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Abstract: The gastrointestinal (GI) system is highly susceptible to irradiation. Currently, there is no
Food and Drug Administration (FDA)-approved medical countermeasures for GI radiation injury.
The vitamin E analog gamma-tocotrienol (GT3) is a promising radioprotector in mice and nonhuman
primates (NHP). We evaluated GT3-mediated GI recovery in total-body irradiated (TBI) NHPs.
Sixteen rhesus macaques were divided into two groups; eight received vehicle and eight GT3 24 h
prior to 12 Gy TBI. Proximal jejunum was assessed for structural injuries and crypt survival on day
4 and 7. Apoptotic cell death and crypt cell proliferation were assessed with TUNEL and Ki-67
immunostaining. Irradiation induced significant shortening of the villi and reduced mucosal surface
area. GT3 induced an increase in crypt depth at day 7, suggesting that more stem cells survived and
proliferated after irradiation. GT3 did not influence crypt survival after irradiation. GT3 treatment
caused a significant decline in TUNEL-positive cells at both day 4 (p < 0.03) and 7 (p < 0.0003).
Importantly, GT3 induced a significant increase in Ki-67-positive cells at day 7 (p < 0.05). These data
suggest that GT3 has radioprotective function in intestinal epithelial and crypt cells. GT3 should be
further explored as a prophylactic medical countermeasure for radiation-induced GI injury.

Keywords: gamma-tocotrienol; intestine; radiation; nonhuman primates; radiation countermeasure

1. Introduction

The increasing risk of exposure to ionizing radiation (IR) due to nuclear or radiological
incident is a serious concern to civilians as well as the military encountering radiological
hazards [1]. Total-body or significant partial-body exposures to IR can result in acute
radiation syndrome (ARS) with doses greater than 1 Gy, delivered at relatively high dose
rate. One likely outcome of such exposure is death/injury to the rapidly renewing cells
such as the bone marrow and gastrointestinal (GI) system [2,3]. Studies indicate that GI
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damage is a major factor responsible for irradiation-induced lethality in humans receiving
high doses of IR [4]. The GI tract is particularly susceptible to radiation exposure due
to its continually proliferating cell populations [5–7]. Typically, a high dose of radiation
induces loss of intestinal stem cells, and thereby, impairs epithelial regeneration [8]. The
classical characteristics of GI injury include loss of clonogenic crypt epithelial stem cells,
which leads to enterocyte depletion, villus blunting, and damage to the mucosal layer
of the small intestine. Diarrhea and mucosal barrier breakdown accompanied by weight
loss, dehydration, reduced nutrient absorption, and intestinal bleeding/infection, if not
controlled, may lead to sepsis [9]. In severe cases, it may result in death (hallmark of the
GI syndrome) [10]. To date, there are no Food and Drug Administration (FDA)-approved
medical countermeasures to treat GI-ARS, as all four FDA-approved products for ARS
address only hematopoietic (H) injuries [4,11–13].

Components of vitamin E (tocols; tocopherols, and tocotrienols) are well known
for their antioxidative, neuroprotective, anti-inflammatory, and radio-prophylactic prop-
erties [14–16]. Among the tocols tested to date, gamma-tocotrienol (GT3) has received
significant attention during the last 10 years and appears to be one of the most encouraging
prophylactic radiation countermeasures for hematopoietic (H-ARS) under investigation [12].
GT3 is of particular interest because, in addition to being an antioxidant, it also inhibits 3-
hydoxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, the rate limiting enzyme in
cholesterol biosynthesis [17,18], and accumulates to a greater extent in endothelial cells [19].
We and others showed that GT3 not only protects against gastrointestinal, vascular, and
hematopoietic injury [20,21], but also accelerates recovery of intestinal cells and improves
mucosal barrier integrity post-irradiation [22]. The radioprotective efficacy of GT3 in mice is
mediated largely via granulocyte colony-stimulating factor (G-CSF), which helps mobilize
progenitor cells to protect against hematopoietic injury [23–25]. In addition, GT3 modulates
the expression of pro-apoptotic and anti-apoptotic genes to promote intestinal stem cell
recovery and thus confers protection against radiation-induced intestinal injury [26]. GT3
has been shown to be a radioprotector in the murine model of ARS [24]. Importantly, GT3
has demonstrated its effectiveness as a radioprotector, in promoting hematopoietic recovery
in the nonhuman primate (NHP) model [27]. Furthermore, GT3 has been shown to re-
store IR-induced micro-RNA changes in NHPs [28], and also restore IR-induced proteomic
changes back to baseline in the murine model [29].

The present study was undertaken to evaluate GT3 potential to accelerate GI recovery
in irradiated NHPs when exposed to a supralethal 12 Gy TBI. We hypothesized that
drugs that successfully mitigate radiation damage in the small intestine will influence
intestinal stem cell survival and/or proliferation. Results from this study demonstrated
that a supralethal total-body radiation dose of 12 Gy induced significant intestinal injury
while, GT3 treatment was associated with reduced intestinal apoptosis and enhanced stem
cell proliferation. However, GT3 did not influence crypt survival. Taken together, these
data suggest that GT3 has a protective role in the intestinal epithelial and crypt cells in
the context of irradiation-induced gut damage. GT3 should be further investigated as a
potential medical countermeasure for irradiation-induced GI injury.

