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Abstract: Despite the increasing role of machine learning in various fields, very few works considered
artificial intelligence for frequency estimation (FE). This work presents comprehensive analysis of a
deep-learning (DL) approach for frequency estimation of single tones. A DL network with two layers
having a few nodes can estimate frequency more accurately than well-known classical techniques
can. While filling the gap in the existing literature, the study is comprehensive, analyzing errors
under different signal-to-noise ratios (SNRs), numbers of nodes, and numbers of input samples
under missing SNR information. DL-based FE is not significantly affected by SNR bias or number
of nodes. A DL-based approach can properly work using a minimal number of input nodes N at
which classical methods fail. DL could use as few as two layers while having two or three nodes for
each, with the complexity of O{N} compared with discrete Fourier transform (DFT)-based FE with
O{Nlog2 (N)} complexity. Furthermore, less N is required for DL. Therefore, DL can significantly
reduce FE complexity, memory cost, and power consumption, which is attractive for resource-limited
systems such as some Internet of Things (IoT) sensor applications. Reduced complexity also opens
the door for hardware-efficient implementation using short-word-length (SWL) or time-efficient
software-defined radio (SDR) communications.

Keywords: frequency estimation; deep-learning (DL); sensors; Internet of Things (IoT); short
word length (SWL); software-defined radio (SDR); parallel-computing fast Fourier transform (FFT);
low-power; low-cost; biomedical sensors

1. Introduction

Estimating the frequency of a single-tone sinusoidal wave under noise is a funda-
mental problem in signal processing for communications, and its effect is extended to
biomedical and power engineering [1,2].

Several classical methods were proposed to estimate the frequency of a single-tone
sinusoid, mostly based on Fourier analysis [3].

Correlation methods can be very attractive for hardware implementation, IoT, sensors,
and software-defined ratio (SDR), as they are much more computationally efficient than
spectral techniques are. However, those techniques are far less accurate compared to
Fourier-based techniques, especially under low values of signal-to-noise ratio (SNR) [4].

Phase-locked loops (PLLs) are widely used in communication systems to handle this
problem. However, PLLs can be slower than spectral or correlative techniques as they need
time for locking [5]. More samples are needed in digital PLLs (DPLLs) if more realizations
are considered for better results, especially under a low SNR where noise significantly
disturbs the locking process.

Recently, machine learning has emerged as a powerful tool for various tasks in many
fields, including communications and signal processing [6–8]. Despite the increased
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attention to machine learning, very few works considered its application to handle the
problem of frequency estimation.

In [9], an approach based on deep learning for single-tone frequency estimation under
noise was proposed. Unlike Fourier-based, PLL, or correlative techniques, the DL-based
approach requires prior knowledge of the SNR. However, SNR estimation can be in error
under varying noise conditions; therefore, many studies, including [9], assumed that SNR
is constant during the period of frequency estimation.

In this work, we further investigate the performance DL for frequency estimation
under insufficient SNR information. On the other hand, the effect of the number of
nodes was also studied, and no significant change in performance was obtained after
increasing the number of nodes in hidden layers. The contribution of this work has the
following directions:

1. The performance of the DL approach is compared with the performance of still-active
classical techniques that are based on Fourier analysis.

2. In many situations, SNR estimation can be inaccurate or unavailable. Hence, system
performance is investigated in case of unavailable SNR information.

3. The DL approach is SNR-dependent; hence, an investigation of system performance
under various SNRs is presented.

4. The more the nodes in the DL approach are, the better the accuracy of estimation
could be. Hence, this work investigated the effect of changing the number of nodes in
the hidden layers of the network.

5. The number of input samples (signal length or duration) has significant impact on
the complexity and the performance of classical and DL-based methods. This point
was fully investigated in this work.

6. The effect of different realizations while training was handled in the literature of
DL-based approaches, as it is a necessary step in the training process. However, the
possibility of different realizations in the working environment (application phase)
was not previously handled. In this work, we discuss the effect of different realizations
during the application phase.

7. The reduced complexity introduced by DL-based FE, in addition to avoiding complex-
valued arithmetic operations, makes FE easier and cheaper for IoT communications,
sensors, sensor networks, and software-defined radio (SDR). This work presents a
discussion on such possibilities.

