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The intestinal microbiota is a plastic ecosystem that is shaped by environmental and 
genetic factors, interacting with virtually all tissues of the host. Many signals result
from the interplay between the microbiota with its mammalian symbiont that can lead 
to altered metabolism. Disruptions in the microbial composition are associated with
a number of comorbidities linked to the metabolic syndrome. Promoting the niche
expansion of beneficial bacteria through diet and supplements can improve metabolic 
disorders. Reintroducing bacteria through probiotic treatment or fecal transplant is a
strategy under active investigation for multiple pathological conditions. Here, we review 
the recent knowledge of microbiota’s contribution to host pathology, the modulation of 
the microbiota by dietary habits, and the potential therapeutic benefits of reshaping the 
gut bacterial landscape in context of metabolic disorders such as obesity.
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inTRODUCTiOn

The intestinal microbiota is a highly dynamic ecosystem in which hundreds of bacterial species and 
other microorganisms coexist along with their neighboring mammalian cells. Estimated numbers 
vary across studies, but it is believed that there are at least as many bacteria as host cells in humans, if 
not drastically more (1). The most abundant phyla in humans and rodent models are Proteobacteria, 
Firmicutes, Actinobacteria, and Bacteroidetes, sharing functional structure among hosts species 
despite having low taxonomic identity (2). Environmental factors such as early microbial exposure 
and lifestyle, as well as host genetics, shape its composition and function (3, 4). The gut microbiota 
in turn affects the host metabolic phenotype, contributes to food and drug metabolism, and helps 
the immune system to develop (5). From the first observation that obese individuals have a distinct 
gut microflora compared to lean people (6), and the following efforts to elucidate the function of 
this altered microbiota (7), the past 10 years have seen a growing body of evidence on the impact 
of the gut microflora on the host. By transplanting the gut microbiota to germ-free (GF) animals, it 
has become possible to directly assess the causality of microbiota composition with diseases. In this 
review, we focus on the relationship between gut microbiota composition and host pathophysiology, 
and on how shaping the microbiota can be beneficial to promote host health and combat metabolic 
disorders.

DeReGULATiOn OF THe GUT MiCROBiOTA  
AnD THe MeTABOLiC SYnDROMe

Microbiota Compositional Changes in Metabolic Disorders
The gut microbiota is sensitive to external cues that can reshape it to new stable compositions, 
resulting sometimes in a deranged, or dysbiotic gut flora. Dysbiotic states are often associated with 
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metabolic alterations in both humans and rodent models such as 
obesity (6), type 2 diabetes (8), non-alcoholic fatty liver disease 
(NAFLD) spectrum (9), and dyslipidemia (10). These metabolic 
traits are often clustered in metabolic syndrome patients (11); it is, 
therefore, relevant, but challenging, to distinguish the implication 
of the gut microbiota with each of these pathologies separately.

Germ-free mice are extensively used as a model for study-
ing the importance of the dysbiotic gut flora. Interestingly, GF 
mice are resistant to obesity following high-fat diets (HFD), and 
their colonization leads to an increased adiposity along with 
decreased insulin sensitivity (12) and altered lipid metabolism 
(13). Nevertheless, when colonization occurs from an obese 
dysbiotic donor, recipient mice gain even more adiposity and 
increase their systemic inflammation (14). Considering that HFD 
challenges elicit heterogeneous responses in terms of weight gain 
and glucose homeostasis, the differences in the pre-HFD gut 
microbiota–host interactions in mice can be predictive of the 
diet outcome (15), where final HFD-driven microbial differences 
are determinant to transfer these acquired phenotypes following 
microbiota transplantation and diet challenge (16). Specifically, 
Le Roy et al. show that GF mice populated with microbiota from 
two donors similarly obese but discordant in glycemia phenocopy 
their response to HFD, with a similar increase in the body weight 
but hyperglycemia and steatosis only in one group. This sug-
gests that components of the gut microbiota can influence liver 
steatosis and hyperglycemia independently from their effect on 
adiposity and systemic inflammation.