2. Results
2.1. Irradiation-Induced Histological and Morphometric Injury in Proximal Jejunum

The loss of epithelial cells after irradiation shortens/blunts the villi, disrupting the
structural integrity of the intestine. Here, we assessed the role of GT3 in modulating
irradiation-induced intestinal structural injury in the jejunum sections of GI at day 4 and
7 post-irradiation. As shown in Figure 1A, radiation induced shortening of the villi and
decreased mucosal surface length in both vehicle and GT3-treated groups by day 7. Crypt
atrophy was observed at both day 4 and day 7.
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Figure 1. Effects of GT3 on irradiation-induced intestinal damage at day 4 and day 7. (A) Repre-
sentative images showing the cross sections of proximal jejunum treated with vehicle or GT3 at day 
4 and 7 post-irradiation. Histogram showing the measurements of intestinal injury such as (B) mu-
cosal surface length, (C) villous height, and (D) crypt depth. The data are presented as average ± 
SEM; N = 3 (day 4) and N = 5 (day 7). 

2.2. Effects of Irradiation on Intestinal Crypt Survival 
Intestinal crypt survival was determined at day 4 and day 7 post-TBI. GT3 treatment 

did not affect irradiation-induced crypt survival either at day 4 or day 7 post-irradiation 
(Figure 2A). However, in comparison to vehicle at day 4, GT3-treated group showed an 
increase in crypt survival, though the level of significance was not achieved (Figure 2B).  

Figure 1. Effects of GT3 on irradiation-induced intestinal damage at day 4 and day 7. (A) Representa-
tive images showing the cross sections of proximal jejunum treated with vehicle or GT3 at day 4 and
7 post-irradiation. Histogram showing the measurements of intestinal injury such as (B) mucosal
surface length, (C) villous height, and (D) crypt depth. The data are presented as average ± SEM;
N = 3 (day 4) and N = 5 (day 7).

According to morphometric studies, mucosal surface length was significantly reduced
at day 7 in both vehicle (p < 0.01) and GT3-treated (p < 0.02) groups compared to their
respective groups on day 4. However, there was no difference between vehicle- and GT3-
treated groups when compared at either day 4 or day 7 (Figure 1B). Likewise, villous
height was significantly reduced at day 7 in both vehicle (p < 0.004) and GT3-treated groups
(p < 0.001) when compared to day 4 (Figure 1C), but there was no significant difference
noted between the groups on either day 4 or 7. A strong positive correlation has been
identified between crypt depth and stem cell survival after irradiation [30]. Interestingly, at
day 7, GT3 treatment significantly increased crypt depth when compared to the vehicle
group (p < 0.001) at day 7 and the GT3-treated group at day 4 (p < 0.0001), respectively
(Figure 1D). However, at day 4, no differences in crypt depth were noted between the
vehicle and GT3-treated groups. However, GT3 showed a significant increase in crypt
depth by day 7 (the latest time point examined in this study).

2.2. Effects of Irradiation on Intestinal Crypt Survival

Intestinal crypt survival was determined at day 4 and day 7 post-TBI. GT3 treatment
did not affect irradiation-induced crypt survival either at day 4 or day 7 post-irradiation
(Figure 2A). However, in comparison to vehicle at day 4, GT3-treated group showed an
increase in crypt survival, though the level of significance was not achieved (Figure 2B).
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Figure 2. Effects of irradiation on crypt survival. (A) Representative images showing the transverse
sections of proximal jejunum from NHP treated with vehicle or GT3 at day 4 and 7 post-irradiation.
(B) Surviving crypts. The data are presented as average ± SEM; N = 3 (day 4) and N = 5 (day 7).
ns = not significant.

2.3. GT3 Inhibited Irradiation-Induced Apoptosis in the Intestinal Jejunum

Irradiation-induced apoptosis of intestinal crypt epithelial cells and stromal cells in
the villus, characterized by DNA fragmentation, is an important contributor to ARS and
determines survivability. Apoptotic cell death was assessed by performing TUNEL staining
of NHP intestinal tissue sections at days 4 and 7 following irradiation. The intestinal
epithelium undergoes rapid cell turnover and is replenished by stem and progenitor cells
that reside in the crypt [31]. The transit time varies depending on factors such as region
of measurement, diet, etc. Here, we observed a significant decline in the frequency of
TUNEL-positive cells in the villi of GT3-treated groups at both day 4 (p < 0.03) and day 7
(p < 0.0003) post-irradiation (Figure 3A,B). On the contrary, no significant difference was
observed in the frequency of TUNEL-positive cells in the crypts of vehicle- or GT3-treated
animals at both day 4 and 7 (Figure 3C,D).
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day 4 and 7 post-TBI in vehicle and GT3-treated groups. The data are presented as average ± SEM; 
N = 3 (day 4) and N = 5 (day 7). ns = not significant. 
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hicle- and GT3-treated groups (Figure 4A). Interestingly, when compared to vehicle, GT3-
treated animals showed a significant increase in intestinal Ki-67-positive cells at day 7 
post-TBI (p < 0.03) (Figure 4B). In addition to Ki-67, we also evaluated the expression of 
proliferating cell nuclear antigen (PCNA), another critical marker for cell proliferation 
that plays an essential role in DNA synthesis/replication. Several monoclonal antibodies 

