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Abstract: Background: Pseudoxanthoma elasticum (PXE), due to rare sequence variants in the
ABCC6 gene, is characterized by calcification of elastic fibers in several tissues/organs; however,
the pathomechanisms have not been completely clarified. Although it is a systemic disorder on a
genetic basis, it is not known why not all elastic fibers are calcified in the same patient and even in the
same tissue. At present, data on soft connective tissue mineralization derive from studies performed
on vascular tissues and/or on clinically affected skin, but there is no information on patients’
clinically unaffected skin. Methods: Skin biopsies from clinically unaffected and affected areas of
the same PXE patient (n = 6) and from healthy subjects were investigated by electron microscopy.
Immunohistochemistry was performed to evaluate p-SMAD 1/5/8 and p-SMAD 2/3 expression and
localization. Results: In clinically unaffected skin, fragmented elastic fibers were prevalent, whereas
calcified fibers were only rarely observed at the ultrastructural level. p-SMAD1/5/8 and p-SMAD2/3
were activated in both affected and unaffected skin. Conclusion: These findings further support the
concept that fragmentation/degradation is necessary but not sufficient to cause calcification of elastic
fibers and that additional local factors (e.g., matrix composition, mechanical forces and mesenchymal
cells) contribute to create the pro-osteogenic environment.
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1. Introduction

Pseudoxanthoma elasticum (PXE, OMIM 264800) is a genetic disease due to rare
sequence variants in the ABCC6 gene [1] that encodes the multidrug resistance-associated
protein 6 (MRP6), whose physiological role has not yet been clarified [2]. It has been recently
demonstrated that other genes such as ENPP1 (ectonucleotide pyrophosphatase/phosphodi-
esterase 1) and GGCX (γ-glutamyl carboxylase), in addition to ABCC6, have a pathogenic
role in calcification-associated diseases (e.g., PXE), as suggested by the occurrence of
digenic inheritance [3–5].

The disease is typically characterized by fragmentation and calcification of elastic
fibers associated to cutaneous, ocular, and vascular manifestations affecting patients’ qual-
ity of life [6,7]. The first clinical sign of the disease affects the skin, where laxity and yellow
papules appear on flexural body areas (e.g., neck, axilla, groin). Over time, papules may
coalesce into large plaques and increased laxity causes loss of skin elasticity, which be-
comes wrinkled and redundant [2]. Nonetheless, very frequently, cutaneous alterations are
misinterpreted, thus delaying the diagnosis. The ocular manifestations, due to calcification
of the Bruch’s membrane, have the most dramatic consequences for patients leading to
legal blindness. Peau d’orange, angioid streaks, and choroidal neovascularization repre-
sent the major alterations which are usually described in PXE patients [8–10]. The arterial
lesions are characterized by mineralized elastic fibers of the medial layer within small
and medium-sized arteries [11], and by damages of the endothelial lining. In agreement
with these findings, it has been observed an altered balance between circulating mature
and circulating progenitor of endothelial cells, indicating vascular damage and low repair
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potential; moreover, in the blood of PXE patients, an increase of circulating cells with a
shift towards the osteoblast-like phenotype has also been demonstrated [12].

PXE is considered a systemic disorder on a genetic basis; however, it has not yet been
clarified as to why not all elastic fibers are calcified in the same patient and even in the
same tissue. While clinically affected skin has been widely investigated at morphological
and biochemical levels, there is no information regarding clinically unaffected skin in the
same patient and if the absence of visible alterations is related to normal/abnormal elastic
fibers and which are the mechanisms locally controlling mineralization in PXE.

Despite the specific localization of mineral deposits on elastic fibers, by whole exome
sequencing, we have demonstrated that the elastin gene did not appear to carry any
rare sequence variant; however, changes were observed in a number of genes related to
elastic fiber assembly, signaling, and remodeling, suggesting that alterations at the elastin-
microfibril interface or at the elastic fiber-cell interface can affect elastic fiber assembly and
stability and may influence cell signalling [13].