Dysbiotic microbial composition can be, at least in the case of 
the obesogenic microbiota, resilient over time. Whereas dieting 
rapidly reverses the metabolic defects associated with HFD, the 
dysbiosis provoked in mice after a 4-week HFD persists up to 
21 weeks after returning to normal chow diet (17). Importantly, 
this persistent post-HFD dysbiotic microbiota is not sufficient to 
drive obesity by itself, but can induce weight gain and glucose 
intolerance upon exposure to a second HFD stimulus. This two-
step obesogenic mechanism relies on a reduced bioavailability of 
flavonoids (dietary compounds that can promote brown adipose 
tissue activation and increase energy expenditure) due to the 
combination of their scarcity in high-fat food and increased 
flavonoid-degrading ability of the obese microbiota (17). Weight 
gain upon second exposure to calorie-rich food is a common 
problem in dieting individuals. Human data are, therefore, needed 
to assess the plasticity of the microbiota in obese individuals 
and determine an ideal diet length and composition that would 
be accompanied with complete and lasting microbial reshaping 
(17). Another evidence that dysbiosis by itself may not be suf-
ficient to drive metabolic defects comes from the observation 
that transplant of dysbiotic microbiota to healthy conventional 
mice neither causes metabolic dysfunctions nor alters the hepatic 
metabolism (18).

Microbiome analysis on two independent human cohorts 
described an intestinal microbial signature predicting the glyce-
mic status (19, 20). The stratification of the microbiota analysis 
for metformin medication highlighted a commonly deregulated 
pathway in untreated type-2 diabetes (T2D) patients, character-
ized by decreased abundance of bacteria such as Roseburia spp. 
and Subdoligranulum spp., which produce butyrate, a known 

regulator of hepatic function through intestinal gluconeogen-
esis (8). Indeed, the metformin in part improves T2D by rescu-
ing the decreased butyrate production through reshaping the 
microbiota, since microbial transplant from metformin-treated 
patients was sufficient to improve glucose control in GF mice 
(21, 22). Of note, other studies using meta-analyses, however, 
called for the need of large human cohorts to further generalize 
the predictive power of the microbiota (23–25).

Microbiota-Driven Regulation  
of Metabolism
Absence of microbiota in GF mice or through antibiotic treatment 
improves glucose and lipid metabolism (12, 13, 26, 27), pro-
tecting against diet-induced metabolic diseases. These improve-
ments can, at least in part, be explained by increased activity 
of the thermogenic fat depots (26, 27), and can be reversed by 
microbial recolonization of the microbiota-depleted animals 
(27). Cold exposure, the most potent environmental trigger for 
brown and beige fat development and activation (28), drasti-
cally reshapes microbiota composition. Transplantation of this 
cold-adapted microbiota to GF mice is sufficient to induce 
tolerance to cold, improve insulin sensitivity, increase energy 
expenditure, and lower their fat content, largely due to increased 
brown and beige fat activity in the cold-microbiota transplanted 
mice (26, 29).

The complexity of the gut microbiota is reflected in its inter-
play with the host, with a great variety of signaling cues and relay 
organs (summarized in Table  1). Bile acids (BAs) are released 
after a meal directly in the proximal intestinal lumen and help 
lipid absorption by enterocytes. Since around 95% of BAs are 
reabsorbed in the distal intestine, the total BA pool is relatively 
stable across the enterohepatic circulation. The gut microbiota 
metabolizes primary BAs produced by the liver giving rise to 
secondary BAs, and this microbiota–liver cross talk is responsi-
ble of the BA pool (30). BAs act as signaling molecules through 
intracellular farnesoid X receptor with effect on the overall 
metabolism (31–35) and membrane-bound G-coupled bile 
acid receptor (TGR5). TGR5 stimulates intestinal glucagon-like 
peptide 1 (GLP1) production, brown fat activity, and improves 
hepatic metabolism in obese animals (36, 37). Interestingly, BAs 
signaling on intestinal cells can trigger their antimicrobial action 
(38), suggesting a negative feedback loop. In addition, it was 
suggested that the brown adipose tissue can also intervene into 
the gut microbiota–liver regulation of BA pool, since changes in 
cholesterol metabolism due to the brown adipose tissue activity 
during cold exposure can increase BAs biosynthesis and drive 
compositional changes in the gut microbiota (39).

Short chain fatty acids (SCFAs) derive from bacterial fermen-
tation of dietary fibers. They can enter circulation and signal 
through their cognate receptors to many organs (52, 53) including 
the central nervous system, which in turn regulates other tissues 
(40). The SCFA acetate can act in the gut–brain communication, 
by directly suppressing appetite through hypothalamic activation 
(41). Conversely, evidence suggested that increased acetate levels 
in HFD microbiota relay into the parasympathetic nervous sys-
tem activation driving ghrelin secretion and glucose-stimulated 
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TABLe 1 | List of microbe-derived signals that can impact host metabolism.