Figure 3. Effects of GT3 on TBI-induced intestinal damage. (A) Representative photomicrograph of
TUNEL-positive cells (green) in the intestinal villi. (B) Frequency of TUNEL-positive cells in villi
at day 4 and 7 post-TBI in vehicle and GT3-treated groups. (C) Representative photomicrograph of
TUNEL-positive cells (green) in the crypt. (D) Frequency of TUNEL-positive cells in the crypts at day
4 and 7 post-TBI in vehicle and GT3-treated groups. The data are presented as average ± SEM; N = 3
(day 4) and N = 5 (day 7). ns = not significant.

2.4. GT3 Enhanced Cell Proliferation in the Jejunum Crypts Post-Irradiation

The intestinal epithelium renewal relies on crypt intestinal stem cells and is cru-
cial for re-establishment of the jejunum architecture that becomes compromised post-
irradiation [32–34]. Ki-67 is a nuclear antigen present in the proliferating cells and is one of
the most widely used proliferating cell markers. Here, we determined the effects of GT3
on the crypt cell proliferation at day 4 and 7, by evaluating the expression of Ki-67 in the
jejunum exposed to 12 Gy TBI.

We observed no difference in the intestinal Ki-67-positive cells at day 4 between
vehicle- and GT3-treated groups (Figure 4A). Interestingly, when compared to vehicle,
GT3-treated animals showed a significant increase in intestinal Ki-67-positive cells at day
7 post-TBI (p < 0.03) (Figure 4B). In addition to Ki-67, we also evaluated the expression
of proliferating cell nuclear antigen (PCNA), another critical marker for cell proliferation
that plays an essential role in DNA synthesis/replication. Several monoclonal antibodies
to PCNA, which show peak expression at the late G1-S phase have been developed to
identify the proliferating cells [35,36]. PCNA analysis also revealed an increased expression
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in proliferating crypts in GT3-treated groups at both day 4 and 7, when compared to their
vehicle groups, respectively (Figure 5).
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Figure 4. Effects of GT3 on intestinal stem proliferation as assessed by Ki-67. (A) Representative
photomicrograph of Ki-67-positive cells (red) in the crypts. (B) Mean fluorescence intensity of Ki-67
at day 4 and 7 post-TBI in vehicle and GT3-treated groups. The data are presented as average ± SEM;
N = 3 (day 4) and N = 5 (day 7).
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Figure 5. Effects of GT3 on PCNA expression in proximal jejunum post-irradiation. Representative
images showing the expression of PCNA in cross sections of proximal jejunum treated with vehicle
or GT3 prior to exposure to 12 Gy TBI at day 4 and day 7 post-irradiation.
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2.5. Effects of GT3 on Irradiation-Induced Alterations in Tight Junction-Related Proteins in
the Jejunum

Studies have shown that radiation injury led to downregulation of the tight junction
proteins in the intestinal mucosa [37]. Interestingly, GT3 has been shown to effectively
reduce post-TBI increase in gut hyper-permeability in a mouse model [22]. Here we
performed immunofluorescence staining by using a panel of TJs-related antibodies to
evaluate if GT3 could contribute to the restoration of the mucosal barrier dysfunction
induced by radiation. No significant differences were observed in the expression levels of
claudin-2, in vehicle- or GT3-treated groups at either day 4 or day 7 (Figure 6). Interestingly,
a significant increase was noted in ZO-1 (p < 0.02) expression level in the GT3-treated
group at day 7 in comparison to vehicle (Figure 7). However, there was no difference noted
between the groups at day 4. Furthermore, no significant differences were noted in the
expression levels of claudin-7, occludin, beta-catenin, and E-cadherin between vehicle and
GT3-treated groups either at day 4 or day 7 (data not shown).

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 7 of 18 
 

 

2.5. Effects of GT3 on Irradiation-Induced Alterations in Tight Junction-Related Proteins in the 
Jejunum 

Studies have shown that radiation injury led to downregulation of the tight junction 
proteins in the intestinal mucosa [37]. Interestingly, GT3 has been shown to effectively 
reduce post-TBI increase in gut hyper-permeability in a mouse model [22]. Here we per-
formed immunofluorescence staining by using a panel of TJs-related antibodies to evalu-
ate if GT3 could contribute to the restoration of the mucosal barrier dysfunction induced 
by radiation. No significant differences were observed in the expression levels of claudin-
2, in vehicle- or GT3-treated groups at either day 4 or day 7 (Figure 6). Interestingly, a 
significant increase was noted in ZO-1 (p < 0.02) expression level in the GT3-treated group 
at day 7 in comparison to vehicle (Figure 7). However, there was no difference noted be-
tween the groups at day 4. Furthermore, no significant differences were noted in the ex-
pression levels of claudin-7, occludin, beta-catenin, and E-cadherin between vehicle and 
GT3-treated groups either at day 4 or day 7 (data not shown). 

