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Abstract Facilitating independent living of individuals

with upper extremity impairment is a compelling goal for

our society. The degree of disability of these individuals

could potentially be reduced by using robotic devices that

assist their movements in activities of daily living. One

approach to control such robotic systems is the use of a

brain–computer interface, which detects the user’s inten-

tion. This study proposes a method for estimating the user’s

intention using electroencephalographic (EEG) signals.

The proposed method is capable of discriminating rest

from various imagined arm movements, including grasping

and elbow flexion. The features extracted from EEG sig-

nals are autoregressive model coefficients, root-mean-

square amplitude, and waveform length. Support vector

machine was used as a classifier, distinguishing class labels

corresponding to rest and imagined arm movements. The

performance of the proposed method was evaluated using

cross-validation. Average accuracies of 91.8 ± 5.8 and

90 ± 4.1 % were obtained for distinguishing rest versus

grasping and rest versus elbow flexion. The results show

that the proposed scheme provides 18.9, 17.1, and 16.5 %

higher classification accuracies for distinguishing rest

versus grasping and 21.9, 17.6, and 18.1 % higher classi-

fication accuracies for distinguishing rest versus elbow

flexion compared with those obtained using filter bank

common spatial pattern, band power, and common spatial

pattern methods, respectively, which are widely used in the

literature.

Keywords Pattern recognition � Feature extraction �
Brain computer interface (BCI) � Support vector machine

(SVM)

1 Introduction

In recent years, the use of brain–computer interfaces

(BCIs) has been shown to be promising for detecting the

users’ intention and controlling robotic devices [1]. A BCI

system detects electrical changes in the brain and attempts

to find patterns in these changes that are related to specific

movements or thoughts. Several non-invasive and invasive

methods have been proposed to detect these patterns [2]. In

this study, non-invasive electroencephalography (EEG)-

based BCIs are of particular interest.

EEG signals can be correlated to tasks performed by an

individual [3]. Such tasks include mental computation [4],

imagining motor movements [5], imagining speech [6], and

experiencing emotions [7]. Various classification methods

have been proposed for classifying EEG signals. For example,

the Elman neural network (ENN) trained by the resilient

backpropagation (BP) algorithm was used for the classification

of mental tasks, with an accuracy of 86 % obtained [8]. The

extracted power of the spectral frequencies has been used for

the classification of five mental tasks using a fuzzy classifier

[9], with a classification efficiency of 65–100 % obtained.

Empirical mode decomposition has been used for feature

extraction [10]. An accuracy of 91 ± 5 % was obtained when

linear discriminant analysis (LDA) was used and an accuracy

of 87 ± 5 % was achieved when a multilayer perceptron

(MLP) network was implemented. MLP–BP with adaptive

autoregression [11] achieved an accuracy of 81.80 %.

The detection of the task the user intends to perform is still

a challenge. The present study proposes a pattern recognition
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scheme (Fig. 1) to extract the patterns of specific upper

extremity (UE) imagined motor movements from acquired

EEG signals. Measuring brain activity through EEG signals

creates a large amount of data. Feature extraction highlights

important data and eliminates redundant or non-informative

data by transforming collected signals into a feature vector.

This transformation causes a dimensionality reduction,

which facilitates the classification process. Time-domain

features are computed based on the signals’ amplitudes, and

require no transformation or complex calculation [12].

Time-domain features have low computational complexity

and are considered as an appropriate option for real-time BCI

systems [13]. Therefore, time-domain features such as

autoregressive (AR) model coefficients, root-mean-square

(RMS) amplitude, and waveform length (WL) are employed

in this study. The EEG patterns corresponding to the imag-

ined motor movements are extracted using pattern recogni-

tion techniques. The performance of the proposed algorithm

was compared to that of three widely used EEG pattern

recognition methods. The proposed method outperformed

these methods. The proposed EEG classification scheme was

designed to be potentially suitable for controlling robotic

devices that assist individuals with an impaired UE. This

study is a reference for further enhancement of the recog-

nition rate of EEG patterns and making BCIs more practical.