Signal Target organ effect Reference

Bile acids (BAs) Adipose tissue, intestine, liver Hepatic metabolism, bacterial regulation, lipid 
metabolism

(36, 38)

Short chain fatty acids (SCFAs) Adipose tissue, brain, intestine, liver, 
muscle

Lipid metabolism, regulation of appetite (40–42)

Neuroactive molecules [g-aminobutyric acid 
(GABA), serotonine]

Central and peripheral nervous system Regulation of appetite (43, 44)

Lipopolysaccharide (LPS) Adipose tissue, liver, brain Systemic inflammation, hepatic glucose metabolism, 
adipose tissue fibrosis

(45–47)

Trimethylamine N-oxide Adipose tissue, liver, kidney Higher atherosclerosis risk, reduced beige fat (48, 49)

Branched-chain amino acids (BCAAs) Adipose tissue, endothelium, skeletal 
muscle

Adipogenesis, lipid trafficking, lipogenesis, and insulin 
resistance

(12, 13, 26, 27, 50, 51)

LPS, BAs, SCFAs, BCAAs, trimethylamine N-oxide, and neuroactive molecules are major known signals of microbial origin that can affect different metabolic organs listed together 
with the proposed model of action.
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insulin secretion, leading to hyperphagia and metabolic syn-
drome (42). Other SCFAs are also involved in energy regulation 
through the gut–brain axis after being sensed in the portal vein 
and signaling to the autonomous nervous system (54). The 
gut microbiota also produces or controls the synthesis of other 
neuroactive signals that can affect the enteric and central nervous 
system, like g-aminobutyric acid (43) and serotonin (44), both of 
which could influence appetite and energy balance (55, 56). The 
contribution of the microbiota-produced neuropeptides to these 
mechanisms is under active investigation (57).

A group of receptors that senses bacteria-derived metabolites 
and has been implicated in metabolism is the toll-like recep-
tor family, with TLR2 and TLR4 being particularly important 
(58). Lipopolysacharide (LPS), a component of the bacterial 
wall of Gram-negative species, plays a major role in metabo-
lism pathophysiology. Metabolic endotoxemia, in part caused 
by increased LPS production, is a common consequence of 
high caloric diets and can affect host metabolism by inducing 
systemic inflammation and adipose tissue fibrosis, as well 
as decreasing thermogenesis and hepatic glucose metabolism  
(45–47). Accordingly, genetic inactivation of TLR4 in hemat-
opoietic cells protects from NAFLD occurrence in mice housed 
at thermoneutrality (59).

An example of microbial–host interaction is trimethylamine 
N-oxide (TMAO), a product of the co-metabolism of commensal 
bacteria, producing trimethylamine from dietary precursors, and 
the liver, which metabolizes it into TMAO through the flavin 
monooxigenase proteins family (FMOs). Thus, TMAO levels 
depend on diet, commensal bacteria, and genetics of the host 
(48). Plasma levels of TMAO have been associated to atheroscle-
rotic plaques and stroke risk in the past (60). Surprisingly, while 
the knock-out of Fmo3, the main enzyme for TMAO production, 
protects against HFD in mice by promoting beige fat develop-
ment (49), chronic TMAO infusion improves glucose control 
and increases insulin secretion in vivo and in vitro by reducing 
endoplasmic reticulum stress potentially through a chaperon 
property (15).

Using integrative metabolomics–metagenomics approaches, 
Pedersen and colleagues identified Prevotella copri and Bacte roides 

vulgatus as main species positively correlating their branched-
chain amino acids (BCAAs) biosynthesis capacity with insulin 
resistance in humans. When supplementing P. copri to mice dur-
ing HFD, BCAAs circulating levels increased, inducing insulin 
resistance and glucose intolerance (61). This is in line with several 
studies showing that elevated BCAAs can lead to metabolic dis-
orders (62, 63) and provide correlation between their levels and 
diabetic status (64, 65) (Figure 1).

