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Area law of noncritical ground states in 1D
long-range interacting systems
Tomotaka Kuwahara 1,2✉ & Keiji Saito3

The area law for entanglement provides one of the most important connections between

information theory and quantum many-body physics. It is not only related to the universality

of quantum phases, but also to efficient numerical simulations in the ground state. Various

numerical observations have led to a strong belief that the area law is true for every non-

critical phase in short-range interacting systems. However, the area law for long-range

interacting systems is still elusive, as the long-range interaction results in correlation patterns

similar to those in critical phases. Here, we show that for generic non-critical one-dimen-

sional ground states with locally bounded Hamiltonians, the area law robustly holds without

any corrections, even under long-range interactions. Our result guarantees an efficient

description of ground states by the matrix-product state in experimentally relevant long-

range systems, which justifies the density-matrix renormalization algorithm.
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The quantum entanglement plays a crucial role in char-
acterizing the low-temperature physics of quantum many-
body systems in terms of quantum information science.

It is often measured by the quantum entanglement entropy
between two subsystems, and its scaling is deeply related to the
universality of the ground state1,2. When the interactions in
quantum many-body systems are local, the quantum correlation
is typically expected to be short range. This intuition leads to the
conjecture that the entanglement entropy naturally scales as the
boundary area of the subregion. This area-law conjecture is
numerically verified in various quantum many-body systems, and
is expected to be true in all gapped ground states (i.e., in non-
critical phases)3.

In one-dimensional (1D) systems, for an arbitrary decom-
position of the total system, the area law for a ground state is
simply stated as follows (Fig. 1):

SðρLÞ≤ const:; ρL ¼ trRð 0j i 0h jÞ; ð1Þ
where the ground state is denoted as 0j i and S(ρL) is the von
Neumann entropy, namely SðρLÞ ¼ trð�ρLlog ρLÞ. Over the past
dozen years or so, the area-law conjecture has attracted much
attention, as it characterizes the universal structure of many-body
physics in simple and beautiful ways3. However, providing
detailed proof of the area law is still an extremely challenging
problem. So far, the proof of this law is limited to gapped 1D
systems4–7, 1D quantum states with finite correlation lengths8,9,
gapped harmonic lattice systems10,11, tree-graph systems12, and
high-dimensional systems with specific assumptions13–17 (see
ref. 3 for a comprehensive review). The area law is the backbone
of the density-matrix renormalization algorithm18, as it implicitly
assumes the area-law structure of the ground states. The results
pertaining to the 1D area law4,6 rigorously justify the efficient
description of the ground states using the matrix-product state
(MPS), which facilitates the calculation of the ground states by
the classical polynomial-time algorithm7,19. Finally, in the char-
acterization of ground states, complete classification of 1D
quantum phases has been achieved under the MPS ansatz20.

Recent experimental advances have enabled the fine-tuning of
the interactions between particles21–24. These advances push the
long-range interacting systems from the theoretical playground to
the field relevant to practical applications. One of the examples of
controllable 1D long-range interacting spin systems is the fol-
lowing long-range transverse Ising model:

H ¼
X
i < j

J i;j
rαi;j

σxi σ
x
j þ B

X
i

σzi ; ð2Þ

with {σx, σy, σz} as the Pauli matrices, where ri,j is the distance
between the two sites i and j, and the exponent is tunable
from α= 0 to α= 322,24 (also α= 6 by van-der-Waals
interactions25,26). In theoretical studies, new types of quantum
phases induced by long-range interactions have been reported in
the transverse Ising model27,28, the Kitaev chain29,30, the XXZ
model31, the Heisenberg model32,33, as well as other models.

Typically, nontrivial quantum phases are induced by long-range
interactions with power exponents smaller than three (α ≤ 3). For
α > 3, the universality class is the same as that of short-range
interacting systems34,35 (i.e., α=∞). This means that the regime
of α ≤ 3 is essentially important to the discussion of the area law
in long-range interacting systems.

We can now turn to the question of whether the area law of the
entanglement entropy (1) is still satisfied in the presence of long-
range interactions. Typically, long-range interacting systems show
a power-law decay of the correlations even in noncritical ground
states27,29; this property is similar to critical ground states in
short-range interacting systems. To date, it has been a challenge,
both numerically and theoretically, to identify the regime of α to
justify the area law. Although several numerical studies suggest
that the area law holds for short-range regimes (i.e., α > 3), the
possibility of a sublogarithmic violation to the standard area law
(1) has also been indicated for α ≤ 327. On the other hand, most
theoretical analyses regarding the area law rely on the strict
locality of the interactions, and cannot be directly applied to the
power-law decay of interactions even for sufficiently large α
values.