To date, information on soft connective tissue mineralization comes from studies
mainly performed on vascular calcification [14], where it has been demonstrated that cells
undergo osteogenic differentiation due to activation of different signalling pathways (i.e.,
TGF-β signalling, BMPs-Smad-Runx2 signalling, Wnt-Msx2 signalling) [15]. Very recently,
the role of TGF-β/BMP signalling has been confirmed in a number of patients with dermal
ectopic calcification [13].

Bone morphogenetic proteins (BMPs) belong to the transforming growth factor β

(TGF-β) superfamily and regulate a wide spectrum of cellular functions such as cell pro-
liferation, differentiation, and migration. The BMP signalling starts when ligands bind
to the BMP receptor complex, that, in turn, phosphorylates cytoplasmic factors such as
small mothers against decapentaplegic (Smad)1, 5 and 8. These molecules, together with
Smad 4, translocate into the nucleus activating gene transcription factors such as Runx2
(runt-related transcription factor 2), an osteogenic transcription factor [16]. Increased
level of phosphorylated-Smad (p-Smad) serves as marker of activation of the BMP signal
transduction pathway.

TGF-β is a pleiotropic growth factor secreted as an inactive precursor; after cleavage,
mature TGF-β and a latency associated peptide (LAP) form a small latent complex, which
binds to large latent TGFβ-binding proteins (LTBP). LTBP interacts with the extracellular
matrix, including the elastic fibers. Several proteases such as matrix metalloproteinases
(MMP-2 and MMP-9) can cleave LAP and release the mature TGF-β [17]. TGF-β1 binds to
serine-threonine protein kinase receptors, which phosphorylate Smad 2 and Smad 3 and
together with Smad 4 translocate into the nucleus.

In PXE, increased MMP-2 and MMP-9 activities have been demonstrated, both in vitro
and in vivo [18,19]. These proteolytic enzymes cause elastic fibres degradation with the
formation of bioactive elastin peptides that actively contribute to vascular calcification [20],
but can also release molecules normally sequestered within the extracellular matrix, such
as TGF-β [21]. Activation and/or perturbation of the TGF-β signalling pathways plays a
key role in the pro-osteoblastic differentiation of dermal mesenchymal cells [22,23].

The aim of this study was to investigate clinically unaffected skin of PXE patients
focusing on the ultrastructure of elastic fibers and on the p-SMAD1/5/8 and p-SMAD2/3
signalling pathways.

2. Material and Methods
2.1. Control Subjects and PXE Patients

In the present study, six skin samples were taken from healthy female subjects as
waste tissue resulting from surgical procedures, and from six unrelated female patients
of comparable age, who underwent dermal histopathologic diagnosis. In the case of PXE
patients, two biopsies were taken: one from affected and the other from clinically unaffected
skin (i.e., with or without skin papules and/or laxity). Embedded samples were kept along
the years in the laboratory archives. To confirm diagnosis, in five cases, genomic DNA
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from whole blood was obtained and the search for rare sequence variants in ABCC6 gene
was performed by Sanger sequencing, as previously described [24]. Table 1 shows the PXE
causative mutations in the ABCC6 gene and the severity of the pathological phenotype
according to the Phenodex index [25]. In addition to patients reported in Table 1, a skin
biopsy was analyzed, for diagnostic purposes, also in an 8-year-old male child exhibiting
typical skin papules on the neck and a mild laxity at the axillae. For ethical reasons, we
did not perform the biopsy from the non-affected area. Biomolecular analyses of the
ABCC6 gene confirmed clinical diagnosis of PXE (ex12: c.1552C > T, p.Arg518 * and ex30:
del30, p.del30).

Table 1. Clinical data of PXE patients (ID) based on Phenodex index and ABCC6 causative mutations.

