ck = φH
k x, (5)

where H means conjugate transpose in complex analysis. The
representation coefficients of a input signal x with respect to the
dictionary ΦFourier is expressed using the matrix operation of
ΦH

Fourier x. By using the above transformation, the input signal
is expressed as the sum of a few sinusoidal waves with different
frequencies, which is expressed as

x =
N−1
∑

k=0

ckφk. (6)

The above Equation is also named as the inverse fast Fourier
transform (IFFT). For a sinusoidal wave whose sampling
parameters satisfy the full period sampling condition, it is
mapped to a single spectral line (11). Otherwise the phenomenon
of energy leakage occurs and causes dense representation of the
sinusoidal wave in the frequency domain.

The method of digital notch filter is theoretically based on
the Fourier transform theory. Either finite impulse response
(FIR) filters or infinite impulse response (IIR) filters can
be designed for conducting PLI removal applications.
Some mature development toolkit for designing notch
filters can be found in commercial software of numerical
computation. By specifying a few parameters, notch filters can
be designed conveniently. Despite the effectiveness reported
in the literature, these filters also suffer a few drawbacks
and may cause distortions on the extracted EEG features.
Owing to frequency variations existed in the PLI, it is not
possible to design a uniform DNF with pre-determined
parameters. Hence, during the implementation of DNFs,
strategies allowing self-adaptivity of parameters should
be considered.

Redundant Fourier Dictionary for Spectral
Analysis
In the FFT spectrum, the spectral lines are sampled at the
frequency of k · fs/N, in which k = 0, 1, . . . ,N − 1. The interval
between adjacent spectral lines are uniform. Just as the digital
signal can be regarded as a sampling of the analog signal, the FFT
spectrum can be also interpreted as a sampling of the continuous
Fourier spectrum. For an arbitrary frequency of fa, the associated
Fourier coefficient can be calculated using the following formula

X(fa) =
N−1
∑

k=0

x(k)e−j·2π fak1t , (7)

in which 1t = 1/fs. Besides the FFT sampling grids mentioned
above, additional Fourier coefficients can be computed in
order to allow insightful investigations. Because redundancy
is introduced in signal representation, the relevant dictionary
is called as redundant Fourier Dictionary (RFD). A few
efficient implementation using RFD have been developed,
such as Goertzel algorithm (17), chirp-Z transform (18) and
zero padded FFT (19). Among these implementations, the
combination of zero padding and FFT algorithm is usually
adopted for computing redundant Fourier spectra, in which
the RFD is composed of uniformly spaced spectral bins.
Although redundancy is beneficial in revealing information in
the frequency domain, the corresponding representations are
likely to be dense. Therefore, post-processing steps are usually
required to estimate harmonic parameters of PLI.

In this paper, in order to sparsely represent a signal, a tight
dictionary composed of redundant Fourier atoms is employed.
For a N-point digital signal, a tight Fourier dictionary A
containing K atoms (K > N) is defined as

A =
(

φ̃0 φ̃1 . . . φ̃K−1

)

, (8)

in which the angular frequency associated with the sinusoidal
atom φ̃k is 2πk/N. It can be regarded as a representation matrix
of mapping: CN 7→ C

K . Different from φk, the definition of φ̃k is
given as

φk =
(

ej·
2π
K ·k·0, ej·

2π
K ·k·1, ej·

2π
N ·k·2, . . . , ej·

2π
K ·k·(N−1)

)T
. (9)

The vectors x, φk, φ̃k are of the same dimension. The redundancy
factor of the dictionary of A can be defined as Q = K/N.
The forward transform of x with respect to A can be written
as AHx. However, according to the Fourier theory, this process
is somewhat time consuming. By using the algorithm of
FFT, a fast implementation can be shown as blow. The first
step is to enlarge the length of x to the dimension of K
by zero-padding,

x
Zero Padding−−−−−−−→

[

x
01×(N−k)

]

. (10)

The second step is to perform FFT on the augmented series.
However, it can be seen that this forward transform is generally
a dense representation. Therefore, a sparse coding algorithm
is required.