One of the natural routes to prove the area law under long-
range interactions is to connect the entanglement entropy to the
power-law decay of the bipartite correlation by extending the
area-law proof from exponential clustering8,9. However, such a
connection cannot be generalized because of the existence of
strange quantum states36 that have arbitrarily large entanglement
entropy values while maintaining a correlation length of order
O½log ðnÞ� (i.e., corresponding to α=∞). The other route relies
on assuming the existence of the quasi-adiabatic path37 to a trivial
ground state satisfying the area law. Using the small-incremental-
entangling theorem, this assumption ensures the area law in
generic gapped short-range interacting systems38. However,
regarding 1D long-range interacting systems, the area law has
been proved only for short-range regimes α > 4 even under this
strong assumption39.

Based on the above discussion, we report a general theorem on
the area law in 1D long-range interacting systems in this work. It
applies to generic 1D gapped systems with α > 2 and ensures a
constant-bounded entanglement entropy even in long-range
regimes (α ≤ 3) in which nontrivial quantum phases appear
owing to their long-range nature. We provide an outline of the
proof in the “Methods” section.

Results
Main statement on the area law. We consider a 1D system with
n sites, each of which has a d-dimensional Hilbert space. We
focus on the Hamiltonian H with power-law decaying interac-
tions

H ¼
X
i < j

hi;j þ
Xn
i¼ 1

hi; ð3Þ

with k hi;j k ≤ J=rαi;j and ∥hi∥ ≤ B for ∀i, j, where fhi;jgi < j
are the

bipartite interaction operators, fhigni¼ 1 are the local potentials,
and J and B are constants of Oð1Þ. One typical example is given
by the long-range Ising model, shown in Eq. (2), where d= 2,
hi;j ¼ J i;jσ

x
i σ

x
j =r

α
i;j and hi ¼ Bσzi . As long as the local energy is

finitely bounded, our result can also be extended to fermionic and
bosonic systems (e.g., hard-core bosons). For simplicity, we here
restrict ourselves to two-body interactions, but our results are
generalized to generic k-body interactions with k ¼ Oð1Þ. We
consider the entanglement entropy of the ground state 0j i in
terms of the spectral gap Δ just above the ground-state energy.
We assume that the ground state is not degenerate.

L R

Fig. 1 Area law in 1D system. When we decompose the total system into
two subsystems L and R, the boundary area between the two subsystems is
described by points. The area law simply argues that the entanglement
entropy is bounded from above by a constant value, as in Eq. (1). We
investigate the robustness of the area law under long-range interactions,
which induce nonlocal quantum correlations.
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We now discuss our main theorem. We define the interaction
between two concatenated subsystems X and Y as follows (Fig. 2):

VX;Y ¼
X
i2X

X
j2Y

hi;j: ð4Þ

It simply selects all the interaction terms fhi;jgi<j between two
sites in X and Y. Here, we assume the existence of a constant g0 ≥
1 such that

k VX;Y k ≤ g0r
��α ð�α> 0Þ; ð5Þ

for arbitrary choices of X and Y, separated by a distance r. Under
condition (5), the entanglement entropy S(ρL) is bounded from
above by

SðρLÞ ≤ c log 2ðdÞG log ðdÞ
Δ

� �
; ð6Þ

for arbitrary choices of L and R, where GðxÞ :¼
x1þ 2=�αlog 3þ 3=�αðxÞ and c is a constant that depends on α, J, B,
�α, and g0. When the local dimension d and the spectral gap Δ are
independent of the system size n, the above inequality results in a
constant upper bound for the entanglement entropy. Our area-
law result can also be applied to quasi-1D systems (e.g., ladder
systems) by appropriately choosing the local dimension d.

Why does the area law hold for α > 2? We here show a physical
intuition behind our long area law (6). Naively, the area law
might be derived from the power-law decay of the bipartite
correlations40. However, this behavior of the correlation functions
is also observed in critical ground states, where the area law is
usually known to be violated1,2. Moreover, as has been men-
tioned, the entanglement entropy can obey the volume law for a
quantum state with super-polynomially decaying correlations36.
At first glance, these points are contradictory to our results. In
order to resolve this, we need to focus on the fact that the gap
condition imposes much stronger restrictions on the entangle-
ment structure of the ground states than the decay of bipartite
correlations (see refs. 41,42 for example). Our proof approach fully
utilizes the gap condition. This point is reflected to the approx-
imation of the ground state using a polynomial of the Hamilto-
nian, where the approximation error increases as the spectral gap
shrinks (see Claim 3 in the “Methods” section).