DieTARY inTeRvenTiOnS AnD 
THeRAPeUTiC POTenTiAL  
OF MiCROBiOTA ReSHAPinG

Feeding Patterns and Microbiota 
Compositional Fluctuations
Different lifestyles are associated with changes in microbiota 
composition, which can result in different efficacy in energy 
extraction from food and, therefore, impact host metabolism 
(7, 12). The general microbial composition, as well as the 
abundance of multiple taxa, undergoes circadian oscillations 
(66–68). This rhythmicity is dictated by the feeding pattern 
of the host controlled by its own circadian clock, as genetic 
depletion of the clock machinery, or its disruption due to 
jet lag induces dysbiosis and loss of diurnal cycling. In turn, 
the microbiota too can influence the circadian fluctuation of 
intestinal epithelial cells (69) and affect intestinal and hepatic 
metabolism through rhythmic patterns of attachment to the 
mucosa and metabolomic changes (70). The timing of meals, 
therefore, influences acute compositional fluctuations in the 
gut microbiota and modulate microbial-dependent effects on 
the host. For instance, time-restricted feeding (limiting food 
access to 10–11  h/day) reduces body weight and improves 
well-being in overweight individuals (71). While the authors 
did not explore the subsequent changes in the microbiota of 
the people involved in their study, in HFD-fed mice, time 
restriction is associated with a decrease of obesogenic taxa 
and an increase in beneficial bacteria, thus improving host 
metabolism (67).
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FiGURe 1 | Signals affecting host–microbiota interplay and its regulation of metabolism. Gut microbiota composition is affected by endogenous and exogenous 
factors such as lifestyle interventions. Changes in the microbiota affect its interplay with several organs and can regulate pathophysiological conditions. This can be 
mediated by altered bile acids, short chain fatty acids (SCFAs), branched-chain amino acids (BCAAs), endotoxin, trimethylamine N-oxide (TMAO), inflammation, gut 
hormones and neurotransmitters, and potentially other factors.
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Dietary Fibers and Prebiotics
Diet composition is one of the most important factors that shape 
the gut microflora. Diets rich in saturated fatty acids are associated 
with insulin resistance and adipose inflammation (72), whereas 
polyunsaturated fats have an insulin-sensitizing role (73). Both 
kinds of dietary lipids affect metabolism through compositional 
changes in the gut microbiota and signaling of microbial byprod-
ucts to the host (74). Protein intake and protein–carbohydrate 
ratio also impact the production of multiple bacterial metabolites 
(75). Carbohydrates constitute an important source of energy for 
the microbiota and, as mentioned above, their byproducts—the 
SCFAs influence host metabolism. The reduced fiber intake 
in western diets is associated with reduced bacterial richness 
and metabolic disorders (76), both of which can be rescued in 
overweight individuals by dieting (77, 78). Increased fiber con-
sumption leads to improved postprandial glucose metabolism 
in response to whole grain-based meals (79) and is associated 
with an increase in Prevotella abundance (80) and a higher 
ratio of Prevotella over Bacteroides, the two main genera of the 
Bacteroidetes phylum. During fiber-rich diet, Prevotella appears 
to positively interact with species from the Actinobacteria, 
Firmicutes, Proteobacteria, and Archaea phyla to form a niche of 
bacteria involved in carbohydrate fermentation (81). This con-
tributes to an improved glucose metabolism through increased 
hepatic glycogen storage (81).

Administration of oligofructose in obese mice regulates appe-
tite, reduces obesity, and the related metabolic disturbances. 

These improvements are associated with 100-fold increase in 
the abundance of Akkermansia muciniphila, increased growth of 
Bifidobacteria, and Lactobacilli, and expression of antimicrobial 
peptides by the host (82, 83). Studies on healthy and obese 
individuals demonstrate expansion in Bifidobacterium species 
and Faecalibacterium prausnitzii during prebiotic treatment. 
Prebiotics can also induce satiety by regulating the SCFAs (84) 
and increasing Peptide YY and GLP1 production by the L cells in 
the ileon and the colon (85–87). In turn, these enteroendocrine 
hormones inhibit the hypothalamic orexigenic (hunger-inducing)  
regions and stimulate the anorexigenic (satiety-inducing) neu-
rons (85–88). Fiber-rich diets also impact the interaction between 
the microbiota and the intestinal mucosal layer, a barrier that 
separates the epithelium from direct contact with bacteria, con-
stituting a first level of defense against pathogen infection (89). 
Prebiotic treatment promotes production of the glucagon-like 
peptide-2, which increases mucosal barrier function and reduces 
endotoxin-driven inflammation in obese mice (90). Conversely, 
disruption or ablation of the mucose layer leads to intestinal 
inflammation, colitis, and even cancer (91–93). In absence of 
dietary fibers, the mucus layer is dramatically reduced due to 
expansion of a mucin-degrading bacterial niche. This causes sus-
ceptibility to enteric pathogens (94) and increases the predisposi-
tion toward metabolic disorders. Indeed, monocolonization with 
Bacteroides thetaiotamicron, a mucin degrader in absence of other 
available sources of energy, causes impaired glucose tolerance 
through decreased hepatic glycogen storage (81). Conversely, 
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fiber-rich diets in humans promote the presence of species 
from the Xylanibacter, Prevotella, Butyrivibrio, and Treponema 
genera, preventing the colonization of intestinal pathogens like 
Enterobacteriaceae (95, 96). A vertical study in mice addressed 
the long-term effects on microbial changes in response to a low 
fiber diet. Whereas reverting to a fiber-rich diet within a single 
generation mostly restores the microbial composition, the loss 
of microbial taxa under fiber-low diets is not reversible after 
several generations (97). These results suggest that in addition to 
the dietary changes, it may be necessary to reintroduce beneficial 
taxa that are currently lost in the Western microbiota in order to 
prevent the diseases associated with it.