ID Age Rare Sequence Variant in ABCC6 Gene Phenodex Index *

Location/Nucleotide/
Amino Acid Variation

Location/Nucleotide/
Amino Acid Variation Skin Eye Cardiac +

Vascular

#1 22 Ex9_c.1132C > T;
p.Gln378 *

Ex14_c.1798C > T;
p.Arg600Cys 1 2 1 + 2

#2 37 IVS17_c.2248-2-1delAG;
splicing

Ex23_c.3088C > T;
p.Arg1030 * 2 2 1 + 2

#3 50 No blood available 2 2 ?

#4 52 Ex19_c.2458G > C;
p.Ala820Pro

IVS26_c.3736-1G > A;
splicing 1 3 0

#5 53 Ex24_c.3421C > T;
p.Arg1141 *

Ex24_c.3421C > T;
p.Arg1141 * 3 3 1 + 2

#6 58 Ex12_c.1553G > A;
p.Arg518Gln

Ex24_c.3421C > T;
p.Arg1141 * 3 3 0

* Skin score: 1 (papules or bumps), 2 (plaques of coalesced papules) and 3 (marked laxity); Eye score: 1 (peau d’orange); 2 (angioid streaks)
and 3 (bleeding/scar); Cardiac score: 1 (chest pain/angina/abnormal ECG), 2 (heart attack); Vascular score: 1 (weak or absent pulses), 2
(intermittent claudication), 3 (vascular surgery).

2.2. Ultrastructure Analysis by Transmission Electron Microscopy (TEM)

Samples were fixed in 2.5% glutaraldehyde (Electron Microscopy Sciences, Hatfield,
PA, USA) in 0.1 M cacodylate buffer at pH 7.4 for 12 h, post-fixed in 1% osmium tetroxide
for 60 min using the same buffer. Dehydrated samples were embedded in Spurr (Electron
Microscopy Sciences). Ultrathin sections (60–70 nm) were cut and mounted on 150 mesh
copper grids (Electron Microscopy Sciences). Unstained samples were observed with Talos
F200S G2 transmission electron microscope (Thermo Fisher Scientific, Waltham, MA, USA).

2.3. Immunohistochemistry

To evaluate TGF-β/SMAD signalling pathways, immunohistochemistry was per-
formed on resin embedded skin sections. After treatment in a saturated solution of sodium
hydrate in absolute alcohol for 30 min, the sections were incubated at 37 ◦C for 1 h with
p-SMAD1/5/8 antibody (Millipore Corporation, Oakville, CA, USA) and p-SMAD2/3
antibody (Abcam, Cambridge, UK) at 1:50 dilution using the detection kit ultraview DAB
(Roche, Monza, Italy) in an automated staining system BenchMark XT (Roche, Monza,
Italy), according to the manufacturer’s instructions. Finally, the slides were counterstained
with haematoxylin, mounted, and observed with a Zeiss light microscope.

3. Results and Discussion
3.1. Calcified and/or Degraded Elastic Fibres in Clinically Unaffected Skin

Ultrastructural analyses of clinically unaffected skin (CUS) of patients revealed, al-
though sporadically, calcified elastic fibers (Figure 1A). The rare fibers where mineral
deposits were clearly evident were similar to those observed in clinically affected skin
(CAS) (Figure 1B). Mineral precipitates were present as heavily electron-dense areas de-
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forming the elastic fibers. Moreover, in calcified fibers, holes can be observed due to loss of
mineral deposits during tissue sectioning.
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Almost all elastic fibers in control samples and in CUS of patients were comprised of 
an amorphous structure filled with electron dense dots representing matrix constituents, 
which are known to progressively accumulate within the fibers and affect the elastic prop-
erties of the tissue (Figure 2A–F). While, in control subjects, elastic fibers exhibited a reg-
ular contour (Figure 2A,D), in the CUS of PXE patients, fibers showed highly irregular 
and jagged outlines (Figure 2B,C,E,F) with numerous globules detached from the main 
elastic fiber suggesting the presence of unstable and/or fragmented fibers (Figure 2C,F). 
These findings support the hypothesis that patients with ectopic calcification exhibit 
changes in a number of genes affecting packaging, permeability, and/or flexibility of the 
elastic component, thus weakening elastic fibers’ stability and increasing their suscepti-
bility to proteolysis and, depending on the local context, to calcification [13]. Consistently, 
these alterations were not related to the patient’s age. 
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Almost all elastic fibers in control samples and in CUS of patients were comprised of an
amorphous structure filled with electron dense dots representing matrix constituents, which
are known to progressively accumulate within the fibers and affect the elastic properties
of the tissue (Figure 2A–F). While, in control subjects, elastic fibers exhibited a regular
contour (Figure 2A,D), in the CUS of PXE patients, fibers showed highly irregular and
jagged outlines (Figure 2B,C,E,F) with numerous globules detached from the main elastic
fiber suggesting the presence of unstable and/or fragmented fibers (Figure 2C,F). These
findings support the hypothesis that patients with ectopic calcification exhibit changes
in a number of genes affecting packaging, permeability, and/or flexibility of the elastic
component, thus weakening elastic fibers’ stability and increasing their susceptibility to
proteolysis and, depending on the local context, to calcification [13]. Consistently, these
alterations were not related to the patient’s age.

