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Abstract: The skeletal muscle is the largest organ in the body and secretes circulating factors, includ-
ing myokines, which are involved in various cellular signaling processes. Skeletal muscle is vital for
metabolism and physiology and plays a crucial role in insulin-mediated glucose disposal. Myokines
have autocrine, paracrine, and endocrine functions, serving as critical regulators of myogenic differ-
entiation, fiber-type switching, and maintaining muscle mass. Myokines have profound effects on
energy metabolism and inflammation, contributing to the pathophysiology of type 2 diabetes (T2D)
and other metabolic diseases. Myokines have been shown to increase insulin sensitivity, thereby
improving glucose disposal and regulating glucose and lipid metabolism. Many myokines have
now been identified, and research on myokine signaling mechanisms and functions is rapidly emerg-
ing. This review summarizes the current state of the field regarding the role of myokines in tissue
cross-talk, including their molecular mechanisms, and their potential as therapeutic targets for T2D.
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1. Introduction
1.1. Diabetes and Skeletal Muscle Insulin Resistance

Diabetes mellitus has a complex pathophysiology that combines impaired metabolism
and deficient glucose disposal; it affects multiple organs and increases the risk of life-
threatening cardiomyopathy, as well as complications of nephropathy, neuropathy, and
retinopathy [1–4]. The skeletal muscle is the largest organ in the body and is essential to
maintain vital functions such as movement, postural support, breathing, and thermogene-
sis [5]. Notably, skeletal muscle is also a primary site for glucose uptake; indeed, euglycemic
hyperinsulinemic clamp experiments demonstrate that 80–90% of infused glucose is taken
up by skeletal muscle [6]. Diabetes mellitus is broadly divided into type 1 (T1D) and
type 2 (T2D) diabetes. T1D is a chronic autoimmune disorder in which dysfunctional
pancreatic islet β-cells are targeted for destruction, thereby depleting insulin and impairing
glucose uptake by peripheral tissues such as skeletal muscle and fat. This dysfunction
results in persistent high circulatory glucose levels. In T2D, which accounts for about
90% of all diabetes cases, peripheral organs, including skeletal muscle, fat, and the liver,
become insulin resistant, thereby leading to poor glucose clearance and high circulatory
glucose levels. As skeletal muscle is the predominant site of postprandial glucose clearance,
skeletal muscle insulin resistance is thought to be the major underlying cause of T2D. The
persistently higher levels of circulating glucose in T2D signal pancreatic islet β-cells to
produce more insulin, and eventually, the overworked β-cells become dysfunctional and
insulin secretion is impaired. Thus, the skeletal muscle and pancreatic β-cells are central
regulators of glucose homeostasis in the body.

Insulin resistance, also known as prediabetes, is an intermediate metabolic state
between normoglycemia and T2D, wherein impaired fasting glucose and/or impaired
glucose tolerance leads to metabolic dyshomeostasis. Within approximately five years of
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diagnosis, prediabetic individuals have an about 50% chance of developing T2D and other
metabolic complications that ultimately decrease their lifespan [7].

1.2. Current Therapies for Prediabetes and Disease Management

There are currently 536.6 million people worldwide with diabetes, and this is expected
to increase to an estimated 738.2 million by 2045 [8]. In the US, more than 37.3 million
people of all ages (~11.3% of the population) have diabetes and 1.5 million people are
newly diagnosed with T2D every year [9]. Furthermore, adults with prediabetes constitute
34.5% of the US population, indicating that hyperglycemia and its associated metabolic
anomalies will continue to be a serious health concern. Current treatments mostly focus on
lifestyle and drug-based interventions [10–12]. However, long-term lifestyle modifications
often fail, and the current anti-diabetes drugs can trigger serious adverse events includ-
ing heart failure, hepatotoxicity, and obesity [13,14]. Due to these limitations, there is a
considerable effort underway to identify and develop novel therapeutics to reverse and
mitigate prediabetes. This requires a multi-pronged approach since the pathophysiology
involves β-cell dysfunction, skeletal muscle insulin resistance, and contributions from
other peripheral organs. Thus, research focusing on understanding skeletal muscle insulin
sensitivity, energy metabolism, and the role of myokines with endocrine functions will
identify potent candidate therapies in future.

1.3. Skeletal Muscle Myokine-Mediated Regulatory Actions

Skeletal muscle secretes numerous myokines, which are defined as cytokines and
peptides that are produced and released by muscle fibers. Myokines are involved in the
autocrine regulation of metabolism in muscles and the para/endocrine regulation of other
organs that express myokine receptors, including the pancreas, adipose tissue, liver, heart,
bone, gut, and brain [15–17]. For instance, myokines produced by muscles during con-
traction can improve insulin sensitivity and glucose oxidation via autocrine action [18].
Furthermore, muscle fiber-derived myokines are involved in the autocrine/paracrine regu-
lation of satellite cells and promote muscle hypertrophy during exercise [19,20]. Myokines
involved in metabolic regulation can also ameliorate multiple diseases including insulin
resistance, obesity, and cancer [21–25]. Over 3000 possible myokines have been identified in
humans and rodents [26]. Interestingly, the functions of more than 100 myokines, including
many novel ones, from the secretomes of primary human myotubes [27–29] and murine
myocytes [28,30,31] have been determined.

Dysfunctional myokine secretion plays a role in the pathogenesis of aging and metabolic
diseases, including obesity, T2D, and sarcopenia [32–34]. Aging is associated with decreases
in the secretion of beneficial myokines in rodents and humans, such as Apelin, Decorin,
β-Aminoisobutyric acid (BAIBA), Sesterin, Secreted protein acidic and rich in cysteine
(SPARC), Interleukin-15 (IL-15), and Irisin [35–40]. Furthermore, increased levels of the
detrimental myokine, myostatin, is found at higher levels in streptozotocin-induced T1D
mice and in the serum of patients with T1D and T2D [41–43]. Moreover, myostatin inhibi-
tion by adeno-associated virus-induced overexpression of the myostatin propeptide in mice
increased the skeletal muscle glucose uptake in insulin-resistant HFD-fed mice. Myostatin
also suppresses muscle regeneration, and this pathological effect is partially reversed by
regular exercise and physical activity [44].