 
Figure 6. . Effects of GT3 on claudin-2 expression in intestine. (A) Representative photomicrograph 
of claudin-2 expression (red) in the cross sections of the intestine at day 4 and day 7 post-irradiation. 
(B) Quantitation of claudin-2 expression levels in intestinal crypts at indicated time points post-12 
Gy TBI. The data are presented as average ± SEM; N = 3 (day 4) and N = 5 (day 7). ns = not significant. 

Figure 6. . Effects of GT3 on claudin-2 expression in intestine. (A) Representative photomicrograph
of claudin-2 expression (red) in the cross sections of the intestine at day 4 and day 7 post-irradiation.
(B) Quantitation of claudin-2 expression levels in intestinal crypts at indicated time points post-12 Gy
TBI. The data are presented as average ± SEM; N = 3 (day 4) and N = 5 (day 7). ns = not significant.
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Figure 7. Effects of GT3 on ZO-1 expression in intestine. (A) Representative photomicrograph of
ZO-1 expression (green) in the cross sections of the intestine at day 4 and day 7 post-irradiation.
(B) Quantitation of ZO-1 expression levels in intestine at indicated time points post-12 Gy TBI. The
data are presented as average ± SEM; N = 3 (day 4) and N = 5 (day 7).

3. Discussion

ARS is one of the most challenging aspects of a public health and medical response to a
nuclear or radiological incident. The clinical progression of ARS depends on various factors,
including the absorbed radiation dose, the intensity of exposure, and its distribution within
bodily tissues [38]. Irradiation-induced GI injury constitutes an important element of ARS
with life threatening implications and challenges in developing therapeutic interventions [2].
Development of countermeasures targeting amelioration of GI-ARS has been limited by a
lack of understanding of the disease sequelae of this syndrome in a large animal model, such
as NHP [4]. The NHP has been a useful model for studies of human ARS as NHPs are closest
to humans in respect of genetic homology and pathophysiology [39–41]. Most importantly,
both NHPs and humans exhibit strong similarities in intestinal structure, physiology,
immunology, function, and their microbiome. This study evaluated the potential of GT3 in
accelerating GI-recovery in NHPs exposed to a dose of 12 Gy total-body radiation.

The concept of operations (CONOPS) developed by the US government agencies
demonstrates that it will be difficult to have required treatments or triage devices needed
in a time frame earlier than 24 h after radiation exposure. For this reason, the majority of
biodosimetry devices and medical countermeasure (MCM) development for civilian use
have assumed triage or drug administration at 24 h or later after the incident. Pre-exposure
prophylactic agents are of interest to the Department of Defense and are needed for military
personnel and first responders. In contrast, post-exposure radiomitigators would be useful
for the civilian population who do not know ahead of time about their exposure. GT3 is
a promising radiation countermeasure under advanced development which can be used
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24 h prior to radiation exposure and is relevant to military and first responders. All four
agents approved by US FDA for H-ARS are radiomitigators to be used 24 h or more after
radiation exposure

GT3 has been shown to be a promising radioprotector in murine and NHP mod-
els [20,27], and was most effective when administered 24 h prior to exposure with a lethal
dose of ionizing radiation [12]. Further, a single prophylactic dose of GT3, without any
supportive care was equally effective in improving hematopoietic recovery to multiple
doses of Neupogen/Leukine and two doses of Neulasta, with full supportive care in the
NHP model [27]. In addition, metabolic changes induced by GT3 administration in NHP
were associated with a transient increase in the bioavailability of antioxidants, which may
provide an overall advantage to combat radiation injury [42]. GT3 is a well-known antioxi-
dant and free radical scavenger [12,43]. In a recent study, we demonstrated restoration of
proteomic change in response to cobalt-60 gamma-irradiation using a murine model [29].
GT3 has also been shown to restore irradiation-induced micro-RNA changes in NHP blood
24 h after radiation exposure [28]. Here, we show that radiation exposure to a supralethal
dose of 12 Gy total-body induced significant intestinal injury in the form of a reduced
mucosal surface area and villus height, while GT3 prophylaxis was associated with in-
creased crypt depth. Notably, GT3 treatment reduced TBI-induced apoptosis in the jejunum
and stimulated crypt stem cell proliferation, critical components needed to replenish the
damaged epithelium.

Irradiation-induced structural changes in the intestine involve a highly complex
pathophysiology, that includes, but not limited to, alterations in redox status, inflammation-
related secondary effects, and impaired functionality due to loss of cells [8,44]. Several
studies have widely documented irradiation-induced intestinal damage in NHP, rat, and
mouse models of partial- and total-body irradiation [5,45–49]. We demonstrated that TBI
doses of 6.7 and 7.4 Gy (typically associated with H-ARS) induced significant intestinal
injury in a dose and time-dependent manner in the NHP model [50]. In addition, we and
others showed that TBI/PBI with a certain portion of BM shielding (5 to 50% bone marrow)
in NHP was associated with maximum structural damage to the intestine characterized by
extensive reduction in villous height, loss of crypts, and a massive reduction in epithelial
surface area by day 10 [51–53]. This is aligned with what we observed in this study, where
TBI reduced functional area and villus height in both vehicle and GT3-treated groups
largely by day 7, thus suggesting that structural integrity of the intestine was compromised.
Importantly, GT3 significantly enhanced crypt depth at day 7 post-irradiation, suggesting
that more stem cells survived and proliferated after TBI. Indeed, Liu et al. have shown a
strong positive correlation between crypt depth and stem cell survival after irradiation [30].
To our knowledge, this study is the first to report the influence of GT3 on irradiation-
induced intestinal structural injuries in NHPs exposed to a supra-lethal dose of total-
body radiation.