At higher magnification, abundant filamentous material was clearly observed at the
periphery of mature elastic fibers in CUS (Figure 3A,B), especially in areas where the
irregular contour seemed to unveil the microfibrillar scaffold guiding the tropoelastin
molecules to form the assembled fiber. Within the amorphous matrix, in addition to
the electron-dense deposits, isolated or grouped round electron-translucent structures
surrounded by a coat of electron-dense material were observed, possibly representing
initial sites of mineral deposition (Figure 3B,C). Consistently, some of these structures were
occasionally visualized as small empty holes, suggesting the loss of mineral precipitates
during tissue sectioning, as observed for larger crystal deposits in heavily calcified fibers
(Figure 3C).

Differently from control skin and from CAS, the fibroblasts in CUS were very fre-
quently in close contact with elastic fibers (Figure 3D).

In agreement with the above described findings, we report ultrastructural data ob-
tained in CAS of an eight-year-old PXE patient. This case has not been included in our
experimental design since we did not have the CUS available and therefore it was not
possible to compare the CUS and CAS on the same patient. However, results further
support the interpretation of data from adult PXE patients. In this young patient, despite
the presence of skin laxity in the site of biopsy, we were not able to observe any sign of
ectopic calcification. However, elastic fibers exhibit ultrastructural features (i.e., irregular
outline and round electron-translucent structures) similar to those observed in CUS of PXE
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adult patients, although less pronounced (Figure 4A,B). Moreover, many elastic fibers were
surrounded (Figure 4C) and/or in close contact with fibroblasts (Figure 4D).
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It is known that mesenchymal cells interact and adhere to elastic fibers, this mechanism
being very important during the morphogenesis of elastin-rich tissues (e.g., lung, blood
vessels, skin) [26] and, according to some authors, also for the repair of damaged elastic
fibers [27]. In healthy adults, where elastin synthesis is minimal and its turnover is very
low, contacts between cells and elastic fibers are rare. On the contrary, in CAS of the young
patient (where calcified elastic fibers were not detected) and in CUS of adult PXE patients
(where rare calcified fibers were occasionally observed even at the ultrastructural level),
fibroblasts are frequently very close to elastic fibers (Figures 3 and 4). Interestingly, these
interactions are less evident in CAS of adult patients characterized by a high number of
calcified elastic fibers. The interpretation of these findings is rather challenging, since
fibroblasts can interact with elastic fibers either promoting degradation/fragmentation
or repair and therefore may contribute to create a pro-osteogenic environment or, on the
contrary, to protect the fibers from mineralization.