Myokines may be critical regulators of age-related pathologies including diabetes,
muscular atrophy, and chronic inflammation. Indeed, serum from T2D patients contains
reduced levels of beneficial myokines such as Irisin, IL-13, and FSTL-1 [45]. Interest-
ingly, myokines secreted by myotubes impact β-cell function, proliferation, and survival;
myokines from healthy myotubes act in a beneficial way, while myokines from insulin-
resistant myotubes act in a detrimental way, suggesting that skeletal muscle-to-pancreas
cross-talk regulates insulin secretion [46]. Similarly, the myokine expression pattern in the
secretome of T2D patients differs from that of healthy individuals, and proteomic analy-
sis from human primary skeletal muscle cells isolated from T2D patients shows altered
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myokine profiles compared to skeletal muscle cells from healthy donors [47]. Therefore, the
focus of this review is to highlight recent advances in skeletal muscle inter-organ cross-talk
mechanisms that impact whole-body glucose homeostasis, incorporating thoughts on how
this new knowledge might be leveraged to ameliorate insulin resistance for the prevention
and treatment of T2D.

2. Myokine-Mediated Muscle-to-Muscle and Muscle-to-Pancreas Communication

The evidence described in the prior section indicates that skeletal muscle can commu-
nicate with other organs through myokines secreted into the bloodstream during muscle
contraction. Moreover, some of the beneficial circulating myokines involved in metabolic
regulation are downregulated in T2D individuals. Hence, it is no surprise that common
risk factors such as a sedentary lifestyle and obesity are correlated with decreased muscle
contraction, impaired energy metabolism, and insulin resistance. Therefore, strategies to
improve/regulate myokine release and function could present therapeutic opportunities to
prevent and/or reverse T2D.

Myokines Mediate Muscle-to-Muscle Cross Talk

Exercise is a proven lifestyle intervention for the treatment of T2D. Improved insulin
sensitivity and glucose disposal is the well-known underlying molecular mechanism for the
benefits of physical activity on T2D. Myokines released during or after exercise, which can
exert effects locally within the muscle, are emerging as key mechanisms for these muscle
metabolic modifications (Figure 1). Most of these secreted myokines influence metabolism,
and/or are involved in muscle regeneration, satellite cell proliferation, and hypertrophic
responses. Therefore, myokines are important for regulating skeletal muscle homeostasis
and its adaptation to exercise training.

FGF21: Fibroblast growth factor 21 (FGF21) is a myokine with multiple therapeutic
benefits against obesity-related medical complications [48]. The activity of FGFs is medi-
ated by their binding to FGF receptors (FGFRs) and the co-receptor β-Klotho (KLB) [49,50].
In vivo gene knockout and activating antibodies for FGFR1 or the FGFR1/KLB complex
determined that the FGFR1C isoform is an important target of FGF21′s function [51–53].
FGF21 expression in human skeletal muscle is reported to be activated during hyperinsu-
linemia, and thus it has been classified as a novel insulin-stimulated myokine [54]. FGF21
mRNA and protein levels were reported to be increased in the gastrocnemius muscle and
serum of skeletal muscle-specific AKT1-overexpressing mice. In addition, AKT-enriched
C2C12 myotubes showed elevated FGF21 expression [55]. Both of these results indicate
that FGF21 secretion by skeletal muscle is regulated by the phosphatidylinositol 3-kinase
(PI3-kinase)/AKT1 signaling pathway.

FGF21 regulates glucose and lipid metabolism and helps in maintaining energy bal-
ance. In support of this notion, FGF21 injection lowers fasting glucose, triglycerides, insulin,
and glucagon levels in obese diabetic rodents [56,57] and rhesus monkeys [58,59]. Fur-
thermore, chronic administration of FGF21 analogs ameliorates dyslipidemia and reduces
body weight in obese and T2D patients, and also decreases fasting insulin levels while
increasing adiponectin levels [60,61]. Acting via AMPK regulation, FGF21 protects against
atrophy-induced inflammation, and its deficiency induces inflammation and worsens
the obesity-induced atrophy of skeletal muscle [62]. Thus, overall, FGF21 is an insulin-
stimulated beneficial myokine that regulates energy metabolism and protects against
chronic metabolic disorders such as T2D and obesity.
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Figure 1. Myokine-mediated regulation of skeletal muscle function. Myokines such as SPARC,
FGF-21, IL-6, BAIBA, CTRP15, BDNF, LIF, Irisin, myostatin (GDF-8), and IL-15 are involved in
various biological processes including muscle generation, adipogenesis, muscle hypertrophy, muscle
growth, and glucose and lipid regulation locally inside the skeletal muscle. This figure was created
with Biorender.com.

Irisin: Irisin is a beneficial myokine secreted by contracting skeletal muscle into
the circulation after proteolytic cleavage from its precursor, fibronectin type III domain-
containing protein 5 (FNDC5) [63]. Mice overexpressing FNDC5 exhibited protection
from high fat diet (HFD) diet-induced insulin resistance [64]. FNDC5 is regulated by
a peroxisome proliferator-activated receptor γ coactivator 1-α (PGC1α) [65], a master
regulator of genes involved in metabolism, thermogenesis, and antioxidant defense. In
response to exercise, PGC1α expression and activity levels are elevated, and it coordinates
the regulation of nuclear- and mitochondrial-encoded genes needed for contractile and
metabolic adaptations in skeletal muscle [66–68]. Consistent with this, FNDC5 protein
expression was increased in muscle obtained from exercise-trained rodents and humans,
whilst plasma Irisin levels were shown to be increased in mice and humans after endurance
exercise [64]. In addition, using adenoviral overexpression of FNDC5, the same study
had reported that Irisin increases total body energy expenditure and protects against
obesity-induced insulin resistance in mice.