This paper is organized as follows. Section 2 presents related works; Section 3 presents
the signal model and the problem definition; Section 4 reviews the most-effective classical
techniques; and Section 5 addresses the yet-unhandled issues of the DL approach and
presents the results in a comparative study that reveals the power of DL versus classical
frequency-estimation techniques.

2. Motivation and Related Work

The problem of frequency estimation (FE) is often handled using classical Fourier
and correlative techniques. However, some recent works handled this problem by neural
networks and deep learning. Good accuracy was obtained; hence, the use of DL for
frequency estimation is promising.

The authors in [9] designed a three-layer neural network to estimate the frequency of
a sinusoid contaminated by a white-noise process at an SNR of 25 dB, where the trained
model could estimate the frequency of any previously unseen noisy sinusoid in a short
amount of time. However, this work did not address some important issues, including
comparisons with classical techniques, system performance under wrong SNR estimation,
system performance under various SNR values, and the effect of the number of nodes.
Specifically, the following points are not clear in [9]:

1. The network was trained for a specific SNR. There should be a clarification whether
different networks should be present in the case that different SNRs are expected.

2. The effect of SNR on estimation error was unclear.
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3. The number of input nodes was chosen as N = 2000. It is not clear whether this choice
of the input samples (nodes) is frequency-, duration-, or network-dependent.

4. The division of the frequency range was not clear. The effect of this division on
estimation error should be addressed. The relation of this division to the time–
frequency uncertainty principle should also be clarified.

5. The number of nodes in the hidden layers was 2. The effect of this number on estima-
tion accuracy should be clarified. The possibility that this effect is SNR-dependent
should be addressed.

6. Classical techniques for frequency estimation have been well-studied for decades.
There should be a clear reasoning why one should choose DL-based estimation instead.

In [10], the authors presented an approach based on deep neural networks to estimate
the fundamental frequency (F0), which is an essential acoustical feature to find the audible
pitch level. This problem is classically dealt with using time-domain or correlative methods;
however, the authors in [5] applied a different direction via deep learning where error was
reduced as compared with classical techniques.

In [11], the authors presented an approach for estimating the frequency of linear fre-
quency modulation (LFM) signals, a topic that has applications in radar and communication
engineering. The approach utilized a convolutional neural network (CNN), while this prob-
lem was traditionally handled using time–frequency analysis [12]; however, this approach
requires significant computational cost as it involves two-dimensional transforms.

3. Problem Statement

The single-tone sinusoidal generic model is given by

s(t) = a(t) cos(2π fot + θo), (1)

where a(t) is amplitude; normally, the maximal frequency in its spectrum is much lower
than sinusoidal frequency fo (i.e., slowly varying). θo is the initial phase.

As a carrier for information signals in communication systems via modulation, the
sinusoidal carrier normally has constant amplitude, while the receiving device can apply
amplitude estimation and a constant-gain multiplier to restore the original amplitude.
Therefore, here, we consider sinusoidal model

s(t) = A cos(2π fot + θo) (2)

with constant amplitude A.
The signal in Equation (2) is transmitted as a pilot to allow for the receiver to estimate

the carrier frequency. However, such a single-tone signal can undergo frequency changes
due to the Doppler effect and oscillator instabilities (see [1] and the references therein).
Even minor change in carrier can cause demodulation problems. The performance of
Orthogonal Frequency Division Multiplexing (OFDM) systems can deteriorate for improper
carrier estimation [1]. Hence, accurate frequency estimation of the incoming carrier is very
important for correct demodulation at the receiver.

However, communication channels add noise to transmitted signals, making fre-
quency estimation a more challenging task. Therefore, the actual carrier model used in
frequency estimation is as follows.

s(t) = A cos(2π fot + θo) + η(t), (3)

where η(t) represents the noise process. In most communication systems, noise is modelled
as a Gaussian (normal) process with zero mean and variance that equals noise power σ2

and the process is normally referred to as N
(
0, σ2).
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Signal-to-noise ratio (SNR) is defined as follows.