Sparse Fourier Spectrum Analysis via
SALSA
In optimization theory, a constraint optimization problem can be
summarized as

argmin
z

E(z) such that Cz − b = 0, (11)
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where E (·) is the cost function. The associated augmented
Lagrangian is defined as

LA(z, λ,µ) = E(z) + λT(cz − d)+ µ||cz − b||22. (12)

where the vector-valued variable λ is the Lagrange multiplier.
Based on these methodologies, we can find numerical solutions
for sparse representation problems.

Sparse representation (SR) is a novel idea of signal expansion
by using redundant dictionaries, which can be expressed as

y = Ax. (13)

In the above equality, the matrix A represents a dictionary of
the dimension N × K, in which K ≫ N. The variable x is the
linear combination coefficient vector of the dimensionK×1. The
theory of SR requires that most of the entries in x are zero. The
solution to the above optimization problem can by numerically
implemented via either matching pursuit (MP) or basis pursuit
(BP). In this article, we present the idea of sparse Fourier
spectrum based on BP algorithms. In engineering applications,
in order to handle the noises in the measurement, an improved
problem of Pε

1 can be formulated as

min ||x||1such that ||Ax− y||2 6 ε, (14)

where ε stands for the admissible error. That is to say, the
ℓ1 norm is utilized as the measure of the sparsity. In the
literature, various techniques have been developed to solve the
above Pε

1 problem. In this paper, the strategy of split augmented
Lagrangian shrinkage algorithm (SALSA) is employed. The
strategy of SALSA (20) is celebrated due to its flexibility and fast
convergence. By introducing the ideals of variable splitting and
augmented Lagrangian (21) into this algorithm, it can address
the constraint optimization problem with robust performance.
As such, let the observed signal be y and the dictionary matrix
be A, the Pε

1 problem to obtain the optimized solution x̂ can be
written as

x̂ = argmin
x

1

2
||y− Ax||22 + ||λ ⊙ x||1, (15)

where the vector-valued variable λ is the Lagrange multiplier and
the operator ⊙ means element-wise product of two vectors of
equal size. The i-th element of λ ⊙ x is defined as

[λ ⊙ x]i = λixi. (16)

Applying the strategy of variable splitting, we can have the
following problem.

x̂ = argmin
x,u

1

2
||y− Ax||22 + ||λ ⊙ u||1 such that u− x = 0.

(17)

FIGURE 1 | Flow chart of the proposed ASD algorithm.

According to the augmented Lagrangian theory, the problem in
Equation (17) can be prepared in a matrix form, which is shown
as below.

z1 = x, z2 = u, z =
[

z1
z2

]

,C =
[

I −I
]

, b = 0. (18)

and

E(z) = 1

2
||y− Az1||22 + ||λ ⊙ z2||1 (19)

The Proposed Adaptive Sparse Detector
(ASD) for PLI
It can be inferred form the definition of the redundant
dictionary A that it is a Parserval tight frame because
AHA = pI, where p is a constant. According to the
theory of SALSA, the following algorithm based on iterations
can be employed. The series y is the measured EGG
signal, which is used as the input of the algorithm. The
series x is the linear combination coefficient series. The
variables λ and µ are necessary parameters required by the
algorithm. The procedure of the algorithm is summarized
as below.

Step 1. Initialize the parameters and passenger variables: k = 1
µ > 0, d

Frontiers in Public Health | www.frontiersin.org 4 May 2021 | Volume 9 | Article 669190

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Chen et al. Sparse Method for PLI Removal

FIGURE 2 | (A) Time domain waveform of the simulated signal; (B) FFT spectrum of the simulated signal; (C) zoom-in plot of the FFT spectrum; and (D) linear

combination coefficients of the redundant Fourier dictionary.

Step 2. Repeat the following routine

v = soft

(

x+ d,
λ

µ

)

(20)

d = 1

µ + p
AH(y− Av) (21)

x = d + v (22)

Step 3. k = k+ 1. If k 6 Inter_num, repeat Step 2. Otherwise,
the iteration ends.

In the above procedure, the function soft(·) indicates the soft
threshoding function defined by

soft(x,T)= max (T./x, 0) , (23)

in which the symbol ′ − /′ means division by element and T
is the threshoding value. For the ease of argument, we require
that K, the number of atoms in the redundant dictionary A, to
be multiples of N. The relationship of K and N is expressed as
K = MN, in which M is a positive integer greater than one. The
flowchart of the algorithm is depicted in Figure 1.