Moreover, recent clinical studies have shown that circulating Irisin levels are reduced
in T2D patients [69,70]. Consistent with this, ex vivo Irisin treatment improved the insulin-
stimulated glucose uptake in muscle cells exposed to a lipotoxic T2D-mimicking milieu
containing high palmitate levels [71]. Irisin’s effects are mediated by AMPK activation,
which triggers p38 MAPK signaling and GLUT4 vesicle trafficking to the plasma mem-
brane [72,73]. Despite many reported beneficial effects, the receptor for Irisin still remains
unknown in most of the tissues except osteocytes, adipocytes, and enterocytes where αVβ5
integrin is determined as the Irisin receptor [74]. Overall, it has been reported that Irisin reg-
ulates glucose metabolism in skeletal muscle in an autocrine manner [73]. Given that Irisin
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also has positive effects in physiological functions such as thermogenesis, and glucose- and
lipid-oxidation, it carries potential to be an attractive target for treating metabolic disorders.

SPARC: Secreted protein acidic and rich in cysteine (SPARC)/osteonectin is an exercise-
responsive myokine. It has been reported that exercise-induced changes in muscle per-
formance (metabolic strength and development), including lactate-induced changes, are
SPARC-dependent [75]. For example, whole-body SPARC knockout mice exhibited an
impaired metabolism and defective phosphorylation of AMPK and protein kinase B in the
skeletal muscle. Consistent with this, treatment with SPARC (injected intraperitoneally
with recombinant SPARC protein) improved glucose tolerance and activated AMPK in
the skeletal muscle of SPARC knockout mice [76]. In addition, SPARC treatment to HFD-
induced obese mice reversed their glucose intolerance and restored skeletal muscle AMPK
signaling. SPARC deficiency in mice also decreases skeletal muscle mass and increases age-
dependent adiposity, as skeletal muscle mass changes are inversely correlated with adipose
mass changes [77]. In cultured myoblasts, SPARC treatment induces myogenic differenti-
ation [78,79]. SPARC gene expression is reduced during aging, which may be related to
observed age-related decreases in the levels of skeletal muscle progenitor cells [80]. Overall,
SPARC is a beneficial myokine that is involved in AMPK-mediated glucose regulation and
improves glucose tolerance.

BAIBA: Known also as 3-amino-2-methylpropanoic acid, BAIBA is a small molecule
catabolite of thymine and valine metabolism in mammals, which is produced by and
secreted from skeletal muscle. BAIBA is a novel protective myokine that is increased
during exercise via a PGC1α-dependent mechanism, improves insulin sensitivity, and
protects against HFD-induced obesity [81,82]. Similar to other myokines, BAIBA enrich-
ment/overexpression increases fatty acid oxidation and decreases lipogenesis in mice,
resulting in a reduced body fat percentage [83]. BAIBA is produced in skeletal muscle
during exercise and protects against obesity-dependent metabolic disorders, including
T2D and non-alcoholic fatty liver disease [84,85]. BAIBA treatment of palmitate-exposed
C2C12 myocytes and the skeletal muscle of HFD-fed mice ameliorated defects in the insulin
receptor substrate (IRS)-1/Akt-mediated insulin signaling pathway. In addition, BAIBA in-
fusion reversed HFD-induced weight gain and improved glucose tolerance in mice. BAIBA
also suppressed inhibitory κBα (IκBα) phosphorylation, nuclear factor κB (NFκB) nuclear
translocation, whilst promoting AMPK phosphorylation and the expression of peroxi-
some proliferator-activated receptor gamma (PPARδ) in mouse skeletal muscle and C2C12
cells [82]. Thus, BAIBA treatment protects against insulin resistance, prevents inflamma-
tion, and improves β-oxidation in skeletal muscle via the AMPK-PPARδ pathway. As with
most other myokines discussed so far, BAIBA also communicates in a paracrine fashion,
whereby it enhances the browning of white adipose tissue and increases β-oxidation in
the liver through mechanisms mediated by peroxisome proliferator-activated receptor α
(PPARα) [83]. Thus, BAIBA treatment prevents HFD-induced obesity through improving
glucose tolerance, β-oxidation, and suppressing inflammatory pathways [81,86].

Brain-derived neurotrophic factor (BDNF): Protein and mRNA levels of BDNF are
increased in human skeletal muscle after exercise [87]. BDNF is abundantly expressed in
slow twitch skeletal muscle fibers, and its beneficial effects in skeletal muscle are mediated
through AMPKα-PGC1α-mediated mitochondrial function and β-oxidation [88]. BDNF
initiates its beneficial effects by binding to the tropomyosin-related kinase receptor B (TrkB),
which subsequently activates phosphoinositide-3-kinase (PI3K)/Akt, Ras/extracellular
signal-regulated kinase (ERK), and phospholipase C (PLCγ)/protein kinase C (PKC) sig-
naling pathways [89]. Skeletal muscle specific BDNF knockout mice have impaired glucose
to fatty acid utilization during fasting, linked to reduced muscle strength, myofiber necro-
sis and insulin resistance [90]. Interestingly, skeletal muscle-specific BDNF regulates the
glycolytic muscle fiber type and metabolism [91]. BDNF addition to C2C12 myotubes cor-
relates with a high mitochondrial DNA content and increased β-oxidation rate, facilitating
mitochondrial fatty acid transport. Similarly, chronic subcutaneous or intracerebroven-
tricular administration of BDNF increased muscle glucose uptake and enhanced energy
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expenditure in obese diabetic C57BL/KsJ-db/db mice [92]. Together, these pieces of evi-
dence indicate that BDNF signaling is vital for balancing glucose and lipid metabolism in
skeletal muscle.