The small intestinal epithelium is the fastest dividing tissue in humans with an es-
timated turnover time of about a week [31]. The intestinal epithelium homeostasis and
renewal is attributed to the resident intestinal stem cells located at the bottom of the
crypt [34,54]. However, at high doses of radiation, more widespread intestinal apopto-
sis fails to trigger a regenerative response, which leads to GI failure [32]. Reduction to
IR-induced loss of crypt stem cells and the rate of replenishment are crucial factors in
determining the extent of jejunal recovery following irradiation [55]. Notably, the jejunum
has been shown to be the most radiosensitive region of the small intestine [53]. In the
current study even though GT3-treatment did not affect irradiation-induced crypt survival
at day 4 or 7, yet we still observed that GT3 showed a trend of increasing crypt survival
on day 4. Strikingly, GT3 treatment significantly reduced intestinal cell death in jejunum
at both day 4 and 7 post-irradiation. Moreover, Suman et al., showed in a preliminary
study using murine model that GT3 promotes intestinal cell survival via upregulation of
anti-apoptotic genes or downregulation of pro-apoptotic genes to protect the intestinal
cells in response to irradiation [26]. In addition, we observed that GT3 enhanced Ki-67
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and PCNA expression in jejunum of irradiated NHPs at day 7 post-irradiation, suggestive
of enhanced proliferation status, which may indicate the recovery of intestinal damage
after IR.

Intestinal epithelium is the largest barrier between the internal and external environ-
ments and is crucial for protecting the body against toxic molecules that can trigger mucosal
inflammation if they cross the barrier [56]. Exposure to radiation causes inflammation and
immune imbalance and increases gut permeability [57–59]. Intestinal permeability is regu-
lated by intercellular structures termed tight junctions (TJs). The molecular composition
of the TJs is complex, consisting of multiple transmembrane proteins including claudin
family members, occludin, and members of the junction adhesion molecule (JAM) protein
family [60,61], which are disrupted after radiation. We have recently shown that TBI nega-
tively affects TJ-related proteins, which are essential for maintaining gut permeability in the
NHP model [37]. Moreover, the increased permeability of GI epithelial cells after radiation
exposure frequently results from the redistribution of tight junctions [37,62]. In this study,
no significant difference was observed in the expression levels of claudin-2. However, GT3
treatment significantly increased ZO-1 expression levels at day 7. Importantly, ZO-1 has
been shown to be critical for mucosal repair [63], and plays a functional role in organizing
components of the TJ while linking them to the cortical actin cytoskeleton [64]. There were
only small differences noted between the vehicle- and GT3-treated groups for most of the
tight junction-related proteins evaluated in the gut at both time points examined (data not
shown). This may be related to the relatively small sample size with N = 3 (D4) and N = 5
(D7). In addition, individual variation within the group could have resulted in diluting the
effects induced by GT3.

In summary, we found that GT3 has the ability to regulate progenitor cell survival
and cell death in the small intestine. Thus, GT3 may have a protective function in the
intestinal epithelial and crypt cells in the context of irradiation-induced damage. Further
studies are clearly warranted with increased N as GT3 has been shown to be a promising,
safe, and non-toxic medical countermeasure for radiation-induced GI injury in the murine
model. It will be important to investigate GT3 effects using the partial-body NHP exposure
model with LINAC. Such studies will also provide the opportunity to compare the effects
of orthovoltage X-rays compared to gamma-rays in the NHP model and investigate the
effects of GT3. Studies with GT3 using LINAC as radiation source are in progress.