2 Protocols and Data Collection

Protocols were defined to simulate simple activities of

daily living involving the arm. The identified protocols

considered a combination of several imagined arm

movements, including grasping, flexing the elbow, and

rest. Motor imagery of grasping and elbow movements is

suitable for controlling robotic exoskeletons and for

assistance and rehabilitation of UEs [14, 15]. For

example, the user could imagine moving their elbow to

control a robotic device and receive assistance to extend

their arm towards a cup, and then imagine grasping to

receive assistance in grasping the cup for drinking

[14, 15].
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Fig. 2 EEG electrode positions employed in this study
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The protocol involved non-invasive EEG data recording

using the Geodesic sensor net (Electrical Geodesics, Inc.,

Eugene, OR, USA). The 32-channel Geodesic sensor net

was applied to the participant’s head [16]. The locations of

electrodes are presented in Fig. 2. The labeled electrodes

were employed for the BCI system. The unlabeled elec-

trodes were not considered in this study because they were

very close to sources that generate muscle activity or

artifacts. The vertex Cz position in Fig. 2 was used as a

reference.

Twelve healthy volunteers participated in this study.

Each volunteer signed a consent form. This study was

approved by the Office of Research Ethics, Simon Fraser

University. The approval number is 2012s0527. The

volunteers started the experiment with the imagined arm

in the rest position. Protocols P1, P2, and P3 were used to

extract data for classification. In protocol P1, the volun-

teer was asked to imagine the arm in the rest position. In

protocol P2, the volunteer was asked to imagine applying

a comfortable force while grasping. In protocol P3, the

volunteer was asked to imagine lifting the arm. Each

volunteer received a visual command on the monitor for

the task they were asked to perform. Each experiment

lasted 1.5 h. The experiment consisted of four sessions,

each of which lasted 12 min. The participant was asked to

perform each designated task for 3 s, followed by 5–7 s

of rest. The data was amplified and sampled at 1000 Hz

using a Geodesic Net Amps 400 series amplifier (Elec-

trical Geodesics, Inc.) [17]. The EEG data were trans-

mitted via the TCP/IP protocol to the computer.

Throughout the experiment, the electrode impedance was

maintained at below 50 kX. The participants could take a

break whenever needed.

3 Materials and Methods

3.1 CSP, FBCSP, and Band Power Approaches

A number of approaches have been proposed for estimating

motor imagery EEG [18, 19]. Among these methods, the

common spatial pattern (CSP) [20] method seems to be the

most effective, yielding the best BCI performances in

Table 1 Proposed method classification accuracy and optimal model

parameters, c and c, for classifying rest versus grasping

Subject Rest-grasping optimal

parameters c and c
Accuracy (%)

A 10, 0.2 100

B 10, 0.2 100

C 10, 2.3 83

D 10, 1.9 88.5

E 15, 1.7 87.8

F 15, 1.1 86.7

G 10, 1.4 87.9

H 10, 1.9 87.4

J 10, 1.6 94.4

K 70, 1 98.5

L 90, 1 95.9

M 10, 2.5 90.8

Table 2 Proposed method classification accuracy and optimal model

parameters, c and c, for classifying rest versus elbow flexion

Subject Rest-elbow optimal

parameters c and c
Accuracy (%)

A 10, 1.7 89.3

B 90, 0.4 89.6

C 10, 1.6 83.6

D 10, 1.5 89.4

E 10, 2.2 87

F 15, 1.1 86.2

G 10, 2 89.9

H 10, 2.3 87

J 10, 2 95.2

K 35, 2.3 97.7

L 30, 2.1 94.9

M 10, 1.4 90.3

Fig. 3 Cross-validation

accuracies based on c and c
parameters. a Imagined

grasping and rest. b Imagined

elbow flexion and rest
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calculating spatial filters for detecting EEG patterns [21].

The CSP method maximizes the variance of the spatially

filtered signals for one class while minimizing it for the

other class for distinguishing features. The CSP method is

suitable for EEG-based BCIs [22].

The filter bank CSP (FBCSP) method is also very

effective, yielding high BCI performances [23]. The first

stage employs a filter bank to filter EEG signals into

multiple frequency bands. The second stage performs

spatial filtering using the classical CSP method. Among

the multiple spatial filters obtained, the best resulting

features are selected using feature selection algorithms

[23].

Band power is another successful method. The loga-

rithmic band power is based on the design of the original

Graz BCI [24]. The band power method is often used in

BCI pattern recognition [25].

The classification scheme was performed using the CSP,

FBCSP and band power methods [22, 26]. The collected

data are band-pass-filtered from 6 to 40 Hz using an FIR

filter to reduce interference from other sources. Then, the

features are extracted by applying CSP, FBCSP, and band

power methods. The obtained features are used to train a

linear discriminator [27]. 10-by-tenfold cross-validation

was used for performance validation.