Interleukin-6 (IL-6): IL-6 is synthesized by and released from skeletal muscle in large
amounts during physical activity, classifying it as a myokine. However, disparate reports
of IL-6 contributing to positive and negative actions have led to controversy. For example,
one finding that IL-6 pre-treatment in mice improves skeletal muscle glucose uptake, as
assessed by hyperinsulinemic-euglycemic clamp analysis [93], supports the concept that
IL-6 plays a positive role in skeletal muscle. In addition, at 3 months of age, IL-6 knockout
mice showed an impaired exercise capacity and glucose intolerance, and they became obese
by 9 months; however, these anomalies were linked to decreased levels of AMPK, making it
unclear whether IL-6 was the causative factor [94]. Consistent with a beneficial effect of IL-6,
in humans, IL-6 injection stimulated GLUT4 translocation and improved skeletal muscle
insulin sensitivity [95]. Counterintuitively, IL-6 levels can be found elevated in insulin
resistance and T2D. In addition, palmitate-induced IL-6 production was associated with a
decreased glucose uptake in myocytes; this was reversed by an anti–IL-6 antibody [96,97].
Further confounding the interpretation of IL-6 function, IL-6 production is stimulated by
TNFα and was initially found to be elevated in T2D [98], yet a recent human study found
no changes in the circulating levels of IL-6 in T2D patients compared to control subjects [99].
Overall, IL-6 is stimulated by physical activity, but its effect on T2D is less clear, with
evidence of both positive and negative actions.

Leukemia inhibitory factor (LIF): LIF is produced by and released from skeletal
muscle cells [100]. Recombinant human LIF induces myoblast proliferation, and LIF mRNA
and protein levels were found to be upregulated in contracting cultured human myotubes
isolated from muscle biopsies of the vastus lateralis muscle, as well as in human skeletal
muscle after resistance exercise [101]. LIF activates the transcription factors Jun-B and
c-Myc, which promote satellite cell proliferation in an autocrine or paracrine fashion [101].
LIF was also found to increase the phosphorylation of AKT at Ser473 in soleus and extensor
digitorum longus muscles and increase glucose uptake in both oxidative and glycolytic
muscles [102]. Counterintuitively, LIF protein and its receptor (LIFR) are also elevated
in muscle tissue and cultured myoblasts from T2D individuals, but LIF-stimulated cell
proliferation is impaired in diabetic myoblasts [103,104]. Given that others have reported
that LIF is immediately secreted and does not accumulate in skeletal muscle [105], it
remains possible that these disparate findings could be caused by secretion defects in
diabetic individuals rather than increased LIF biosynthesis. Experiments that distinguish
these possibilities will be important to gain a deeper understanding of the interplay between
LIF and metabolic disease.

Interleukin-15 (IL-15): Skeletal muscle is an important source of circulatory IL-15
levels. IL-15 is a member of the IL-2 superfamily and, in humans and mouse models,
IL-15 levels increase after acute physical exercise [35,106–108]. IL-15 is associated with
beneficial actions; for instance, IL-15 overexpression induces weight loss and reduces
white adipose tissue mass in rodents [95,109,110]. Moreover, enrichment of IL-15 protects
against HFD-induced obesity and insulin resistance in mice models [111,112]. Consistent
with this, obese human subjects have decreased levels of circulating IL-15 compared to
lean individuals [95]. However, although IL-15 treatment of C2C12 myotubes increases
GLUT4 gene expression and GLUT4 vesicle translocation, glucose uptake is not coordi-
nately increased [113,114]. Instead, the effect of IL-15 is likely to occur at the level of the
muscle tissue. In rodents, increased levels of circulating IL-5 induced fiber-type shifts,
which promote an oxidative phenotype with increased mitochondrial DNA levels and
cytochrome C oxidase activity [35,115]. Indeed, IL-15 therapy was found to mimic the
anti-aging effects of exercise on skeletal muscle and skin in mouse models, suggesting it is a
beneficial strategy to attenuate aging [35]. Furthermore, IL-15 treatment of skeletal muscle
cells was found to exert protection against H2O2-induced oxidative stress and enhance
mitochondrial function through a PPARδ-dependent mechanism. Overall, IL-15 may act
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in an auto/paracrine manner that is responsible for the skeletal muscle-mediated positive
effects of exercise. Collectively, this evidence suggests that increasing IL-15 expression is a
candidate intervention to prevent and remediate obesity and T2D.

Myonectin (CTRP15): Myonectin is a recently discovered mycophenolate that is
released by skeletal muscle. It belongs to the C1q/TNF-related protein (CTRP) family, which
is involved in the regulation of glucose and fatty acid metabolism [116–118]. Amongst the
CTRP family members, myonectin is the one whose expression is limited only to skeletal
muscle [119]. Moreover, slow-twitch fibers with higher oxidative metabolism express
higher levels of the myonectin gene relative to fast-twitch fibers, which have a higher
glycolytic metabolism. Elevated levels of intracellular calcium have been shown to increase
the expression of myonectin in skeletal muscle [120,121]. Myonectin is elevated in adults
with T2D and increased adiposity, relative to healthy individuals, likely as a compensatory
mechanism against insulin resistance [122]. However, diet-induced obesity in mice does
not cause this compensatory mechanism—the muscle mRNA levels and circulating protein
levels of myonectin were reduced relative to control mice, and subsequent voluntary
exercise increased myonectin gene expression and circulating protein levels [123]. This
conundrum was resolved when it was determined that myonectin levels are raised after
feeding, indicating that myonectin secretion could be regulated by substrate availability.
For example, overnight fasting decreases myonectin levels, and subsequent feeding with
glucose or emulsified lipids increases circulating myonectin levels in mouse models [123].
Overall, myonectin is an important mediator in inter-organ cross-talk and its secretion
by skeletal muscle increases with the higher availability of glucose and fatty acids in the
insulin-resistant and T2D state as a compensatory mechanism to improve glucose tolerance
and increase fatty acid oxidation [122,124].