4. Materials and Methods
4.1. Animals

A total of 16 naïve rhesus macaques (Macaca mulatta, Chinese sub-strain, 6 males
and 10 females) were used for this study. These animals were between 3.6–5.5 years of
age, weighing 5.45–10.35 kg. The animals were further randomly divided such that eight
animals received GT3 (37.5 mg/kg, sc) and the other eight received vehicle. These animals
were procured from the National Institutes of Health Animal Center (NIHAC, Poolesville,
MD, USA). All animals were maintained in a facility accredited by the Association for
Assessment and Accreditation of Laboratory Animal Care (AAALAC)-International. An-
imals were quarantined for six weeks prior to initiation of the experiment. All NHPs
were individually housed in stainless-steel cages in environmentally controlled rooms
maintained at 22 ◦C +/− 2 ◦C, 30–70% relative humidity, 10–15 air change cycles per h,
and a 12:12 h light-dark cycle. Animals were fed a primate diet (Teklad T.2050 diet; Harlan
Laboratories Inc., Madison, WI, USA) twice daily with at least six hours between feedings
(animals were fed four biscuits each at 7:00 am and 2:00 pm) and received drinking water ad
libitum. All the animals received enrichment food (fresh fruits and vegetables, prima treats,
peanuts, marshmallows, etc.) once daily Monday–Friday. They received mirrors, toys, and
challenge balls for enrichment. Televisions were used for sensory enrichment for 4–5 h at
least 3 times a week. All the animals were able to see, hear, and/or touch the conspecifics
through the cages. Single housing also eliminated the chance of conflict injuries that could
have been caused by pair-housing. Irradiated animals are more prone to infection due to
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their suppressed immune system. All animals were serologically negative for Macacian
herpesvirus 1 (herpes B virus), simian retrovirus (SRV), simian T-cell leukemia virus (STLV),
and simian immunodeficiency virus (SIV). They were vaccinated with positive antibody
titers for measles and tested negative for tuberculin. Animals were stratified by gender
and body weight increases during the quarantine period and then assigned to different
treatment groups. All procedures involving animals were approved by the Institutional
Animal Care and Use Committee (BIOQUAL Inc.) and the Department of Defense Animal
Care and Use Review Office (ACURO). This study was carried out in strict accordance with
the recommendations made in the Guide for the Care and Use of Laboratory Animals [65].

4.2. Experimental Design and Irradiation

The objective of this study was to assess the efficacy of a potential medical coun-
termeasure, GT3, against intestinal injury in a GI-ARS following TBI. Various analyses
were performed to understand the mechanism of action of this medical countermeasure in
rescuing the GI tract of irradiated macaques. To achieve this objective, a total of 16 animals
were used in this study where GT3 was evaluated against a radiation dose of 12.0 Gy
60Co gamma-radiation, a supralethal radiation dose capable of inducing GI specific acute
radiation syndrome (GI-ARS). The 16 NHPs exposed to 12 Gy were further divided into
two groups (eight NHPs each) with one group receiving 37.5 mg/kg GT3 subcutaneously
(sc) and the other receiving its vehicle in the dorsal scapular region 24 h prior to radiation
exposure (Table 1). In addition to blood collection, these animals were euthanized according
to a schedule for tissue collection on various days post-irradiation, and these samples were
analyzed for different biomarkers.

Table 1. Experimental study design for 16 NHPs exposed to 12 Gy TBI.

Study Design with 16 NHPs

GI Study (Total-Body Irradiation, 60Co γ-Radiation, 0.6 Gy/min)

NHP Drug Route Dose Frequency Irradiation Dose (Gy)

8 (3M/5F) GT3 sc 37.5 mg/kg 24 h prior to
irradiation 12

8 (3M/5F) Veh sc 37.5 mg/kg 24 h prior to
irradiation 12

4.3. Total-Body Irradiation

On the day before irradiation, NHPs were fasted for approximately 12 h. On the
day of irradiation, animals were removed from the transport cages and placed into a
standard housing cage in the radiation staging area. Before proceeding with sedation, the
unique tattoo identification numbers were confirmed by study personnel. Animals were
then sedated in their cages using the squeeze-back mechanism and were administered
a 10–15 mg/kg intramuscular (im) dose of ketamine (100 mg/mL) and up to two NHPs
were sedated at a time. Once sedated, the animals were placed in restraint boxes to
limit movement and to maintain a proper upright sedated position during the irradiation
procedure. The NHP limbs were secured to the box using ropes that were tied onto a
cleat. Animals were then transported to the High Level Cobalt Facility via elevator, and
the NHP tattoo identification numbers were verified again by the attending dosimetrist. A
0.1–0.3 mL im booster of ketamine (100 mg/mL) was administered to the NHPs to limit
movement while being irradiated, if needed. For irradiation, two NHPs were placed
on the irradiation platform facing away from each other and were exposed to a midline
dose (12 Gy) 60Co γ-radiation at a dose rate of 0.6 Gy/min from both sides (bilateral,
simultaneous exposure) as described earlier [27].

To deliver the precise radiation dose, NHP abdominal widths were measured with
digital calipers. Animals were observed throughout the irradiation procedure via in-room
cameras. After irradiation, the animals were returned to their cages in the housing area
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and were monitored for recovery from the procedure. The radiation field in the area of
the NHP location was uniform within ±1.5%. The dosimetry for photons was based on
the alanine/EPR (electron paramagnetic resonance) dosimetry system [66]. This is one
of the most precise dosimetry techniques at present which is used by national standards
laboratories for the most critical measurements and calibrations. Thus, it is one of the
very few methods that are used in regular worldwide inter-comparisons of the national
standards of Gy.

4.4. Drug Preparation and Administration

GT3 and its vehicle were procured from Callion Pharma (Jonesborough, TN, USA),
and supplied as an injectable solution at a concentration of 50 mg/mL. Just prior to
administration, the GT3 and vehicle solution were thoroughly mixed using a lab vortex.
GT3 or vehicle were administered sc at a dose of 37.5 mg/kg 24 h prior to irradiation.
The exact volume administered depended on the individual weight of the NHP. Injections
were performed with a sterile 21–25-gauge needle length of 3

4 –1”. The site for injection
(dorsal scapular region [midline]) was prepared as a surgical site before the injection: hair
was clipped using # 40 surgical clipper blade and the site was appropriately disinfected to
reduce any adverse skin reactions, rash/eruption, inflammation, or irritation.