SNR = r =
signal power
noise power

=
A2/2

σ2 (4)

and usually is expressed in decibels:

SNRdB = 10 log10(SNR) (5)

or simply
rdB = 10 log10(r),

which is more convenient to logarithmically handle large and small values.
This work focuses on the problem of estimating frequency fo of the single-tone model

in Equation (3) under Gaussian noise η(t). Our approach was to use a deep-learning (DL)
neural network with multiple layers in this process, following recent works that confirmed
the high accuracy of this approach [9–11]. Despite the pioneering role of these works,
they did not address many fundamental issues in DL frequency estimation. We focus on
clarifying these issues, and define the research problems as follows.

• Comparing the performance of DL-based approach with classical techniques.
• Investigating system performance in case of unavailable SNR information.
• Investigating system performance under various SNRs.
• Investigating the effect of changing the number of nodes in the hidden layers of

the network.
• Investigating the effect of input signal length (duration) on the performance of both

classical and DL-based methods. This factor has significant impact on overall perfor-
mance and complexity.

• Investigating the effect of different realizations during the application phase (not only
during the training phase).

• Investigating the impact of DL-based FE on IoT, sensors, sensor networks, and
software-defined radio (SDR).

In addition to the above, investigating the effect of different realizations of the input
signal in the application phase of the DL approach would be handled. It is known that
different realizations of any statistical experiment would result in better estimation of its
random variable. This point could be treated by increasing the number of input nodes;
however, this direction would complicate the network structure and limit the choice of the
user who may be satisfied with a user-defined accuracy level.

The next section presents an overview of main well-known approaches in classical FE
for single-tone signals.

4. A Brief Overview of Classical FE for Single Tones

Literature surveys of classical frequency-estimation methods are presented in [2,13,14].
In [1], an iterative approach for single-tone frequency estimation was presented; however,
despite their benefits in accuracy, such approaches can be computationally expensive
or complex.

In [15–17] and the references therein, good DFT interpolators were presented; however,
despite some accuracy gains, they were computationally more expensive than earlier
methods in the literature were.

Reduced complexity is a property that can be very useful for some resource-limited
systems such as wireless sensor networks [18]. The complexity–accuracy–speed trade-off
is the selection criterion in this work.
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Here, a brief overview of the most accurate, computationally efficient classical ap-
proaches is presented. All accurate classical FE methods are based on using the discrete
Fourier transform (DFT) of the signal:

S(k) =
N−1

∑
n = 0

s(n) e−j2πkn/N (6)

where N is the number of input samples. Various methods were designed for FE on the
basis of interpolating the DFT of the sinusoid. The most accurate and computationally
efficient methods under additive Gaussian noise are as follows.

4.1. Maximum of DFT Estimator

This method is based on the location (index) of the maximum of the absolute of the
DFT, given by

Im = arg
{

max
k

[|S(k)|]
}

(7)

since the sinusoid gives a delta spectrum. Estimated frequency is given by

Fo =
Im· fs

N
, (8)

where fs is sampling frequency.
The error of estimation at SNR = r (dB) is defined in this paper as

e(r) =
|Fo − fo|

fo
, (9)

and the above definition of the error was used to evaluate the performance of DL approach
versus existing methods. Another performance criterion is the computational complexity
of the method.

4.2. Quadratic Interpolator

This approach designs a quadratic interpolation for Fourier transform (DFT) using
three points near the index of the maximum of |DFT|, i.e., the following points in the
DFT domain:

(Im − 1, S1 = |SIm−1|), (Im, S2 = |SIm |), (Im + 1, S3 = |SIm+1|),

where Im is given in Equation (7). The estimated frequency is given by

Fo =
Io· fs

N
, (10)

where Io = Im + δ; δ = (S3 − S1) /[2 ∗ (2 ∗ S2 − S1 − S3)].

4.3. Barycentric Estimator

This estimator is similar to the quadratic estimator, with the estimated frequency
given by

Fo =
Ib· fs

N
, (11)

where Ib = Im + α; α = (S3 − S1) /[S1 + S2 + S3].
During this work, the barycentric estimator gave the best results in terms of error

among the selected classical techniques.
The next section presents the structure and training details of the deep-learning

network that was adopted for the FE of single-tone signals.
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5. Deep Learning for Single-Tone FE: Network Structure and Training

In this section, the structure of the DL approach for the frequency estimation of single
tones is analyzed and justified. In the DL-based approach, complexity only exists during
the training phase and not in the actual network structure. The significant reduction in
complexity can make the DL approach for FE suitable for IoT communications involving
wireless sensor networks (WSNs).