Myostatin: Myostatin, also named growth and differentiation factor-8 (GDF-8), is
expressed in both embryonic and adult skeletal muscle. It is secreted by skeletal muscle
and cardiac cells and is reported to inhibit muscle growth and differentiation and reduce
skeletal muscle mass [125,126]. Consistent with this, myostatin-suppressed mice and cattle
are larger than control animals, suggesting that myostatin functions as a ‘brake’ to suppress
skeletal muscle growth [127,128]; similar findings have been reported for humans and
dogs [129]. Myostatin is a member of the transforming growth factor β (TGFβ) superfam-
ily. Mechanistically, myostatin binds to activin type IIA and IIB receptors (ActRIIA/B)
and TGFβ receptors (TGFβRII) at the plasma membrane. The myostatin-mediated muscle
growth impairment is caused by activating activin, which in turn phosphorylates SMAD2/3
and promotes the establishment of a heterotrimeric complex with SMAD4 [130]. Further-
more, the inhibition of myostatin-induced reactive oxygen species (ROS) is an effective
treatment for reducing muscle wasting during sarcopenia [131]. Interestingly, myostatin
ablation in mice skeletal muscle was also discovered to prevent fat mass gain [132]. While
myostatin was initially discovered as a myokine, it was later determined to also be secreted
by adipose tissue, and thus is termed as an adipo-myokine [133]. Consistent with a role
in adipose tissue, myostatin knockout mice had shown a reduced fat pad mass and were
resistant to obesity and insulin resistance [134–136]. Further, the inhibition of myostatin,
via a loss-of-function mutation in one or both alleles of the myostatin gene, improves whole-
body insulin sensitivity and alleviates the development of insulin resistance in obese mice;
the genetic loss of myostatin also improves insulin sensitivity and glucose tolerance in
severely obese mouse models [135,137,138]. Moreover, the muscle-specific inhibition of
myostatin increases the protein levels of GLUT1 and GLUT4 in rat muscle [139], providing
a mechanistic basis for the beneficial effects of myostatin inhibition to improve glucose
tolerance. Together, myostatin is a negative myokine/adipokine that impairs glucose
uptake, enhances adiposity, and impairs muscle growth and function.

3. Muscle-to-Pancreas Cross-Talk

Skeletal muscle influences insulin secretion by interacting with the pancreas through
humoral factors [46,140–142]. The discovery that skeletal muscle has an endocrine function
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has provided key insights into inter-organ cross-talk (Figure 2). For example, skeletal
muscle-specific PGC1α knockout mice displayed impaired insulin secretion [141]. Addi-
tionally, the skeletal muscle-specific enrichment of RING-finger protein 1 (MuRF1) modifies
the muscle metabolism, which stimulates pancreatic insulin secretion [142]. In addition,
conditioned media from human muscle cells enriched with IL-6, IL8/CXCL8, MCP1/CCL2,
fractalkine/CX3CL1, and RANTES/CCL5 increased glucose-stimulated insulin secretion
(GSIS) from rat and human primary β-cells [46,143,144]. β-cell responsiveness to myokines
is linked to the presence of many of the myokine receptors on the islet β-cells. Of note,
the overexpression of the p21–activated kinase 1 (PAK1, required for the non-canonical
insulin-stimulated GLUT4 vesicle translocation in skeletal muscle cells) [145–147] in rat
L6 myoblasts or myotubes releases into the conditioned media muscle-derived circulat-
ing factor(s) that are capable of enhancing β-cell function [148]. Interestingly, myokines
secreted into conditioned media from human T2D skeletal muscle cells cultured under
diabetogenic conditions were shown to suppress GSIS from β-cells [149]. β-cell responsive-
ness to myokines is linked to the presence of many of the myokine receptors on the islet
β-cells. Myokines released from insulin-sensitive or insulin-resistant skeletal muscle that
have positive and/or negative effects on the function and survival β-cells are discussed in
this section.
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Figure 2. Myokine-mediated systemic regulation. Skeletal muscle-secreted myokines are involved
in cross-talk with other internal organs to regulate cognitive function, stimulate osteoblast differ-
entiation, enhance islet β-cell function, promote insulin secretion, regulate mitochondrial function,
increase lipolysis and promote glucose oxidation. Through their role in organ cross-talk and systemic
regulation of energy metabolism, myokines hold substantial promise for reducing inflammation and
reducing the risk of insulin resistance and type 2 diabetes. This figure was created with Biorender.com.

Chemokine C-X-C motif ligand 10: Chemokine C-X-C motif ligand 10 (CXCL10),
also called IFNγ-induced protein 10 (IP-10), is a protein produced and secreted by several
cell types, including skeletal muscle. It is known as an inflammatory chemokine that
exhibits pleiotropic effects on a wide range of pathophysiological processes, including
T2D. Cultured insulin-resistant skeletal muscle cells secrete higher levels of CXCL10 than
control cells [150], indicating that CXCL10 may have detrimental functions, and CXCL10
is increased in serum of T2D individuals relative to healthy individuals [151–154]. Direct
CXCL10 treatment of pancreatic β-cells induces β-cell apoptosis. Consistent with this, the
provision of conditioned media from insulin-resistant human myotubes, which express
elevated levels of CXCL10, resulted in β-cell apoptosis [46].
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Follistatin: Follistatin is vital for the formation and growth of skeletal muscle fibers [155,156],
and it has autocrine and paracrine functions in metabolism [157,158]. In response to
physical activity, follistatin levels rapidly increase. Follistatin is then secreted into the
bloodstream where, in a paracrine function, it targets the pancreas [159]. Acute follistatin
treatment reduces glucagon secretion from the pancreatic α-cells. Conversely, chronic
follistatin treatment prevents apoptosis and induces the proliferation of rat β-cells [160].
Follistatin acts as an antagonist of activin A, thereby suppressing the effects of activin A on
SMAD2/3, relieving the activin A-mediated suppression of skeletal muscle glucose uptake,
and alleviating the transcriptional repression of canonical β-cell transcription factors includ-
ing MafA and Pdx1 [161,162]. Counterintuitively, patients with T2D show elevated levels
of follistatin, yet it remains unclear whether this is a consequence of long-term defects in
glucose metabolism [157]. Further studies are required to understand the extent to which
follistatin acts as an autocrine myokine to positively impact pancreatic function.