In a previous study, it was demonstrated that, in plasma and urine of PXE patients,
the concentration of desmosines and isodesmosine (i.e., two cross-link amino acids unique
of elastin) was higher than in healthy subjects, indicating active elastin degradation [28].
Circulating elastin peptides could stimulate mesenchymal cells to adhere and to repair
elastic fibers or alternatively to further fragment elastic fibers [29,30]. In the blood of PXE
patients, compared to control subjects [19], elastolytic matrix metalloproteases (i.e., MMP-2
and MMP-9) were significantly increased. Although it has been demonstrated that MMP-2
and MMP-9 are necessary for elastin calcification [31] and that fragmented elastic fibers
are more prone to mineralize [32], these conditions are not sufficient to determine crystal
deposition. Consistently, despite the general elastolytic condition, in CUS only few frag-
mented elastic fibers appear calcified, further highlighting the importance of local factors
as it has been recently reported, demonstrating that the local environmental context (e.g.,
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pH, ion types) plays a key role in favoring or not mineralization of fragmented/degraded
elastin [33].
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Finally, at least in the patients we analyzed, no inflammatory cells were found in
either CUS or CAS. This finding is in agreement with previous data where inflammatory
cytokines levels were similar between PXE patients and healthy subjects [12].

3.2. SMAD Signalling

Several studies have shown that the ectopic calcification is an active process finely
regulated and dependent on multiple factors such as cell-matrix interactions, pro- and
anti-calcifying molecule ratio, and intracellular signalling cascades. BMPs and TGF-β
play a crucial role in promoting pathological calcification [13,34]. Within this context, we
focused on p-SMAD1/5/8 and p-SMAD2/3 comparing samples of control subjects with
skin biopsies from CUS and CAS of the same patient in order to exclude differences due to
genetic and/or environmental factors (e.g., diet, smoking).

3.2.1. p-SMAD1/5/8 Signalling Is Active in Clinically Unaffected and Affected Skin

In control skin, there was a weak immunoreactivity for p-SMAD 1/5/8 (Figure 5A),
whereas in the dermis of PXE patients, regardless of age, mesenchymal cells were strongly
positive for p-SMAD 1/5/8 both in CUS and CAS (Figures 5B and 5C, respectively).
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Previous studies have demonstrated that p-Smad1/5/8 was higher in Abcc6 knockout
mice compared to control animals [35] and that the p-SMAD1/5/8 signalling was similarly
activated in CAS of PXE patients, although images revealed an immunoreaction confined
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to the mid-dermis and co-localized with mineralization [23]. Our data are in line with
previous results obtained in patients with dermal ectopic calcification [13] and demonstrate
the intracellular immunolocalization of p-SMAD1/5/8 not only in CAS but also in CUS.

BMP signalling is tightly regulated by different intra- and extra-cellular modulators.
For example, reactive oxygen species (ROS) activate BMP signalling in the vascular wall [36].
PXE is characterized, both in vitro and in vivo, by an increase of ROS responsible for a
mild chronic oxidative stress, protein carbonylation, and lipid peroxidation [37–39]. ROS
are generated by different sources such as NADPH oxidase, xanthine oxidase, uncoupled
endothelial nitric-oxide synthase, and mitochondria. We recently demonstrated in PXE
increased mitochondrial ROS associated with mitochondrial dysfunction (e.g., increased
mitochondrial membrane potential, altered mitochondrial morphology, low free calcium
within mitochondria) [40]. Therefore, the activation of BMP signalling, observed in PXE,
may be favored by oxidative stress.

Furthermore, BMP bioavailability is also regulated by extracellular antagonists such
as matrix Gla protein (MGP), which can sequester BMP ligands inhibiting BMP signalling.
MGP is a strong inhibitor of ectopic calcification also due to its ability of binding to Ca2+ ions
if MGP glutamate residues (Glu) are post-translationally modified into γ-carboxyglutamate
(Gla) [41]. Gla-MGP regulates the activity of BMP-2 [41–45] influencing calcification and
osteogenic differentiation [46,47]. In particular, it has to be mentioned that ectopic mineral-
ization can be promoted or inhibited depending on BMP-2 and MGP levels [45].