5.1. DL Network Structure

A deep neural network with two hidden layers is shown in Figure 1, where arrows
represent the multiplication of relevant items by specific weights and adding biases, using
the MATLAB tansig (or tanh) function as the pointwise activation function in hidden layers
as follows.

Φ{ZN×1} = Φ{[zi|i = 1 : N]} = [φ(zi)]N×1 =

[
2

1 + e−2zi
− 1
]
N×1

, (12)

where N is the number of layer output nodes.
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Figure 1. Structure of two-layer network for deep-learning (DL)-based frequency estimation (FE).

Tanh activation for hidden layers is used to prevent results from expanding in mag-
nitude and normalizing them in the [−1, 1] range. Both positive and negative values are
needed for the proper adjustment of the network, unlike the case in the output layer, where
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a single output (a decision) is obtained using the positive linear activation function (ReLU)
to give a proportional value to the input frequency as follows.

ϑ(x) = max(0, x) =

{
x ; x ≥ 0
0 ; x < 0

}
, (13)

where ReLU is used because the actual value of the frequency is needed, knowing that the
frequency is always positive.

The operation of the 2-layer network in Figure 1 can be expressed as follows.

f = ϑ
[
V1×K·Ψ

{
HK×J ·Φ

(
WJ×N ·XN×1 + bJ×1

)
+βK×1

}
+ b1×1

]
, (14)

where X is the input vector; W, H, and V are the weight matrices of the first hidden, second
hidden, and output layers, respectively; N, J, K, are the numbers of nodes of the input,
first hidden, and second hidden and layers, respectively; and b, β, and b are the biases of
the first hidden, second hidden, and output layers, respectively. The number of nodes in
the output layer is I = 1 as a scalar is needed to estimate the input frequency. Bold type
was used for matrices and vector functions, and plain-text symbols for scalar functions
and variables.

The activation functions handle the relevant vectors pointwise as shown in Figure 1,
while output variable f is a scalar that represents the input frequency.

The minimal number of hidden layers L for the successful extraction of input features
is L = 2. A larger L may slightly improve performance, but it increases complexity.

5.2. Training Data

Training data were samples that were simulated using the model in Equation (3)
on MATLAB (under Academic License 40635944). The number and magnitude of these
samples are dependent on signal duration T, sampling frequency fs, and the signal-to-noise
ratio (SNR).

Data samples for each T and SNR were divided into three groups: 70% for training,
15% for testing, and 15% for validation.

The training function of the DL network was chosen to be the MATLAB trainscg
function, which updates weight and bias values according to the scaled conjugate gradient
method, with learning rate of Lr = 0.1 and number of epochs p = 100.

As changes in carrier frequency are expected to be relatively small (mostly due to
the Doppler effect [19]), a small low-frequency Hz range [20–22] was considered in this
experiment, with a sampling frequency of Ts = 0.01 Hz. This makes normalized frequency
f / fs be in the range of [0.23, 0.25]. This 9is the normalized frequency that is considered
while handling a frequency-estimation problem [20]. On the other hand, small ranges of
small frequencies are expected in power systems (e.g., 50 Hz) and biosystems (for example,
electroencephalograms (EEG), in the range of 0–40 Hz) [21,22].

Higher ranges are possible but require more training samples N and thereby more
complex networks; for example, handling a maximal frequency of 100kHz may require
N = 2000 input nodes [9].

The necessary number of input samples that affects DL performance is related to
number γ of complete periods (cycles) of the input sinusoid that are included in the
training process, which can be expressed as

γ =
T
To

=
T/Ts

To/Ts
=

N
νo

, (15)

where νo is the number of samples in one cycle of the input signal with frequency fo and
period To, given by

νo =
To

Ts
=

fs

fo
, (16)
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from which the number of cycles used in [9], which used Ts = 1 µs (hence, fs = 1× 106 Hz)
and a maximal input frequency of fo = 1× 105 Hz, can be calculated as

γ =
N
νo

= N
fo

fs
= 2000

1× 105

1× 106 = 200.

In this work, the number of input cycles used to train the DL reached the limit of

γ = N
fo

fs
= 11

25
100

= 2.75,

giving reasonable results with almost 3 input cycles, as shown in Section 6.
Hence, the use of N = 2000 in [9] is an overestimation of the number of input samples

that are necessary to train the DL network. While this overestimation may give the
advantage of minor improvement in error performance, it is at the expense of increasing
network complexity, which may not be attractive for resource-limited systems such as
sensors in a wireless sensor network (WSN).