We also mention why the condition α > 2 is a natural condition
for the long-range area law. If the exponent α is small enough
such that condition (5) breaks down, the norm of the boundary
interaction along a cut (i.e., VX,Y with X= L and Y= R) diverges
in the thermodynamic limit (n→∞). Then, the system energy
possesses a high-dimensional character, and hence its 1D
character should be lost.

In order to study this point in more detail, let us consider the
area law for thermal equilibrium states, namely ρ= e−βH/tr(e−βH).
A natural extension of the ground state’s area law is to consider
the mutual information Iρ(L: R):= S(ρL)+ S(ρR)− S(ρ). Note that

the mutual information is equal to the entanglement entropy
in the limit of β→∞. At arbitrary temperatures, ref. 43 has
provided the upper bound of Iρ(L: R) ≤ 2β∥VL,R∥ (see also ref. 44),
which becomes a constant upper bound (i.e., the area law) if
k VL;R k¼ Oð1Þ. On the other hand, the area law may collapse for
α ≤ 2, where the norm of VL,R can diverge to infinity in the
thermodynamic limit. It is natural to expect that the condition for
the area law in the thermal state should be looser than that in the
ground state. This intuition indicates that the condition of α > 2
should be, at least, a necessary condition for the area law of the
entanglement entropy in the ground state. We have actually
proved that α > 2 is the sufficient condition. We thus believe that
our condition of α > 2 is already optimal (see also the “Discussion”
section below).

Several remarks on the area law. There are several remarks
pertaining to the above area-law results. First, in the short-range
limit (i.e., �α ! 1), our area-law bound reduces to the following
upper bound:

SðρLÞ≤ c
log 3ðdÞ

Δ
log 3 log ðdÞ

Δ

� �
for �α ! 1:

This upper bound reproduces the state-of-the-art bound in
short-range interacting systems6,7. This implies that our result
provides a natural generalization from the short- to the long-
range area law.

Second, assumption (5) is always satisfied for α > 2 because of
�α≥ α� 2 (see the “Methods” section). This condition covers
important classes of long-range interactions such as van der
Waals interactions (α= 6) and dipole–dipole interactions (α= 3).
The condition α > 2 is the most general sufficient condition for
inequality (5) to be satisfied. Hence, when considering special
classes of Hamiltonians, this condition can be relaxed. As one
such example, we consider fermionic systems with long-range
hopping as follows:

H ¼
X
i < j

1
rαi;j

ðAi;jaia
y
j þ Bi;jaiaj þ h:c:Þ þ V ; ð7Þ

where fayi ; aig
n

i¼1 are the creation and the annihilation operators
for the fermion, and V is composed of arbitrary finite-range
interaction terms such as aia

y
i aja

y
j with ri;j ¼ Oð1Þ. In the above

cases, we can prove that for α > 3/2, condition (5) is satisfied (see
Lemma 2 in Supplementary Note 1). For V= 0, this model is
integrable and exactly solvable. For example, the Kitaev chain
with long-range hopping corresponds to this class. Interestingly,
in the long-range Kitaev chain, the point αc= 3/2 is linked to a
phase transition resulting from conformal-symmetry breaking29.

Finally, we mention the relevance to experimental observations
regarding the long-range area law. Recent advances in experi-
mental setups have achieved direct observation of the second-
order Rényi entropy45. The second-order Rényi entropy for a
subsystem L (as in Fig. 1) is defined as S2ðρLÞ :¼ �log ½trðρ2LÞ�,
and S2(ρL) provides a lower bound for the entanglement entropy
S(ρL) in Eq. (1). Hence, we can obtain the same area-law bound as
(6) for S2(ρL). Recently, the measurement of Rényi entropy was
reported46 in long-range XY models with tunable power
exponents 0 < α < 3. We expect that our area-law bound would
support the outcome of experimental observations regarding
entanglement entropy of ground states.