3.2 Proposed Method

Time-domain features such as AR model coefficients, RMS

amplitude, WL are extracted by the proposed method.

RMS amplitude and WL provide one feature for each

channel of EEG signals. AR models provide four features

for each channel of EEG signals. The proposed pattern

recognition scheme is performed off-line. The features are

calculated by segmenting the collected EEG signal into

250-ms intervals and then calculating a set of features for

each segment.

AR model coefficients provide information regarding

previous samples. The current value is predicted based on

the previous output values. The AR models are linear

combinations of previous samples. The current value tn is

expressed as:

tn ¼
Xp

i¼1

a
p
i tn�i ð1Þ

where {ai for i = 1,…, p} are AR model coefficients and

p is the order of the AR model.

The RMS amplitude feature provides information

regarding the amplitude of the EEG signal. This feature is

computed as:

Fig. 4 Classification accuracies of proposed, CSP, FBCSP, and band power methods for each individual. a Imagined grasp and rest. b Imagined

elbow flexion and rest
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RMSr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

1 þ r2
2 þ � � � þ r2

n

n

r
ð2Þ

where ri is the amplitude of the ith sample and n is the

number of samples.

The WL feature is a measure of the waveform com-

plexity in each segment. WL is represented as:

y ¼
XN�1

i¼1

wiþ1 � wij j ð3Þ

where wi is the amplitude of the ith sample and N is the

number of samples.

To achieve good classification performance, the set of

input features and the choice of the applied classifier are

crucial [28]. The support vector machine (SVM), an effi-

cient and accurate classifier with relatively low complexity,

is used here. The main idea behind SVM [29] is to find

discriminant hyperplanes that separate the data that belong

to different classes with the maximum possible margin.

Maximizing the margins increases the generalization

capabilities of the classifier. In its general formulation,

SVM requires solving the following optimization problem:

Min
1

2
ak k2 þ c

XN

i¼1

ni ð4Þ

Subject to wiy xið Þ� 1 � ni where i ¼ 1 � � �N
and ni � 0

ð5Þ

where y is the learned model, c[ 0 is the penalty factor, a is

the vector representing adaptive model parameters, wi is the

label associated with a data point, i is the index associated

with a data point, ni is the slack variable, xi is the vector

representing a data point, and N is the number of data points.

SVM works well in high-dimensional spaces. SVM

maps the data to higher-dimensionality space with the help

of a kernel function [29]. The radial basis function (RBF)

was selected as the kernel function. The RBF kernel has the

fewest hyper-parameters, which reduces the complexity of

the pattern recognition model. The mathematical repre-

sentation of the RBF kernel is:

Fig. 5 Cumulative error rates of proposed, CSP, FBCSP, and band power methods for each individual
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k yi; yj
� �

¼ exp �c yi � yj
�� ��2

� �
ð6Þ

where c is the kernel parameter and yi; yj are training

vectors.

The goal was to find the optimal kernel parameters so

that the classifier could accurately predict the user’s

intention. Tenfold cross-validation was used here to pre-

vent the over-fitting problem. In tenfold cross-validation,

the dataset was first divided into 10 subsets of equal size.

Each subset was then sequentially tested (testing phase)

using the classifier trained on the remaining 9 subsets

(training phase). A grid search along with tenfold cross-

validation was used for the classifier parameters. Various

values were tested and those that did not over-fit the data

and gave the highest cross-validation accuracy were

selected as the optimal kernel parameters. Those that gave

the lowest cross-validation accuracy were selected as the

non-optimal parameters.

4 Results

The optimal values for the kernel parameters were selected

according to the highest value of the cross-validation

accuracy for each individual. The obtained optimal kernel

parameters were then used to build a model for classifying

the imagined arm movements. Figure 3 shows the obtained

results for the optimal kernel parameters for classifying

imagined grasping and elbow flexion versus rest for a

single participant. As shown, the highest cross-validation

accuracy occurred in the interval (0, 3) for c and (0, 100)

for c. These intervals were selected for the identification of

the optimal kernel parameters for all participants.

The obtained optimal kernel parameters and the pro-

posed method classification accuracies are presented in

Tables 1 and 2, respectively, for each of the twelve vol-

unteers (denoted as A–M, respectively). These selected

parameters were then used to build the optimal pattern

Fig. 6 Classification accuracies of proposed method using optimal and non-optimal parameters for each individual. a Imagined grasping and

rest. b Imagined elbow flexion and rest
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recognition model for each individual. The reported pro-

posed classification accuracy for each volunteer is the

percentage of data which were correctly classified. The

pattern recognition accuracies and cumulative error rates

obtained using the optimal model of the proposed method,

CSP, FBCSP, and band power methods are presented in

Figs. 4 and 5, respectively, for each individual.