Generally, the choice of the proper number of input samples should be based on the
value of γ, and this process represents a trade-off between complexity and accuracy.

The selected frequency range was divided with a frequency step of d f = δ/µ, with
δ = 25− 23 = 2 and µ = 40 in the simulations.

Of course, more accuracy can be obtained with a larger µ, but this can be at the expense
of more nodes in the network.

This frequency step is time-independent; hence, it is a design problem, unlike fre-
quency step ∆ f = 1/T in DFT-based techniques, which is time-dependent and follows
the Heisenberg uncertainty principle in the time–frequency domain [23].

For each incremental frequency { fi = 23 + i·d f |i = 0 : µ} in the selected frequency
range, a number of realizations R = 100 is generated, so that the training vector is

Xt =
[
S0 S2 · · · Sµ

]
N×(µ+1)R; Si = [si1 si2 · · · siR]N×R (17)

with labels
Lt =

[
L0 L2 · · · Lµ

]
1×(µ+1)R; Li = i ∗ [1 1 · · · 1]1×R, (18)

where sik is the N × 1 column that represents the kth realization of Equation (3) with a
frequency fi under the same SNR. Hence, there is a total of µ + 1 classes. A larger number
of realizations R during the training phase implies better training.

5.3. Training Function: Scaled Conjugate Gradient Backpropagation

The training function is the most important part of network design as it is responsible
for finding the proper weight and bias values. Several training functions were tried for
the FE problem in this work, but most either failed or gave a large error (insufficient
performance). The best function for FE problems is the scaled conjugate gradient (SCG)
backpropagation algorithm [24,25].

SCG’s superior performance is because it user-independently updates its parameters
at each iteration [24]. In addition, SCG uses multiple adaptivity where the step size and
search direction are updated as shown in Equations (29) and (30). Several applications
confirmed this (see, for example, [26]).

The SCG optimization function combines the Levenberg–Marquardt (LM) algorithm
(which is, in turn, a combination of gradient descent and the classical Gauss–Newton
algorithm) with the conjugate-gradient approach [24]. The training process utilizes iter-
ative algorithms to update the weights and biases of the network based on multivariate
error function

e(v) =
1
2

R

∑
k = 1

ek
2 =

1
2

R

∑
k = 1

( fk − fo)
2, (19)
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where fk is the output of the network at the kth realization. All training algorithms
minimize this global error by the optimal adjustment of multivariate

v = [w b]1×ξ , (20)

which includes weights (w) and biases (b) with ξ/2 = number of nodes.
The update rule of the LM algorithm is given at the ith iteration (epoch) by

vi+1 = vi −
[
∇2e(vi) + LrI

]−1
∇e(vi), (21)

where ∇e is the gradient operator, damping parameter Lr controls the update process
(the learning rate), and I is the identity matrix. The Hessian matrix is approximated by

∇2e(vi) ≈ JTJ, (22)

while the gradient can be written as

gi = ∇e(vi) = JTe(vi), (23)

where

J =

[
∂ek
∂vj

]
R×ξ

(24)

is the Jacobian matrix. Hence, LM weight-bias update can be written as follows.

vi+1 = vi −
[
JTJ+ LrI

]−1
JTe(vi). (25)

The optimal solution is v, which makes g = ∇e(v) = 0, and vo is random.
Learning rate Lr balances the performance between Newton’s method (when it is zero)

and the gradient descent (when it is large).
In the first iteration (epoch) of the SCG, vo is chosen at random. Then, LM is used to

find the steepest descent, which is the negative of LM gradient

po = −go. (26)

Then, optimal step αk [26] is computed as follows.

αk = −
νT

k ρk

νT
k Gk

, (27)

Gk = lim
ε→0

gk(vk + ε·v)− gk(vk − ε·v)
2ε

, (28)

with v = arbitrary ξ-dimensional vector and ε = a small positive number. The two gradients
gk(vk + ε·v) and gk(vk − ε·v) are evaluated by LM. The new weight-bias vector is given by

νk+1 = νk + αkρk,. (29)

Then, gradient gk+1 is evaluated by LM at vk+1.
Now, a new search direction is conjugate to the previous one using the following relation.

pk+1 = −gk+1 + βk pk, (30)

where parameter βk is given by

βk =
gT

k+1gk+1

gT
k gk

, (31)
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which is known as the Fletcher–Reeves formula [27]. Then, the update continues by going
back to Equation (27) to find new step αk+1.