Irisin: As described previously, Irisin acts on the skeletal muscle to increase glucose
oxidation and reduce circulatory glucose levels [64,163]. In addition to its autocrine role
in muscle-to-muscle communication, Irisin also improves the proliferation of INS-1E β-
cells, increases their insulin production, and protects them from hyperglycemia-induced
apoptosis [164]. Furthermore, the administration of Irisin to T2D rats (diabetes induced via
HFD feeding plus streptozotocin treatment) led to an improved glucose tolerance along
with lowered fasting blood glucose [164]. Similarly, mice administered Irisin also showed
improved glucose-stimulated insulin secretion as well as increased β-cell proliferation
in vivo, suggesting that Irisin plays a positive role in pancreatic β-cells. Indeed, later ex
vivo studies supported this idea as mouse and human islets cultured with muscle-derived
Irisin-enriched conditioned media from palmitate-treated L6 myotubes displayed increased
insulin biosynthesis and protection from palmitate-induced β-cell apoptosis [165]. There-
fore, Irisin could be considered as the positive myokine that regulates energy metabolism
both via improved skeletal muscle insulin sensitivity and islet β-cell insulin secretion.

Fractalkine: Known also as Chemokine (C-X3-C motif) ligand 1 (CX3CL1), Fractalkine
is a myokine with a potentially beneficial function in muscle injury and repair [166].
Consistent with this concept, the expression of Fractaline is increased in insulin-resistant
human skeletal muscle cells ex vivo [46], and Fractaline treatment of islets ex vivo led
to elevated intracellular calcium (Ca2+) and triggered insulin secretion in both mouse
and human islets [167]. Furthermore, the chronic administration of a Fractaline analog in
various rodent models of obesity improved glucose tolerance, increased β-cell glucose-
stimulated insulin secretion, and reduced β-cell apoptosis, highlighting its positive effect in
regulating glucose homeostasis [167,168]. Fractaline treatment also prevents TNFα-induced
dysfunction in primary β-cells [169]. Due to its positive functions in muscle-to-pancreas
cross-talk, Fractaline may be of great interest as a new therapeutic agent for T2D.

4. Myokine Cross-Talk with Other Major Metabolic Organs

In addition to autocrine actions and cross-talk with the pancreas, myokines mediate
muscle-to-organ cross-talk with the brain, adipose tissue, heart, kidney, bone, gut, liver,
vascular bed, and skin (Table 1). For example, in adipose tissue, myokines play a central
role in energy metabolism, the regulation of lipid mobilization, and glucose oxidation. Thus,
given that T2D is a disease of organs beyond just muscle and the pancreas, understanding
the additional muscle-to-organ interactions may contribute to the development of effective
therapeutic strategies to prevent or reverse metabolic disorders including T2D.



Int. J. Mol. Sci. 2022, 23, 4636 10 of 24

Table 1. Myokines involved in organ cross-talk and regulation of metabolism.

Myokines Organ Cross-Talk Role in Energy Metabolism

Adiponectin Adipose tissue, Pancreas ↑ Glucose metabolism [170,171]

Apelin Heart, Pancreas
↑Insulin sensitivity [172]
↑Glucose uptake [173,174]

↑ β-oxidation [175]

BAIBA Fat, Liver, Bone ↑ Mitochondrial metabolism [81,83]
↑ Insulin sensitivity [82]

CX3CL1/Fractaline Pancreas ↑ Fatty acid oxidation [176]

FGF21 Adipose tissue, Liver

↑ Insulin sensitivity [59,177]
↑ Lipolysis [178,179]

↑ Oxidative capacities [180]
↓ Triglycerides l [181,182]

IL-15 Adipose tissue, Bone

↑ Glucose uptake [183]
↑ Fatty acid oxidation [115]

↑ Mitochondrial function [183]
↓Oxidative stress and lipid

accumulation [183]

IL-6 Liver, Adipose tissue, Pancreas, Bone

↑ Insulin sensitivity [184]
↑ Glucose uptake [18,184,185]
↑ Fatty acid oxidation [186]
↑ Glycogen synthesis [186]

IL-10 Adipose tissue ↑ Glucose metabolism [187,188]

Irisin Adipose tissue, Brain, Bone, Heart, Blood,
Kidney

↑Glucose uptake [64,189]
↑ β-oxidation and mitochondrial

biogenesis [63,189]

METRNL Adipose tissue ↑ Glucose metabolism [190,191]

Musclin (osteocrin) Heart, Bone, Brain ↓Decrease glucose uptake and
insulin sensitivity

Myonectin Heart, Liver, Adipocytes ↑ Glucose uptake [120]
↑ β-oxidation [123,192]

Myostatin Adipose tissue, Liver, Bone, Muscle ↓Decrease glucose uptake and insulin
sensitivity [193–195]

Osteoglycin Muscle, Bone ↑ Glucose metabolism [196]
↑ Fatty acid oxidation [197]

SPARC Adipose tissue, Muscle ↑ Glucose tolerance [76]
inhibits adipogenesis [198]

4.1. Muscle-to-Adipose Tissue Cross-Talk

Exercise-induced myokines regulate lipid metabolism, induce the formation of brown
adipose tissue, and inhibit inflammatory responses. Numerous studies indicate that skeletal
muscle-derived myokines modulate the pathophysiological functions of adipose tissue. For
instance, the circulating levels of IL-6 are increased during muscle contraction and regulate
metabolic actions in adipose tissue. IL-6 secretion is mediated through increasing cytosolic
Ca2+ and activating P38 mitogen-activated protein kinase or calcineurin. In line with this,
IL-6 is predominantly secreted by slow-twitch fibers; circulating IL-6 induces the expression
of brown adipose tissue-associated uncoupling protein 1 (UCP1) in white adipose tissue as
a response to cold adaptation and participates in fat browning [199]. While recombinant
human IL-6 (rhIL-6) treatment in humans increased fatty acid oxidation, it had no effect
on glucose metabolism [95]. Further, the ex vivo treatment of rodent epididymal adipose
tissue with IL-6 enhanced lipolysis [200], and humans infused with IL-6 exhibited increased
whole-body lipolysis and fat oxidation [95,201]. Since IL-6 activation in subcutaneous
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adipose tissue may induce leptin-mediated GLP-1 release [202], and GLP-1 potentiates
glucose-stimulated insulin release, selective IL-6 activation could be a beneficial strategy to
prevent the development of T2D in insulin-resistant patients.