Figure 6 compares the optimal and non-optimal

parameters for each individual. As shown, the pattern

recognition accuracy of the RBF kernel function with

optimal parameters was higher compared to that of the

RBF kernel function with non-optimal parameters for all

subjects. The pattern recognition rate increased by more

than 9 % on average for identifying imagined grasping and

elbow flexion patterns versus the rest pattern when the

optimal parameters were used (see Fig. 7).

The overall results obtained for the proposed method

indicate that it is acceptable and promising. 100 % accu-

racy was obtained for subjects A and B for the imagined

grasping and rest. Accuracies of over 90 % were obtained

for subjects J, K, L, and M. A large variation in the brain

signal between imagined grasping and rest occurred for

subject A over the sensorimotor cortex, resulting in the

high classification accuracy for subject A. A small varia-

tion in the brain signal between imagined elbow flexion

and rest occurred for subject F over the sensorimotor cor-

tex, resulting in a low pattern recognition accuracy (Fig. 8).

Figure 9 shows the average classification accuracies for

each method. The patterns corresponding to grasping, rest,

and elbow flexion for imagined arm movements were

accurately identified. The average classification accuracy

for the proposed method is higher compared to those of the

CSP, FBCSP, and band power methods. The analysis of

variance results show that there were statistically signifi-

cant differences (p\ 0.015) between the results obtained

using the proposed method and those obtained using the

other methods. The average classification accuracy results

indicate that the CSP, FBCSP, and band power methods are

all powerful and that there is a small difference their pat-

tern recognition performance.

5 Discussion

Optimizing the kernel parameters was the key factor in

improving the performance of the proposed method. It was

demonstrated that on average the performance of the RBF

kernel function with optimal parameters was higher com-

pared to that with non-optimal parameters.

There were relatively low classification error rates for

subjects A and B using the CSP, FBCSP, and band power

methods for imagined grasping and rest classification.

However, the error rate was zero for these volunteers using

the proposed optimal model. For subjects H, L, and M,

there were high classification error rates using the CSP,

FBCSP, and band power methods. In contrast, the overall

error rates were acceptable for these volunteers using the

proposed optimal model, which shows that for BCI appli-

cations, these features and classifier are a potential option.

In this study, which was designed to assess the perfor-

mance of the proposed classification scheme, the patterns

of imagined grasping, elbow flexion, and rest were

Fig. 7 Average classification

accuracies of proposed method

using RBF kernel for optimal

and non-optimal parameters.

a Imagined grasping and rest.

b Imagined elbow flexion and

rest
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successfully recognized. An acceptable classification per-

formance (error rate of below 10 %) was obtained for the

classification of arm motor imagery using the proposed

method. The data were reasonably separable and well

modeled by the extracted features and optimal SVM model.

According to the obtained results, the RBF kernel function

and the set of extracted features are suitable for the pattern

recognition of imagined arm movements.

6 Conclusion

The possibility of associating EEG patterns with the

imagining of arm movements was investigated. Our results

support the hypothesis that successful pattern recognition

can be achieved when discriminating imagined arm

movements of users in vital activities of daily living. The

identified classes in this research were imagined grasping,

rest, and elbow flexion. The SVM classifier was shown to

be suitable for discriminating the rest state from two

imagined arm movements of volunteers.

Selecting optimized kernel function parameters and

appropriate features was the key factor to obtaining satis-

factory recognition results. The AR model coefficients,

RMS amplitude, and WL were extracted to identify pat-

terns in the acquired EEG signals. The implemented pat-

tern recognition strategy was able to identify various

imagined arm movements with superior performance

compared to those of the CSP, FBCSP, and band power

methods.

Fig. 8 Variation plot for

imagined arm movements and

rest. Electrodes corresponding

to Channels 1–20 are Fp1, Fp2,

F3, F4, C3, C4, P3, P4, O1, O2,

F7, F8, T7, T8, P7, P8, Fz, Nas,

Pz, and Oz, respectively.

a Imagined grasping and rest for

Subject A. b Imagined elbow

flexion and rest for Subject F
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In future work, it would be interesting to investigate the

feasibility of using the pattern recognition of EEG signals

to estimate UE imaginary motor tasks in individuals with

neurological disorders, including individuals with stroke.