6. Results: Deep Learning vs. Classical Single-Tone FE

In this section, we analyze the performance of the DL approach for the frequency
estimation of single tones in comparison with computationally efficient classical techniques.

For each SNR, a different network is trained to recognize frequencies in the specified
frequency range. As the SNR may change in communication systems, this result may imply
that a complicated set of DL-based estimators is necessary for proper functioning, and this
complexity is not necessary.

The number of signal samples N used in the design of the estimation system has
significant impact on FE performance in both DFT- and DL-based techniques. Therefore,
a larger signal duration T (allowed for by the estimation system design) gives a larger
N = T/Ts, and thereby better estimation.

Even better results can be obtained via more realizations. During the training phase, a
larger number of realizations r implies better training. In the testing phase (actual working
environment), obtaining a number ρ of different realizations is possible via dividing the
input samples into sets of specific length that equal signal length N, which was selected
during training (i.e., the number of input nodes to the trained DL network). Hence, for
better frequency estimation, the transmitter should initially send the carrier single tone for
sufficient sending duration P that includes a multiple ρ of training duration T (of which the
sample length is N = T/Ts), i.e., P = ρT or ρN = P/Ts. The final frequency estimate is
the average of estimates over ρ realizations.

6.1. Performance under Different Input Lengths

First, we compared the performance of the DL-based FE with the selected classical
DFT-based techniques for different values of the training input size (N). Figure 2 shows
the performance of DL method with J = K = 5 versus selected classical techniques.
The sinusoidal frequency was selected to be fo = 24.41 Hz. For a small N, the classical
DFT-based approach failed to correctly estimate the input frequency.
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The number of realizations during the training phase was selected to be R = 100.
Considering different realizations in the training phase improves the network design, so
that it would be ready to handle different situations in the application phase. During the
application (working) phase, the number of realizations was selected to be ρ = 30. These
working realizations improve estimation performance. In this paper, network performance
was considered for ρ = 30. This choice of ρ is user-dependent and has no effect on
network complexity.

Figure 3 shows the performance of the DL-based approach versus the best of the
selected DFT-based approaches, the barycentric approach, for different input lengths, while
Figure 4 shows the performance of the DL-based approach versus the barycentric approach
with fewer nodes in the network, such that J = K = 3.
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No significant difference was seen in error performance, as shown in Figure 4 (for
J = K = 3), when compared with the error performance shown in Figure 3 (for J = K = 5).
Despite the reduction in the number of nodes in both hidden layers of the network from 5
to 3, the error curves had almost the same trajectories versus SNR.
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Figure 4. DL vs. barycentric DFT-based FE for different input lengths with J = K = 3. Bold curves used for DL.

6.2. Performance under Insufficient SNR Information

SNR estimation is necessary for many purposes in communication systems, and it
is needed for DL frequency estimation, as training is performed under a specific SNR.
However, in some systems (e.g., some sensor networks), limited computational capabilities
may not allow for SNR estimation except probably for a rough estimate. Knowing the exact
value of SNR did not cause the performance of DL estimation to deteriorate, where only
minor changes in the performance were noticed, as shown in Figure 5. Hence, the same
network could be used for FE under different SNRs.
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Relative deviation ν of DL performance for FE, averaged over M values of SNR, is
defined as

ν =
1
M

M

∑
k = 1

eb(k)
eo(k)

, (32)

where eo(k) and eb(k) are the average errors at the kth SNR value (dB) under normal
operation (correct SNR information) and biased SNR, respectively. Figure 6 shows relative
deviation when J = K = 5. Nonsymmetric deviation was expected for positive and
negative bias due to the nonsymmetry of the FE error performance curves (see Figures 2–4).
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6.3. Effect of Increasing Nodes at Hidden Layers

Generally, no significant performance difference was found when increasing the
number of nodes in the hidden layers, as shown in Figure 7, where the performance
comparison versus the barycentric method is presented using DLs with J = K = 5 and
J = K = 3.
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6.4. Impact on IoT, Sensors, and SDR

Reduced complexity can lead to the efficient implementation of FE, since DL does
not need general-purpose digital multipliers if implemented as a multibit system, where
trained weights can be implemented using look-up tables.