Matrix-product-state approximation. Based on our analysis, we
can also determine the efficiency of the approximation of ground
states 0j i in terms of the matrix-product representation. We
approximate the exact ground state 0j i using the following

g0r
– �̄

rX Y

Fig. 2 Condition for the area law in long-range interactions. For arbitrary
subsystems X and Y separated by r from each other, we assume the total
interaction strength between X and Y decay as r��α, as shown in (5). This
condition implies that α > 2 in Eq. (3) if we consider the most general class
of long-range interacting systems. On the other hand, if we restrict
ourselves to a special class of fermionic systems with long-range hopping
(7), the condition is relaxed to α > 3/2.
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quantum state ψD

�� �
:

ψD

�� � ¼ Xd
s1;s2;¼ ;sn¼1

trðA½s1�
1 A½s2�

2 � � �A½sn�
n Þ s1; s2; ¼ ; snj i;

where each of the matrices fA½si�
i gi;si is described by the D ×D

matrix. We refer to the matrix size D as the bond dimension. This
MPS has entanglement entropy less than logD for an arbitrary
cut of the system. Although arbitrary quantum states can be
described by the MPS, generic quantum states require exponen-
tially large bond dimensions, namely D ¼ exp½OðnÞ�18. If a
quantum state is well approximated by the MPS with small bond
dimensions, we can efficiently calculate the expectation values of
local observables (e.g., energy).

The MPS is the basic ansatz for various types of variational
methods (e.g., the density-matrix renormalization group18), and
it is crucial to determine whether ground states can be well
approximated by the MPS with a small bond dimension. On the
MPS representation of the ground state 0j i, we prove the
following statement: if condition (5) is satisfied and the spectral
gap is nonvanishing, there exists an MPS ψD

�� �
with bond

dimensions D ¼ exp½c0�α�1log 5=2ð1=δÞ� [c0: constant, �α ¼ Oð1Þ]
such that

trXcð ψD

�� �
ψD

� ��Þ � trXcð 0j i 0h jÞ�� ��
1
≤ δjXj ð8Þ

for an arbitrary concatenated subregion X, where ∥ ⋅ ∥1 is the
trace norm and ∣X∣ denotes the cardinality of X. We show the
proof in the “Methods” section.

From approximation (8), to achieve an approximation error of
δ= 1/poly(n), we need quasi-polynomial bond dimensions,
namely D ¼ exp½Oðlog 5=2ðnÞÞ�. Our result justifies the MPS
ansatz with small bond dimensions, obtained at a moderate
computational cost. This in turn explains the empirical success of
the density-matrix-renormalization-group algorithm in long-
range interacting systems27,29,33. On the other hand, our
estimation is still slightly weaker than polynomial-size bond
dimensions D ¼ exp½Oðlog ðnÞÞ�. This is in contrast to the short-
range interacting cases, where only sublinear bond dimensions
D ¼ exp½Oðlog 3=4ðnÞÞ� are required to represent the gapped
ground states using the MPS6.

Discussion
We discuss several future research directions and open questions.
First, could we find an explicit example that violates the entan-
glement area law for α ≤ 2 or for α ≤ 3/2 in free fermionic sys-
tems? So far, rigorous violations of the area law have been
observed for α= 1 in gapped free fermionic systems47. Moreover,
at α ≈1, all existing area-law violations are at most logarithmic,
namely SðρLÞ≲ log ðjLjÞ. The existence of a natural long-range
interacting gapped system where the entanglement entropy obeys
the subvolume law as S(ρL)≲ ∣L∣γ (0 < γ < 1) is an intriguing issue.
Conversely, it is also challenging to generalize our area law to the
sub-volume-law bound for α ≤ 2. This regime is more relevant to
high-dimensional systems, and any entropic bound better than
the volume law would be helpful in tackling the high-dimensional
area-law conjecture.

Second, can we develop an efficiency-guaranteed algorithm to
calculate the ground state under the gap condition? In inequality
(8), we have proved the existence of an efficient MPS description
of the ground state, but how to find such a description is not
clear. In short-range interacting systems, this problem has been
extensively investigated in popular works by Vidick et al.7,19. We
expect that their formalism would be generalized to the present
cases, and leads to a quasi-polynomial-time algorithm for

calculating ground states within a polynomial error 1/poly(n).
Furthermore, we still have scope to improve the quasi-polynomial
bond dimension of exp½Oðlog 5=2ðnÞÞ� to approximate the ground
states. Whether this bound can be relaxed to a polynomial form
of exp½Oðlog ðnÞÞ� ¼ polyðnÞ is a question that will be addressed
in the future.