RESULTS

Numerical Simulation
In this subsection, numerical simulations are utilized to validate
the performance of the proposed ASD. Following the definition
of PLI in Equation (1), a digital signal is set as

p(t) = cos
(

2π · (50+ 1f ) · t + π

3

)

, (24)

in which the frequency shift 1f=0.15Hz. The number of
samplings and the sampling frequency are set as 1,000 and
1,000Hz respectively. The time domain waveform of the p(t)
is shown in Figure 2A. In the spectral analysis, the frequency
resolution is calculated as.

1f = fs

N
= 1Hz/Spectral Line (25)

Because the sampling of the sinusoidal component does not
meet the full period sampling condition, the energy leakage
phenomenon occurs in the FFT spectrum. Figure 2B shows the
energy of this sinusoidal component spreads across the entire
frequency domain with slow decaying rate.
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FIGURE 3 | (A) The cost function history; (B) sparse Fourier spectrum by the proposed ASD methodology; and (C) zoom-in plot of sparse Fourier spectrum.

A redundant Fourier dictionary with the definition in
Equation (8) is used to represent the signal. The redundancy
factor of the dictionary is set as 10. That is to say, ten thousand
sinusoidal atoms are employed. A direct transform generates the
redundant Fourier spectrum (Figure 2D). Compared with the
waveform in Figure 2C, the space between adjacent spectral lines
is reduced to one-tenth of that in the FFT spectrum. However,
the energy leakage problem remains unchanged, which can be
observed from the envelope of the redundant spectrum.

To sparsely represent the signal, the ASD algorithm is
performed by using the redundant Fourier basis. The iteration
number is set as 100. Let x(k) be the linear combination
coefficients in the k-th iteration, an indicator of loss function can
be defined as

Loss Fun(k) =
∥

∥

∥
λ ⊙ x(k)

∥

∥

∥

1
. (26)

The curve of the cost function is shown in Figure 3A. It can be
seen that the cost function converges quickly. About tem times
of iterations are enough to guarantee an approximate sparse
representation with respect to the dictionary A. The final linear
combination coefficient vector x̂ of the ASD methodology is
shown in Figure 3B. It can be observed that only three spectral
lines are large in amplitude. The associated frequencies of them
are 50, 50.1, 50.2, and 50.3Hz. The amplitudes of the other
spectral lines are very small in value, so they are negligible.

Processing Results of Actual EEG
Measurements
In this subsection, the analyzed datasets are provided by the
Department of Epileptology at University of Bonn (22). The
EEGs were recorded at the sampling frequency of 173.61Hz.
According to the Shannon sampling theorem, the spectral band-
width of the EEG recordings is 0.5–85Hz. Digital filters, with the
passing band of 0.53–40Hz, were utilized as pre-processings of
the EEGs. Figure 4A illustrates a EEG segment collected from
healthy volunteers in an awake state with eyes open. The FFT
spectrum of the signal segment is shown in Figure 4B. Due to
the band pass filtering step, the spectrum components in the
frequency range 40–85Hz are relatively small. However, by visual
inspection, an energy concentration area can be still found near
the power line frequency (Figure 4C).

To remove the PLI, the ASD methodology is performed
on the EEG segment. In order to guarantee the convergence
of the algorithm, two thousand iterations are employed. The
convergence of the loss function can be found in Figure 4G. The
sparse Fourier spectrum is depicted in Figure 4D. The contents
of the signal in the frequency domain are quite complicated.
Many non-stationary components can be detected. Due to the
sparse representation algorithm, the amplitudes of many spectral
lines are almost zero. As such, sinusoidal waves, whose sparse
spectrum consists of a very limited number of spectral lines, can
be effectively isolated from other non-stationary components.