Meteorin-like (Metrnl) is a novel muscle-derived factor reported to regulate energy
homeostasis. Exercise induces Metrnl expression in muscle, and it is released into the
circulation where it exerts anti-inflammatory effects on the adipose tissue macrophages
of HFD-fed mice by suppressing NLRP3 inflammasome activation in subcutaneous and
visceral adipose tissue [203]. Exercise-induced circulating Metrnl also enhances energy
expenditure, increases anti-inflammatory cytokines, and activates beige fat thermogenesis
in mice [204]. In addition, follistatin enrichment in mice decreases abdominal fat content,
increases glucose clearance, and improves plasma lipid profiles via enhancing AMPK-
mediated energy expenditure [205]. In addition, follistatin induces adipocyte differentiation
and regulates energy metabolism in cultured primary mouse embryonic fibroblasts [206].
Finally, Irisin mediates white adipose tissue browning and ameliorates perivascular adipose
tissue dysfunction in HFD-induced obese mice [64,207]. Recombinant FNDC5 (Irisin
precursor) treatment of primary subcutaneous adipocytes increased the expression of
brown adipose tissue genes including UCP1, Elovl3, Cox7a, and Otop1, and increased the
mitochondrial content, oxygen consumption, and a beige phenotype [208]. Recombinant
Irisin treatment of 3T3-L1 mouse and rat primary adipocytes similarly increased the mRNA
levels of brown adipose tissue-specific genes, which was regulated via the p38 MAPK and
ERK signaling pathways [72]. Overall, these findings demonstrate that muscle-derived
myokines play central roles in the regulation of fat browning, thermogenesis, and lipolysis,
and these regulatory properties may help to protect/treat metabolic disorders and obesity.

4.2. Muscle-to-Brain Cross-Talk

Recent research suggests that myokines are involved in muscle–brain communica-
tion. Reduced BDNF is associated with T2D, coronary disorders, and atherosclerosis in
humans [209,210]. BDNF is a fasting-induced myokine that controls the metabolic repro-
graming of lipid and glucose oxidation for ATP production during metabolic stress [90],
and specifically, muscle-derived BDNF facilitates metabolic adaption during nutrient in-
sufficiency in a female-specific manner; deficient BDNF production in skeletal muscle
promotes the development of metabolic myopathies and insulin resistance. Furthermore, a
peripheral injection of BDNF reduces hyperglycemia in obese rodents, [211,212]. Consistent
with this, BDNF knockout mice develop mature-onset obesity with elevated levels of serum
leptin, insulin, glucose, and cholesterol, and an increased body mass index [213,214].

Cathepsin B (CTSB) is an exercise-induced myokine required for adult neurogenesis
and memory improvement. Running and treadmill training in animals and humans
increases plasma CSTB levels, which can cross the blood–brain barrier and induce BDNF
secretion in mice [215]. In addition, conditioned media from L6 myotubes treated with the
AMPK agonist 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), to model the
effects of exercise in vitro, showed elevated CSTB levels. The brain is well known to be
the major metabolic consumer of glucose, thus exercise-mediated myokines that improve
brain functions, such as appetite control and sleep cycles, to enhance glucose oxidation
can regulate whole-body energy metabolism. Despite the referenced findings, additional
studies are essential to better understand the muscle-to-brain cross-talk in the context of
peripheral insulin resistance/sensitivity and energy regulation.

4.3. Muscle-to-Liver Cross-Talk

The liver is the central hub for metabolism; it maintains a constant energy supply
to other organs via regulating various pathways including glycogenesis, glycogenolysis,
gluconeogenesis, and lipolysis. Exercise-mediated increases in energy demand are compen-
sated for by increased hepatic glucose production. Myokines such as IL-6, Irisin, BAIBA,
myonectin, and FGF21 are involved in the control of metabolic events in the liver and
regulate systemic energy homeostasis. For example, human muscle-derived IL-6 signals to
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hepatic cells to produce glucose during exercise [216]. In the absence of exercise, however,
IL-6 infusion in lean and obese mice enhanced the AKT-mediated downregulation of liver
glucogenesis [217], demonstrating that IL-6 can serve as a signaling regulator that can
either increase or decrease liver glucose production based on the body’s energy demand.
IL-6 can be upregulated in the gastrocnemius and liver in mice by the delivery of the
pro-inflammatory cytokine interleukin-17 (IL-17), which correlates with inflammatory in-
duction [218]. IL-17 induction in adult rats via an acute single bout of strenuous exercise
also correlated with increased inflammation of skeletal muscles [219]. Furthermore, obesity-
induced IL-17 is considered central to the development and progression of non-alcoholic
fatty liver disease to steatohepatitis [220]; increased peripheral IL-17 levels are associated
with early atherosclerosis in obese patients [221,222].

In other examples, Irisin, BAIBA, myonectin and FGF21 impact liver. Irisin content in
circulation is negatively correlated with circulatory high-density lipoprotein, cholesterol,
and intrahepatic triglyceride content, protecting against fatty liver [214]. Indeed, sarcopenic
patients with liver cirrhosis showed decreased serum Irisin concentrations [223]. Further-
more, studies of non-alcoholic fatty liver disease patients have revealed that Irisin levels
are low in patients with moderate-to-severe steatosis [224]. Mechanistically, Irisin inhibits
hepatic gluconeogenesis and increases glycogen synthesis mediated by the PI3K/Akt path-
way in T2D mice and HepG2 cells [225]. BAIBA, released from the muscle after exercise,
increases hepatic β-oxidation [83]. Myonectin increases fatty acid uptake into cultured
hepatocytes via a mechanism involving the upregulation of genes involved in fatty acid
utilization, including CD36, FATP1, FABP1, and FABP4 [123]. Lastly, chronic treatment
with FGF21 in the db/db diabetic mouse model improved hepatic glucose uptake and
suppressed hepatic gluconeogenesis-mediated glucose release [226]. Taken together, these
findings demonstrate that the liver is a target organ for myokine action, which regulates its
metabolic function in response to the skeletal muscle’s energy requirements.