Methods
Derivation of �α ≥ α � 2. We here show the proof of �α ≥ α � 2 for Hamiltonian
(3). More general cases including fermionic systems are given in Supplementary
Note 1. For the proof, we estimate the upper bound of

k VX;Y k ≤
X
i2X

X
j2Y

k hi;j k ≤ J
X
i2X

X
j2Y

r�α
i;j ;

where we use the power-law decay of the interaction as k hi;j k ≤ J=rαi;j . Let us
define dist(X, Y)= r. Then, we obtain

J
X
i2X

X
j2Y

r�α
i;j ≤ J

X1
x¼ 0

X1
y¼ 0

ðr þ x þ yÞ�α;

where we use the fact that X and Y are concatenated subsets. For arbitrary integer
r0 2 N, we have

X1
x¼ 0

ðx þ r0Þ�α ≤ r�α
0 þ

Z 1

r0

x�αdx ≤
α

α� 1
r�αþ1
0 ;

and hence

J
X1
x¼ 0

X1
y¼ 0

ðr þ x þ yÞ�α ≤
αJ

α� 2
r�αþ2:

We thus prove that ∥VX,Y∥ decays at least faster than r−α + 2.

Proof sketch of the main result. We here show the sketch of the proof for area-
law inequality (6). The full proof is quite intricate, and we show the details in
Supplementary Notes 2–4. In Fig. 3, we have summarized a flow of the discussions
in this section.

Existence of |�〉 s.t. |||�〉 – |0〉 || ≤ 1/2

H : original Hamiltonian

Approximate ground state projection (AGSP)

Ht : interaction-truncated
Hamiltonian

H̃t : effective Hamiltonian

Chebyshev polynomial

(Claim 3)

(interaction truncation)

q = O(l �)     Fig. 4

(multi-energy cut-off)

cut-off energy: �   Fig. 5

¯

(Claim 2)

(Claim 4)

(Claim 5)

(Claim 1)

log[SR(|�〉)] < log2(d )
log(d )

Δ

1+2/�

log3+3/�̄ log(d )
Δ

(Claim 6)

[inequality (14)]

Area law, inequality (6)

(Claim 7)

~

¯

Fig. 3 Flowchart of the area-law proof. The proof consists of several key
claims. The details of the proof for these claims are given in Supplementary
Notes 2–4.
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For the proof, we take the approximate-ground-state-projection (AGSP)
approach5,6. The AGSP operator K is roughly given by the operator that satisfies
K 0j i ’ 0j i and k Kð1� 0j i 0h jÞ k’ 0. The ground state 0j i does not change by
the AGSP K, while any excited state approximately vanishes by K. In more formal
definitions, the AGSP is defined by three parameters δK, ϵK, and DK. Let 0Kj i be a
quantum state that does not change by K, namely K 0Kj i ¼ 0Kj i. Then, the three
parameters are defined by the following three inequalities:

k 0j i � 0Kj i k ≤ δK ; k Kð1� 0Kj i 0Kh jÞ k ≤ ϵK ; SRðKÞ ≤ DK ;

where SR(K) is the Schmidt rank of K with respect to the given partition Λ= L ⊔ R.
The essential point of this approach is that a good AGSP ensures the existence of a
quantum state that has a small Schmidt rank and large overlap with the ground
state. It is mathematically formulated by the following statement:

Claim 1
(Proposition 2 in Supplementary Note 2) Let K be an AGSP operator for 0j i with the
parameters (δK, ϵK, DK). If we have ϵ2KDK ≤ ð1=2Þ, there exists a quantum state ψj i with
SRð ψj iÞ ≤ DK such that

ψj i � 0j ik k≤ ϵK
ffiffiffiffiffiffiffiffiffi
2DK

p þ δK : ð9Þ

where SRð ψj iÞ is the Schmidt rank of ψj i with respect to the given partition.
From this statement, the primary problem reduces to one of finding a good