On the other hand, cheap and hardware-efficient implementation using short word
length (SWL) is possible due to reduced complexity, where complicated digital multipliers
are replaced by simple multiplexers.

Another hardware gain is because DFT techniques require the use of a complex-valued
arithmetic, while DL systems use only a real-valued arithmetic. The implementation of
a large DFT is a very complicated task for both hardware and software designs despite
the significant efficiency provided via the latest versions of the fast Fourier transform
(FFT) algorithm, which reduces the number of (complex) multiplications from O

{
N2} to

O{N log2(N)} [28].
From this work and [9–11], it can be inferred that N is proportional to input frequency

fo; hence, for high frequencies, size N can be large if DL is used, and much larger for
classical FE if the same accuracy as that of DL is required, calling for very complicated DFT
implementation in the complex-valued domain.

FFT implementation via parallel-computing algorithms can alleviate the time cost [20];
however, this approach is very expensive, power-consuming, and hardware-costly, which
may not be suitable for many systems, especially in emerging IoT sensor applications.

Large-scale sensor applications require tiny, low-power, low-cost implementation,
such as sensors used for healthcare monitoring, the early detection and monitoring of forest
fires, natural-disaster detection, and large-scale surveillance for security applications.

Complicated, complex-valued operations increase both system size and complexity,
and power consumption, which is a crucial factor in sensors deployed in WSNs, as the
lifetime of these sensors is limited by the irreplaceable battery life [18].
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For DL-based approaches, the number of (real) multiplications is mostly at the input
stage, which is N, while other node multiplications are normally as low as 6 real-valued
multiplications (which are trivial operations as they use look-up tables instead of digital
multipliers); hence, the overall number of real-valued multiplications is O{N}.

Whether implemented using SWL or multibit technologies, this reduced complexity
(versus the complicated, complex-valued classical FE techniques) makes the DL-based
approach the most suitable FE technology in sensors and sensor networks, which are
inherently linked to modern IoT applications.

Similar gains are obtained if implementation is performed via software, where reduced
complexity leads to significant time gain, a factor that is attractive for software-defined
radio (SDR) communications.

6.5. Future Directions: DL in the SWL Domain

The authors are currently investigating the possible implementation of the DL-based
FE using short word length (SWL) where single-bit and ternary technologies are considered.

As the training phase can be performed offline, training could be accomplished
using multibit computer simulation; however, training data should be converted into the
SWL format. In this case, the new factor of quantization noise emerges, and this can be
handled by better noise shaping via the proper selection of oversampling ratio (OSR), the
quantization process, and the filter design of the sigma–delta modulator (SDM).

As adaptivity is now performed offline, this DL design for SWL could be even less
complicated than the design of adaptivity in SWL systems is, first introduced in [29] as a
result of SWL research supported by the Australian Research Council via discovery grant
DP0557429.

The successful SWL implementation of DL-based FE could transform many other
resource-limited IoT and sensor applications after the advent of DL techniques into the
SWL domain.

7. Conclusions

This paper presented comprehensive analysis of the performance of a deep-learning
based approach for the frequency estimation of a single-tone sinusoid. This work fills
in the gaps of unhandled issues in recently proposed methods based on deep learning.
The paper presented analysis of the frequency-estimation error under a range of signal-
to-noise ratios (SNRs). Hidden layers can be as few as two, each with two or three nodes.
The number of input samples (nodes) can be very small as compared to that in DFT-
based classical methods, with much better error performance. In addition, performance
was not significantly degraded in the case of wrong information about the actual value
of the SNR. These results can reduce the complexity, power consumption, and cost of
the communication system, properties that can be very useful for systems with limited
memory and computational capabilities, such as wireless sensor networks (WSNs), which
are inherently linked to current and future applications on the Internet of Things. Reduced
complexity without using a complex-valued arithmetic also makes the DL technology
for frequency estimation suitable for software-defined radio. Exploiting this reduced
complexity to introduce DL in the short-word-length (SWL) domain was presented as a
future direction.
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