4.5. Intestinal Tissue Collection

Out of eight NHPs in each group, three were euthanized on day 4 and five on day
7 post-irradiation (see Table 2). Animals scheduled for euthanasia were fasted for 8–12 h
before sedation. The NHPs were sedated using ketamine (10–15 mg/Kg, im) and then
placed on inhalation anesthesia, 3–5% isoflurane in 100% oxygen (500–1000 cc/min) by
mask and maintained with 1–3% isoflurane administered in 100% oxygen (500–1000 cc/min)
via endotracheal tube (size 2–4 mm). While the animal was under the anesthesia, vital
signs were monitored including SpO2, pulse, and body temperature. Upon incision of the
abdominal cavity, a 12–14 cm piece of jejunum was isolated and clamped at both ends and
surgically removed. After the jejunum was excised from the abdominal cavity, the animal
was euthanized, and a full necropsy was performed and additional tissues for further
histopathological analysis were collected.

Table 2. Euthanasia schedule for 16 NHPs exposed to 12 Gy TBI for GI injury.

Euthanasia Schedule for GI Injury

Groups Day 4 Post-Irradiation Day 7 Post-Irradiation

GT3 + 12 Gy 3 5

Vehicle + 12 Gy 3 5

The segments of proximal jejunum that were procured and fixed in either 10% zinc-
buffered formalin or methanol-Carnoy’s (MC) fixative (composition: 60% methanol, 30%
chloroform, and 10% glacial acetic acid). These tissue samples were submitted to Histoserv,
Inc. (Germantown, MD) for tissue processing and embedding. Slides and paraffin blocks were
trimmed from the fixed sections, and these tissues were routinely processed, stained with
hematoxylin and eosin (H&E), and submitted for histological and morphometric studies.

4.6. Assessment of TBI-Induced Histological and Morphometric Injury

While the loss of epithelial cells after irradiation shortens the villi, disrupting the
structural integrity of the intestine, an increase in crypt depth has been associated with the
survival and a higher proliferation rate of stem cells after injury. We assessed the intestinal
tissue sections stained with H&E to measure mucosal surface length, villous height, and
crypt depth by using a computer assisted image analysis platform.
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4.6.1. Mucosal Surface Length

A decrease in the surface area of the intestinal mucosa is a sensitive parameter of small
bowel radiation injury. Previously, we measured mucosal surface area in mice and rats
using a stereologic projection/cycloid method [67,68]. Because of structural differences in
the intestine of NHPs (e.g., NHPs have plicae circulares whereas mice and rats do not), we
chose computer-assisted Image-Pro® Premier software (Meyer Instruments, Houston, TX,
USA) to measure the length of intestinal mucosal surface area in this animal model. All
measurements were done at 4X magnification in six to eight areas of intestinal segments.
The average of the measurements from those 6–8 areas was used for statistical analyses.

4.6.2. Mucosal Villous Height and Crypt Depth

Mucosal villous height and crypt depth were measured with computer-assisted Image-
Pro Premier software. Villous height measurements were conducted on images captured
at 4× magnification in six to eight areas of intestinal segments, while crypt depth mea-
surements were conducted on images captured at 10× in eight to ten areas. Mucosal
villous height was measured from the tip to the base of each villus, while crypt depth was
measured from the crypt base to the tip opening. The average of the measurements from
those areas was used for statistical analyses.

4.7. Intestinal Crypt Colony Assay

Microcolony crypt cell survival assays were performed as described previously [69,70].
The numbers of surviving and regenerating crypts were analyzed on five H&E stained,
transverse sections obtained from proximal jejunum at day 4 and day 7 post-TBI. The
H&E slides were scanned at 20× in an Aperio CS2 scanner (Leica Biosystems) and were
analyzed through the Imagescope software (Aperio technologies). Surviving crypts (those
with ≥10 adjacent, chromophilic, non-Paneth cells) were counted in five circumferences of
proximal jejunum per animal, and microcolony survival was expressed as the average num-
ber of surviving crypts per circumference. The average from each animal was considered a
single value for statistical purposes.