AGSP to satisfy the condition ϵ2KDK ≤ ð1=2Þ.
In the construction of the AGSP operator with the desired properties, we

usually utilize a polynomial of the Hamiltonian. The obstacle here is that the long-
range interactions induce an infinitely large Schmidt rank in the thermodynamic
limit; that is, the Hamiltonian H has the Schmidt rank of poly(n). In order to avoid
this, we truncate the long-range interactions of the Hamiltonian. If we truncate all
the long-range interactions, the norm difference between the original Hamiltonian
and the truncated one is on the order of OðnÞ, and hence the spectral gap condition
cannot be preserved. The first central idea in the proof is to truncate the long-range
interaction only around the boundary (see Fig. 4). In more detail, we first
decompose the total system into (q+ 2) blocks with q an even integer. The edge
blocks B0 and Bq + 1 have arbitrary sizes, but the bulk blocks B1, B2, …, Bq have the
size l (i.e., ∣Bs∣= l). Then, we truncate all the interactions between nonadjacent
blocks, which yields the Hamiltonian Ht as

Ht ¼
Xqþ 1

s¼ 0

hs þ
Xq
s¼ 0

hs;sþ 1; ð10Þ

where hs is the internal interaction in the block Bs, and hs,s + 1 is the interaction
between two blocks Bs and Bs + 1. By using notation (4), we have hs;sþ 1 ¼ VBs ;Bsþ 1

.
In the Hamiltonian Ht, long-range interactions only around the boundary are
truncated, and hence the norm difference between the original and the truncated
Hamiltonian can be sufficiently small for large l.

Claim 2
(Lemmas 3 and 4 in Supplementary Note 2) The norm distance between H and Ht is
bounded from above by

k H � Ht k ≤ g0ql
��α:

Also, the spectral gap Δt of Ht and the norm difference between 0j i and 0tj i are
upper-bounded by

Δt ≥Δ� 2g0ql
��α; k 0j i � 0tj i k ≤

k H � Ht k
Δ� 4 k H � Ht k

;

where 0tj i is the ground state of Ht.
From this statement, if ql��α ≲ 1, the truncated Hamiltonian Ht possesses almost

the same properties as the original one.
The second technical obstacle is the norm of the Hamiltonian. The gap

condition provides us an efficient construction of the AGSP operator, which is
expressed by the following statement:

Claim 3
(Lemma 11 in Supplementary Note 2) By using the Chebyshev polynomial, we can find a
m-degree polynomial K(m, Ht) such that

k Kðm;HtÞð1� 0tj i 0th jÞ k ≤ 2 exp � 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffik Ht k =Δt

p
 !

; ð11Þ

where the explicit form of the polynomial K(m,x) is given in Supplemental Lemma 11.
We notice that the gap condition plays a crucial role in this claim. Here, the

norm of ∥Ht∥ is as large as OðnÞ, which necessitates the polynomial degree of
m ¼ Oð ffiffiffi

n
p Þ. Polynomials with such a large degree cannot be utilized to prove the

condition for the AGSP in Claim 1. To overcome this difficulty, we aim to
construct an effective Hamiltonian with a small norm that retains the similar low-
energy properties to the original Hamiltonian. For this purpose, in each of the
blocks, we cut off the energy spectrum up to some truncation energy (see Fig. 5).
Then, the block–block interactions (i.e., hs,s + 1) do not change, and the internal
Hamiltonian hs is transformed to ~hs. By this energy cutoff, the total norm of the
effective Hamiltonian ~Ht is roughly given by qτ. The question is whether this
effective Hamiltonian possesses the ground-state property similar to H. By
extending the original result in ref. 48, which considers a cutoff in a Hamiltonian of
one region, we prove the statement as follows:

Claim 4
(Theorem 5 in Supplementary Note 2) Let us choose τ such that

τ ≳ log ðqÞ:

Then, the spectral gap ~Δt of the effective Hamiltonian is preserved as

~Δt ≥ OðΔtÞ:

Moreover, the norm distance between the original ground state 0tj i and the effective
one ~0t

�� � is exponentially small with respect to the cut-off energy τ:

k ~0t
�� �� 0tj i k ≤ e�OðτÞ:

As long as τ is larger than OðlogðqÞÞ, the spectral gap is preserved, and the
norm of the effective Hamiltonian is as large as q log ðqÞ, namely
k ~Ht k ≲ q log ðqÞ. In the standard construction of the effective Hamiltonian6,48,
we perform the energy cutoff only in the edge blocks (i.e., B0 and Bq+1). However,
this simple procedure allows us to prove the long-range area law only in the short-
range power-exponent regimes (i.e., α > 3). The multienergy cutoff is crucial to
prove the area law even in the long-range power-exponent regimes (i.e., 2 < α ≤ 3).