Probiotics
Probiotics are live bacteria, usually present in fermented foods, 
whose intake improves metabolic health. Their supplementation 
in diet has been associated with protective effects against irritable 
bowel syndrome (IBS), ulcerative colitis, allergic diseases, and obe-
sity in both rodents and humans. They are mostly Gram-positive 
bacteria belonging either to the Lactobacillus or Bifidobacterium 
genera, although a Gram-negative, non-pathogenic, Escherichia 
coli strain has also a probiotic effect (98). The mechanism of 
action of probiotics is quite heterogeneous and depends on the 
specific strain used. The anti-obesity effects include reducing 
metabolic endotoxemia (99–101), improving endothelial dys-
function in obese mice (102, 103), improving hepatic steatosis 
(104), and limiting free fatty acids available to the host (105). This 
wide range of effects is mediated by multiple, mutually linked 
mechanisms like increased intestinal adhesion and colonization 
that limit the colonization of less beneficial bacteria, production 
of metabolites such as SFCA and poly-unsaturated fatty acids 
(106, 107), release of antibacterial molecules called bacterocins 
(108), and strengthening of the intestinal epithelial integrity 
and the intestinal mucus layer (109). Recently, in addition to 
“traditional” probiotic species, A. muciniphila has gained a lot of 
interest. Abundance of this species is inversely correlated with 
body weight and insulin resistance, and its increase is another 
effect of metformin treatment (110). Daily supplementation of 
A. muciniphila in mice ameliorates HFD-induced metabolic 
dysfunctions (111), and prevents the increased intestinal absorp-
tive surface and caloric uptake during cold exposure (26). Even 
pasteurized, A. muciniphila potently reduces body weight gain 
and insulin resistance in obese mice, due to an outer membrane 
protein called Amuc_1100, which activates TLR2 and restores 
intestinal gut barrier function (112). Since A. muciniphila is a 
strict anaerobic species, the discovery that it can exert its protec-
tive function against metabolic disorders after pasteurization 
makes it a more manageable and therapeutically interesting tool.

Fecal Transplants
Another way to restore a dysbiotic state and reintroduce ben-
eficial taxa is through fecal microbiota transplant (FMT) from 
a healthy donor. It is currently mainly used to restore intestinal 
balance in patients affected by recurrent Clostridium difficile 
infections, with a success rate up to 94% and without adverse 
effects (113). Since dysbiotic states are clinically similar regardless 

of the origin, this therapy is currently being tried also for non-
infectious intestinal pathologies, like intestinal bowel disease and 
IBS (114, 115), with first few randomized trials that suggest, at 
least for IBS, a recovery in bacterial richness after transplantation 
and an attenuation of the symptoms (114, 116). In the context of 
the metabolic syndrome, a first human trial on obese Caucasian 
male subjects showed an increase in peripheral insulin sensitivity 
in patients receiving allogenic gut microbiota, as well as a ten-
dency to increased hepatic insulin sensitivity (117). Subsequent 
analyses on this and other cohorts of human patients undergoing 
FMT (118) have suggested that the stimulation of the recipient 
microbiota with the donor one has an important impact on the 
efficiency of the microbial transfer and its persistence in the host 
and that, therefore, the outcome of FMT depends on the compo-
sition of both microbiota (119, 120). With FMT being suggested 
also for a plethora of other pathologies including anxiety, depres-
sion, and even autism (116, 121), increasing our knowledge on 
the function and the interaction of the gut microflora within 
itself and with the host will, therefore, be paramount in order to 
design microbiota-based therapies.

PeRSPeCTiveS

Dissecting how bacterial cues are sensed and act on host physiol-
ogy is essential to either modulate the microbiota or mimic its 
signals in a therapeutic perspective. Nevertheless, the known 
variability of microbial ecosystems in humans is currently a 
constraint for standard treatments. We can envision an approach 
where the advances in gut microbiota profiling applied to per-
sonalized medicine could allow the definition of pipelines for 
treatments aiming at re-establishing a healthy microflora. These 
considerations can potentially overcome the current obstacles in 
single taxa reintroduction or fecal microbiota transfer and could 
rely on sequential treatments to reopen ecological niches for 
beneficial bacteria.
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