4.8. TUNEL Assay

TUNEL assays were performed as described previously [71]. Intestinal tissue sections,
which were fixed, dehydrated, and embedded in paraffin and cut at 4 µm thick tissue
sections were dewaxed and rehydrated in phosphate-buffered saline. TUNEL assay was
performed using an In Situ Cell Death Detection Kit (Roche Diagnostics, Indianapolis, IN,
USA) following the manufacturer’s instructions. Intestinal tissue sections were incubated
with a reaction mixture of terminal deoxynucleotidyl transferase (TdT) and fluorescein
(FITC)-labeled precursor in cacodylate-based buffer for 1 h at 37 ◦C, rinsed three times with
0.05% Tween-20 in PBS, and counterstained with 4′,6-diamidino-2-phenylindole (DAPI,
Invitrogen, Carlsbad, CA, USA) to visualize cell nuclei, mounted under cover slips with
Prolong Gold Antifade Mountant (Invitrogen, Carlsbad, CA, USA). TUNEL specificity was
controlled by substituting the mixture of TdT and probe with the cacodylate buffer. The
green spectrum (FITC) and blue spectrum (DAPI) were used to detect TUNEL-positive
cells and nuclei respectively. Images were acquired using the Olympus IX-51 inverted
microscope (Olympus America, Center Valley, PA, USA) equipped with Hamamatsu ORCA-
ER monochrome camera (Hamamatsu Photonics K.K., Hamamatsu City, Japan). Image
analysis was performed using the SlideBook 6.0.15 software. Data were expressed as the
percentage of the number of TUNEL-positive nuclei in the total number of nuclei detected
by DAPI staining. Any problems with TUNEL image identification were resolved according
to the classification of TUNEL images described in the recent review [72].

4.9. Fluorescent Microscopy

The immunostaining of NHP intestine sections was performed as described previ-
ously [73]. Briefly, 4-µm thick tissue sections were dewaxed and rehydrated in phosphate
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buffered saline. These intestine sections were then immunostained with rabbit anti-claudin-
2 (1:100), rabbit anti-occludin (1:500), rabbit anti-β-catenin (1:2000) (all from cell signaling
technology, Danvers, MA); rat anti-Ki-67 (1:200), mouse anti-Zona-1(1:450); mouse anti-
claudin-7 (1:800), and mouse anti-E-cadherin (1:2500) (all from Invitrogen, Carlsbad, CA,
USA) in blocking buffer (1% bovine serum albumin, 10% normal donkey serum/goat
serum, 0.012% saponin, 0.05% Tween-20). The primary antibodies were either detected
with donkey anti-rabbit/rat secondary IgG-AlexaFluor 594 conjugates/donkey anti-mouse
AlexaFluor 488 conjugate/goat anti-rabbit AlexaFluor 488 conjugate/goat anti-mouse
AlexaFluor 594 conjugate (1:800, Invitrogen, Carlsbad, CA, USA). Control staining was
performed by substituting the blocking buffer containing primary antibody with block-
ing buffer only. Tissue sections were counterstained with 4′,6-diamidino-2-phenylindole
(DAPI, Thermo Fisher, Waltham, MA, USA) to visualize cell nuclei, mounted under cover
slips with Prolong® Gold Antifade Mountant (Invitrogen, Carlsbad, CA, USA). Images
were captured using the Olympus IX-51 inverted microscope (Olympus America, Center
Valley, PA, USA) equipped with Hamamatsu ORCA-ER monochrome camera (Hamamatsu
Photonics K.K., Hamamatsu City, Japan). Image analysis was performed using the Slide
Book 6.0.15 software. For quantification, 10 independent fields of view were collected per
each NHP intestine section, and for Ki-67 staining, data were presented as the percentage
of the number of Ki-67-positive nuclei, while for others, mean optical density (MOD) was
recorded for each of the channels used above. The data were presented as an average of
MOD/field of view for each channel.

4.10. Immunohistochemistry

Immunohistochemical staining was performed with standard techniques using an
avidin–biotin complex, diaminobenzidine chromogen, and hematoxylin counterstaining.
Monoclonal mouse anti-proliferating cell nuclear antigen antibody (clone PC-10, EMD
Millipore, Billerica, MA, USA) was employed to detect PCNA expression on the proximal
jejunum sections obtained at day 4 and 7 post-irradiation (with and without GT3). Human
and rhesus macaques (Macaca mulatta) PCNA share 100% amino acid sequence homology in
the target epitope region (amino acids 112–121). This level of homology allows for sufficient
cross-reactivity of clone PC10 with PCNA of the NHP and for a valid immunohistochem-
istry assay. Sections were deparaffinized, rehydrated and endogenous peroxidase was
blocked with 1% H2O2 in methanol for 30 min at room temperature. Nonspecific binding
was reduced with 10% normal goat serum (Vector Laboratories, Burlingame, CA, USA) in
3% dry powdered milk in tris–buffered saline (TBS) for 30 min. Sections were incubated
with mouse anti-PCNA (1:200, 2 h, EMD Millipore). This was followed by a 30-min in-
cubation with the biotinylated goat anti-mouse IgG (1:400, Vector Laboratories). Sections
were further incubated with avidin–biotin–peroxidase complex for 45 min (1:100, Vector
Laboratories). Peroxidase binding was visualized with 0.5 mg/mL 3,3-diaminobenzidine
tetrahydrochloride solution (Sigma-Aldrich, St. Louis, MO, USA) and 0.003% H2O2 in TBS.
Slides were then rinsed with distilled water, counterstained with Harris’s hematoxylin, de-
hydrated, and cover slipped. PCNA stained slides were scanned using an Aperio Scanner
CS2 at 20×.

4.11. Statistical Analysis

Statistical analyses were performed using GraphPad Prism Version 9.1.0 (GraphPad
Software, San Diego, CA, USA). Multiple means were compared by ANOVA and pairwise
comparisons were analyzed with the student’s t-test. A value of p < 0.05 was considered
statistically significant.
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