By using the polynomial K(m,x) in (11) with x ¼ ~Ht, we can obtain the AGSP
operator Kt for the ground state 0tj i of Ht. Before showing the AGSP parameter for
Kt, we discuss the Schmidt rank of the polynomial of the Hamiltonian. Now, the
effective Hamiltonian ~Ht is given by the form of

Pqþ 1
s¼ 0

~hs þ
Pq

s¼ 0 hs;sþ 1. By
extending the Schmidt rank estimation in refs. 5,6, we can derive the following
statement:

l

B1 B2 B3 B4 B5 B6
B0 B7

h4,5

no interaction

Fig. 4 Interaction-truncated Hamiltonian Ht. We truncate the long-range
interactions only around the boundary. In the figure above, the interactions
between nonadjacent blocks (i.e., fBsg7s¼0) are truncated. By this truncation,
the properties of the Hamiltonian Ht are proved to be almost the same as
the original one H, as long as ql��α ≲ 1 (see Claim 2).

j

Bs+1BsBs−1

hs,s+1hs−1,s

Es,j

Ẽs,j

hs−1 hs+1 hs+1hs−1 hs hs˜ ˜ ˜

Spectrums of hs and hs
˜

�s

Fig. 5 Effective Hamiltonian ~Ht by multienergy cutoff. In each of the
internal Hamiltonians fhsgqþ 1

s¼0, we perform the energy cutoff up to the
energy τs = Es,0 + τ. Here, fEs;j; jEs;jig are the energy eigenvalues and the
corresponding eigenstates of hs, respectively. The internal Hamiltonians hs
and ~hs have the same eigenstates fjEs;jig and the same eigenvalues (i.e.,
Es;j ¼ ~Es;j), as long as Es,j≤ τs, above which the eigenvalues differ from
each other.
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Claim 5
(Proposition 4 in Supplementary Note 2) The Schmidt rank of the power of the effective
Hamiltonian SRðHm

t Þ is bounded from above by

SRð~Hm
t Þ ≤ eOðqlÞþOðm=qÞlog ðqlÞ:

This inequality gives the upper bound of the Schmidt rank for Kðm; ~HtÞ.
We have obtained all the ingredients to estimate the parameters δK t

, ϵK t
, and

DK t
for the AGSP K t ¼ Kðm; ~HtÞ. They are given by Claim 4, inequality (11), and

Claim 5 as follows:

δK t
¼ e�OðτÞ; ϵK t

¼ e�OðmÞ=
ffiffiffiffiffiffiffiffiffiffiffi
q log ðqÞ

p
;

and DK t
¼ eOðqlÞþOðm=qÞlog ðqlÞ;

ð12Þ

where we omit the �α-dependence of the parameters. Let us apply Claim 1 to the
AGSP Kt and the ground state 0tj i. Under the condition of ql��α ≲ 1, we can find q,
m, and l such that ϵ2K t

DK t
≤ ð1=2Þ, where {q, m, l} have quantities of Oð1Þ. This

leads to the following statement:

Claim 6
(Proposition 6 in Supplementary Note 3) There exists a quantum state ϕj i such that
k 0j i � ϕj i k ≤ 1=2 with

log SRð ϕj iÞ½ �≤ c�log 2ðdÞ log ðdÞ
Δ

� �1þ2=�α

log 3þ3=�α log ðdÞ
Δ

� �
; ð13Þ

where c* is a constant that depends only on g0 and �α, which is finite in the limit of
�α ! 1.

Finally, we construct a set of the AGSP operators fKpg1p¼ 1
for the ground state

0j i, where the AGSP parameters are denoted by δp, ϵp, and Dp. The errors ϵp and δp
decrease with the index p, namely ϵ1 ≥ ϵ2 ≥⋯ and δ1 ≥ δ2 ≥⋯ . In the limit of
p→ ∞, the AGSP Kp approaches the exact ground-state projection as K1 ¼ 0j i 0h j,
namely lim p!1δp ¼ 0 and lim p!1ϵp ¼ 0. These AGSP operators allow the
derivation of an upper bound of the entanglement entropy, as well as the
approximation of the ground state by quantum states with small Schmidt ranks.