4.4. Muscle-to-Heart/Kidney/Bone Tissue Cross-Talk

Skeletal muscle myokines also mediate communication with the heart, bone, blood
and kidney to regulate metabolic functions [227–230].

Muscle-Heart cross-talk: Myokines such as apelin, myonectin, Irisin, and BDNF decrease
the risk of cardiovascular complications in sarcopenia patients [231]. Indeed, myonectin
heterozygous knockout mice subjected to an ischemia-reperfusion injury exhibited increases
in myocardial infarct size, apoptosis, cardiac dysfunction, and pro-inflammatory gene levels
compared with the wild-type. In contrast, mice with skeletal muscle-specific overexpression
of myonectin showed reduced myocardial damage after ischemia-reperfusion [232].

Muscle-Kidney cross-talk: Primary kidney tubule cells cultured with serum enriched in
Irisin, BDNF, and IL-15 showed increased levels of maximal respiratory capacity and ATP-
coupled respiration [233]. This study further showed that recombinant Irisin counteracts
TGF-β1-induced pathological metabolic reprogramming in primary kidney tubule cells,
which improves kidney function and blocks fibrosis.

Muscle-Bone cross-talk: Irisin treatment in young male C57BL/6 mice correlated with
increased cortical bone mass, geometry and strength [234]. As described in previous
sections, IL-6 can exert positive or negative actions, and in bone, the effects are largely
negative. For example, IL-6 promotes osteoclastogenesis by inducing the release of Receptor
Activator of Nuclear factor Kappa-B (RANK) from osteoblasts, osteocytes, and leukocytes.
RANK promotes the expression of its specific ligand (RANKL) by osteoclasts, leading to
a net resorption of bone [235]. In addition, myostatin, activin, IL-6 and CNTF negatively
impact bone growth and function, whereas myokines such as IGF-1, FGF-2, IL-7, IL-15,
Follistatin and osteonectin exert positive actions on bone function [236].

5. Perspectives: Myokines as Therapeutic Targets for T2D

Leveraging the positive actions of myokines on insulin secretion, insulin sensitivity,
and energy metabolism could lead to important novel therapies for T2D. As expected,
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there has been a surge in research on contraction-regulated myokines that promote β-cell
mass and function [237,238]. Beneficial myokines, including Irisin, fractalkine, FGF21, my-
onectin, and IL-15, improve β-cell mass and/or function, which regulates glucose and lipid
metabolism. For example, FGF21-boosted insulin secretion is accompanied by decreased
triacylglycerol levels and increased insulin sensitivity via skeletal muscle glucose uptake,
white adipose tissue lipolysis and browning, and increased energy expenditure [239,240].
Similarly, human obese/overweight women participating in an aerobic exercise program
were found to have higher serum myonectin levels, with significantly decreased susceptibil-
ity for insulin resistance [124]. In line with this, Chinese T2D patients displayed decreased
serum myonectin levels [241], suggesting that myonectin may serve as a rheostat for insulin
sensitivity. In another approach, antagonists of ‘detrimental myokines’ could provide
a therapeutic benefit for metabolic disease. One example of this is the antagonism of
myostatin, which was used to prevent/reverse muscle wasting [242], but could be extrap-
olated further to metabolic disease applications. These examples together demonstrate
the potential clinical importance of targeting myokines for metabolic disease. However,
there are points of controversy regarding myokine targeting in humans. An example of
disparate findings is shown with the myokine IL-6, where some report that IL-6 increases
β-cell function [140,238] and others have demonstrated no significant changes in insulin
secretion in response to physiological levels of IL-6 [243]. In addition, elevated IL-6 and
IL-17 were detected in elderly patients with sarcopenia and an impaired metabolism, as
compared with non-sarcopenic elderly persons [244]. Irisin is another recently discovered
contraction-regulated myokine that induces subcutaneous white adipose tissue browning,
thereby enhancing whole-body energy expenditure, but this mechanism is restricted to
rodents and primates to date [245,246]. Additionally, the Irisin treatment of human primary
pre-adipocytes did not induce a shift of white to brown adipose tissue [245], thus calling
into question the application of Irisin as a therapeutic agent [241].

FGF21 mimetics and analogues have advanced to clinical trials in patients with T2D,
obesity and non-alcoholic steatohepatitis [247]. Daily subcutaneous administration of the
LY2405319-human FGF21 analogue for 28 days in obese and T2D patients (NCT01869959)
resulted in reduced mean fasting insulin levels, suggesting potential improvement in insulin
sensitivity, although direct measures of insulin action were not evaluated in this study [60].
Nevertheless, the trial provided information regarding the drug safety, tolerability, and
pharmacokinetic/pharmacodynamics of LY2405319, sufficient to support a 28-day phase 1b
proof-of-concept trial. Another trial tested PF-05231023, a stable long-acting human-FGF21
analogue (NCT01396187), which reported decreased body weight, but did not reduce
plasma insulin concentrations nor alter glycemia [61]. A third trial, a phase 1 multiple
ascending dose study in individuals with T2D (NCT01856881), tested AKR-001, an Fc-
FGF21 analog harboring stabilized N- and C-terminal domains of FGF21, resulting in
improved serum markers for insulin sensitivity and dyslipidemia, and demonstrated
trends toward improvements in glycemic control through enhancing insulin sensitivity
under fasting and fed conditions [248]. Based on these findings, compounds that target
FGF21 are emerging that carry therapeutic promise.

In summary, the mechanisms of myokine actions on β-cell viability and function are
mostly validated in rodent models, and only a few so far have a demonstrated mechanism
in humans. As with many therapeutic targets, the myokine levels in healthy and diseased
individuals vary significantly, leading to differential outcomes. In addition, the myokine
receptor abundance is often not quantified, and could be a contributing factor to the differ-
ential outcomes observed thus far (i.e., the muscle may increase the release of the myokine
into circulation, but a paucity of target cell receptors for the myokine could preclude its
cellular action and allow T2D to persist). Nevertheless, the list of new myokines is steadily
increasing, and comprehensive analyses of myokine networks, local and systemic levels
in health and disease, and their synergistic functions, will help to determine druggable
targets in the near future.
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