We have demonstrated that: (i) MGP is synthesized by human dermal fibroblasts; (ii)
Gla-MGP is significantly lower in PXE than in control cells; (iii) in the dermis, Gla-MGP is
more abundant inside the control’s fibers than within the patient’s elastic fibers [48]. Thus,
in PXE, MGP, being poorly γ-carboxylated, cannot acquire the Ca2+-induced conformation
necessary for BMP-2 binding and inhibition.

The altered redox balance and the reduced carboxylation of MGP may contribute to
the activation of p-SMAD1/5/8 which, in turn, regulates the expression of pro-calcifying
genes, such as alkaline phosphatase (ALP/TNAP), an enzyme capable of hydrolyzing py-
rophosphate (i.e., inhibitor of ectopic calcification) into inorganic phosphate (i.e., promoter
of mineralization) [23,44]. In several studies, it has been highlighted that TNAP is signifi-
cantly increased in PXE compared to healthy subjects [49,50] and that its up-regulation can
be, at least in part, related to the activation of the BMP/SMAD signalling pathway.

3.2.2. p-SMAD 2/3 Signalling Is Active in Clinically Unaffected and Affected Skin

Immunohistochemical analysis revealed that in PXE, regardless of the presence of
clinically detectable skin lesions, there was an activation of the TGF-β-SMAD2/3 pathway
(Figure 6B,C) if compared to control samples (Figure 6A). Interestingly, in both CUS and
CAS, positivity was also observed in cells associated to blood vessels.
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It has been reported that TGF-β1/Smad2/3 signalling pathway is involved in the
progression of vascular calcification [51] and that accumulation of p-SMAD2/3 proteins is
present in the wall of calcified vessels [52].

A positive feedback has been observed between TGF-β and altered redox balance,
due to increased ROS and/or to decreased antioxidant systems. In fact, TGF-β can directly
promote ROS production or down-regulate the antioxidant systems, and ROS can, in turn,
influence TGF-β signalling increasing its expression [53].

TGF-β, upon MMP-dependent cleavage, can activate SMAD signalling and induce
osteoblast phenotype transition. MMPs, in fact, not only degrade elastin, but also elastin-
associated microfibrils [54] and it is worth mentioning that microfibrils contain latent TGF-β
binding proteins (LTBP) [55,56] and, consequently, their degradation determines a release
of TGF-β1 [57]. Moreover, elastin-derived peptides have been shown to be chemotactic
for different cell types (e.g., fibroblasts, smooth muscle cells) [58] and their binding to cell
membrane receptors upregulates MMPs expression and activity [54,59].

Therefore, TGF-β-SMAD2/3 activation in PXE is, at least in part, related to oxidative
stress [37,40] and to MMPs activity [18,19].

4. Conclusions

Previous investigations have demonstrated that mineral deposition in PXE is specif-
ically localized on the elastic component [6] and it has been suggested that elastic fibers
may be less stable and more prone to degradation and possibly to calcification [13,33].
At present, however, it is not known if connective tissue is also involved in clinically
unaffected areas.

The main strength of this study is to have analyzed clinically affected and unaffected
skin within the same PXE patients in order to focus on the elastic component and on
the SMAD-signalling.

Ultrastructural and immunohistochemical analyses indicate that: (i) TGF-β and BMP
signalling are similarly activated in both affected and unaffected skin compared to con-
trol samples; (ii) in clinically unaffected skin, the majority of elastic fibers are markedly
fragmented, whereas calcification is a rare finding occasionally detected at the ultrastruc-
tural level in contrast to the abundant calcification typical of the affected skin; (iii) elastin
degradation can represent the initial step of elastic fiber calcification, as revealed by ul-
trastructural observations; (iv) the fragmentation/degradation process is necessary, but
not sufficient to induce mineralization of elastic fibers. Therefore, other factors, such as
local ion concentration, mechanical stress, and matrix composition [33], through the ac-
tive involvement of mesenchymal cells [13], have to contribute to create the appropriate
pro-osteogenic environment, despite the genetic nature of ectopic calcification in PXE.
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