Claim 7
(Proposition 3 in Supplementary Note 2) Let ϕj i be an arbitrary quantum state with
k 0j i � ϕj i k ≤ 1=2. Also, let fKpg1p¼ 1

be AGSP operators defined as above. Then, we
prove for each of fKpg1p¼ 1

Kpe
�iθp ϕj i

k Kp ϕj i k � 0j i
�����

�����≤ γp :¼ ϵp
1=2� δp

þ δp;

where the phase θp 2 R is appropriately chosen. Moreover, under the condition γp ≤ 1
for all p, the entanglement entropy is bounded from above by

Sð 0j iÞ ≤ log SRð ϕj iÞ½ � �
X1
p¼ 0

γ2plog
γ2p

3Dpþ 1
;

where we set γ0 := 1.
In Proposition 7 of Supplementary Note 3, we show a construction of the AGSP

set fKpg1p¼ 1
such that γ2p ¼ 1=p2 and

log ð3DpÞ≤ c1�α�1 log
5=2ð3p=ΔÞffiffiffiffi

Δ
p þ c2

log 3=2ð3p=ΔÞlog ðdÞffiffiffiffi
Δ

p ; ð14Þ

where c1 and c2 are constants that depend on g0. We have obtained the quantum
state ϕj i with the Schmidt rank as in (13), and hence from Claim 7, the above
AGSP operators give the upper bound of the entanglement entropy in (6). This
completes the proof of the area law in long-range interacting systems. □

MPS approximation of the ground state. We here prove inequality (8). For
simplicity, let us consider X to be the total system (i.e., X=Λ). Generalization to
X⊂Λ is straightforward. Our proof relies on the following statement:

Claim 8
(Lemma 1 in ref. 49) Let ψj i be an arbitrary quantum state. We define the Schmidt
decomposition between the subsets {1, 2, …, i} and {i+ 1, i+ 2, …, n}, as follows:

ψj i ¼
X1
m¼ 1

μðiÞm ψ ≤ i;m

��� E
� ψ > i;m

��� E
; ð15Þ

where fμðiÞm g1m¼ 1 are the Schmidt coefficients in the descending order. Then, there exists
an MPS approximation ψD

�� �
with the bond dimension D that approximates the quantum

state ψj i as

k ψj i � ψD

�� � k2 ≤ 2
Xn� 1

i¼ 1

δi; δi :¼
X
m>D

jμðiÞm j2:

From this claim, if we can obtain the truncation error of the Schmidt rank, we
can also derive the approximation error by the MPS.

In the following, we give the truncation error by using Claim 7. Let us consider
a fixed decomposition as Λ= L ⊔ R. Then, Claim 7 ensures the existence of the
approximation of the ground state 0j i with the approximation error γp, which is
achieved by the quantum state jψpi :¼ Kpe

iθp jϕi= k Kpjϕi k with its Schmidt rank
of

log ½SRðjψpiÞ�≤ log ðDpÞ þ log ½SRð ϕj iÞ�;
where ϕj i has the Schmidt rank of (13) at most. We have already proved that
for γp= 1/p2, the quantity Dp is upper-bounded by (14). Thus, for p ≥ (1/δ)1/4 or

(γp ≤ δ1/2), the Schmidt rank log ½SRð ψp

��� E
Þ� satisfies the following inequality:

log ½SRðjψpiÞ�≲ ð�α�1log ð1=δÞ þ 1Þlog 3=2ð1=δÞ ð16Þ
for 1=Δ ¼ Oð1Þ and sufficiently small δ≪ 1, where we use the fact that
log ½SRð ϕj iÞ� is a constant of Oð1Þ.

In order to connect inequality (16) to the truncation error of the Schmidt
decomposition, we use the following statement:

Claim 9
(Eckart–Young theorem50) Let us consider a normalized state ψj i as in Eq. (15). Then,
for an arbitrary quantum state ψ0j i, we have the inequality ofP

m> SRð ψ0j iÞjμðiÞm j2 ≤ k ψj i � ψ0j ik2, where the Schmidt rank SRð ψ0j iÞ is defined for the
decomposition of {1, 2, …, i} and {i+ 1, i+ 2, …, n}.

In the above claim, we choose 0j i; jψpi as ψj i; ψ0j i, respectively, and obtain the
inequality of X

m> SRð ψpj iÞ
jμðiÞm j2 ≤ γ2p; ð17Þ

where we use k jψpi � 0j i k ≤ γp . By applying inequalities (16) and (17) to Claim
8, we can achieve

k 0j i � jψDi k2 ≤ 2nδ;

if log ðDÞ is as large as �α�1log 5=2ð1=δÞ [�α ¼ Oð1Þ]. This completes the proof. □

Data availability
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