Two spectral lines, whose frequencies are 49.95 and 49.96Hz,
can be used for retrieve the PLI component. Besides, another
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FIGURE 4 | (A) The time domain waveform of the EEG measurement; (B) FFT spectrum in linear scale; (C) FFT spectrum in logarithmic scale; (D) sparse FFT

spectrum by the proposed method; (E) zoom-in plot of the sparse spectrum in the neighbor of 50Hz; (F) zoom-in plot of the sparse spectrum in the neighbor of

76Hz; (G) the cost function history of the iterated algorithm; (H) the synthesized compensation signal; and (I) the denoised signal.

strong sinusoidal wave, whose frequency is ∼76Hz, is also
found in the spectrum. zoom-in plots of two sinusoidal waves
are illustrated in Figures 4E,F. The spectral lines of 49.95 and

49.96Hz are picked out to reconstruct the PLI component, whose
time domain waveform is shown in Figure 4H. By checking
the shape, it is confirmed that the sinusoidal wave is perfectly
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reconstructed. By subtracting the retrieved PLI component from
the EEG segment, the denoised signal is shown in Figure 4I. The
PLI component is relatively weak in energy, and therefore the
denoised signal is very similar to the original EEG segment.

DISCUSSION

According to the above arguments, it can be concluded that the
proposed ASD, which is based on the SALSA, can be utilized as
an effective algorithm to retrieve sinusoidal waves.

In spectral analysis of sinusoidal waves of finite digital
samples, the ASD can achieve sparse representation. For a
sinusoidal wave, the phenomenon of energy leakage occurs if
its sampling does not meet the full period sampling condition.
In such circumstances, the spectral counterpart of a sinusoidal
wave is composed of a main lobe and a few side lobes. The
side lobes caused by energy leakage spread across the entire
frequency domain. For signal analysis with a segmentation
window of the rectangular shape, the side lobes decay very
slowly. Reconstruction error by using the main lobe will cause
a big error. However, by using a redundant Fourier dictionary
containing evenly spaced sinusoidal atoms, it is possible to
alleviate this problem. In the numerical simulation, the simple
harmonic wave can be sparsely represented by four spectral
lines. The amplitudes of two adjacent side lobes are 1.63 × 10−4

and 1.39 × 10−4respectively. The reconstructed signal can be
obtained using the four spectral lines shown in Figure 3C. The
relative error between the reconstruction error and the original
signal is calculated to be 0.2%. While in the EEG recorded from
actual measurements, only two spectral lines are sufficient to
allow a reconstruction of PLI with high accuracy. The amplitudes
of two adjacent side lobes are 3.88 × 10−7 and 3.78 × 10−7

respectively. The side lobes also exist in the ASD, but they very
small in energy. Therefore, the side lobes can be ignored in the
reconstruction process.

As shown in the flow chart (Figure 1), there are many
parameters in the SALSA algorithm. The redundancy factor (Q)
of the employed dictionary and the iteration number can directly
affect the sparse Fourier spectrum. In the numerical simulation,
there are 4 strong spectral lines when Q = 10 and Iter_Num =
100. Keeping the parameter Q unchanged, there can be only 2
strong spectral lines when the iteration number is increased to
1,000. On the other hand, a large value of Q is beneficial in
prompting the sparsity of the resultant spectrum. However, larger
values of Q and Iter_Num requires are more time consuming. To
suppress the PLI component as well as other sinusoidal waves, we
can set the amplitudes of spectral lines as zero relevant to them

and keep other spectral contents unchanged. It is unnecessary to
identify their harmonic parameters of amplitude, frequency and

phase. However, these parameters can be calculated by using FFT
on their reconstruction signals.

Regarding how to determine the number of atoms in the
Fourier dictionary, as the number of atoms increases, it will
be beneficial to the compression of the main lobe width of
the PLI, but it will also affect the efficiency of the whole
algorithm, generally ten times the number of atoms of the
original is enough.

In addition to the method proposed in this paper, the using
of adaptive notch filters for PLI removal has been investigated
by the authors (23). The core of the study is ratio-based spectral
correction which can extract the spectral information of the PLI
components. The difference between the study and ours is that
the preceding method does not change the spectral resolution.
The information of the PLI components is based on the ratio
computation, while the energy leakage of the spectrum faces no
mitigation. Our method reduces the phenomenon of overlapping
by increasing the spectral resolution. And due to the narrow band
property of PLI in the spare representation, they can be more
easily isolated from other contents, making its signal information
extraction efficient and accurate.
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