In addition, it would be interesting to conduct online

experiments to validate that acceptable performance can be

obtained.

Acknowledgments This research was supported by the Michael

Smith Foundation for Health Research (MSFHR), the Canadian

Institutes of Health Research (CIHR), and the Natural Sciences and

Engineering Research Council of Canada (NSERC).

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea

tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

1. Buch, E., Weber, C., Cohen, L. G., Braun, C., Dimyan, M. A.,

Ard, T., et al. (2008). Think to move: A neuromagnetic brain–

computer interface (BCI) system for chronic stroke. Stroke, 39,

910–917.

2. Graimann, B., Allison, B., & Pfurtscheller, G. (2010). Brain–

computer interfaces: Revolutionizing human–computer interac-

tion. New York: Springer.

3. Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., & Arnaldi, B.

(2007). A review of classification algorithms for EEG-based

brain–computer interfaces. Journal of Neural Engineering, 4,

R1–R13.

4. Palaniappan, R. (2008). Two-stage biometric authentication

method using thought activity brain waves. International Journal

of Neural Systems, 18, 59–66.

5. Marcel, S., & Millán, J. D. R. (2007). Person authentication using

brainwaves (EEG) and maximum a posteriori model adaptation.

IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 29, 743–752.

6. Brigham, K., & Kumar, B. V. (2010). Subject identification from

electroencephalogram (EEG) signals during imagined speech. In

Proceedings of the IEEE 4th international conference biometrics:

theory applications and systems (pp. 1–8).

7. Murugappan, M., Nagarajan, R., & Yaacob, S. (2011). Combin-

ing spatial filtering and wavelet transform for classifying human

emotions using EEG signals. Journal of Medical and Biological

Engineering, 31, 45–51.

8. Palaniappan, R. (2006). Utilizing gamma band to improve mental

task based brain–computer interface design. IEEE Transactions

on Neural Systems and Rehabilitation Engineering, 14, 299–303.

9. Hema, C. R., Paulraj, M. P., Nagarajan, R., Yaacob, S., Adom, A.

H. (2007). Fuzzy based classification of EEG mental tasks for a

brain machine interface. In Proceedings of the IEEE 3rd inter-

national conference intelligent information hiding and multime-

dia signal processing (Vol. 1, pp. 53–56).

10. Diez, P. F., Mut, V., Laciar, E., Torres, A., Avila, E. (2009).

Application of the empirical mode decomposition to the extrac-

tion of features from EEG signals for mental task classification.

Proceedings of the IEEE 31st international conference engi-

neering in medicine and biology society (pp. 2579–2582).

11. Huan, N. J., & Palaniappan, R. (2004). Classification of mental

tasks using fixed and adaptive autoregressive models of EEG

signals. Proceedings of the IEEE 26th international conference

engineering in medicine and biology society (Vol. 1,

pp. 507–510).

Fig. 9 Average classification

accuracies of proposed, CSP,

FBCSP, and band power

methods. a Imagined grasping

and rest. b Imagined elbow

flexion and rest

20 M. Tavakolan et al.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


12. Khorshidtalab, A., Salami, M. J. E., & Hamedi, M. (2013).

Robust classification of motor imagery EEG signals using sta-

tistical time–domain features. Physiological Measurement, 34,

1563–1579.

13. Geethanjali, P., Mohan, Y. K., Sen, J. (2012). Time domain

feature extraction and classification of EEG data for brain com-

puter interface. Proceedings of the IEEE 9th international con-

ference fuzzy systems and knowledge discovery (Vol.

1136–1139).

14. Looned, R., Webb, J., Xiao, Z. G., & Menon, C. (2014). Assisting

drinking with an affordable BCI-controlled wearable robot and

electrical stimulation: A preliminary investigation. Journal of

NeuroEngineering and Rehabilitation, 11, 1–13.

15. Elnady, A. M., Zhang, X., Xiao, Z. G., Yong, X., Randhawa, B.

K., Boyd, L., & Menon, C. (2015). A single-session preliminary

evaluation of an affordable BCI-controlled arm exoskeleton and

motor-proprioception platform. Frontiers in Human Neuro-

science, 9, 1–14.

16. Electrical Geodesics I Geodesic sensor net technical manual.

Technical report, Electrical Geodesics, Inc.

17. Electrical Geodesics I. Net Amps 400 Series Amplifiers. Avail-

able http://www.egi.com.

18. Yamawaki, N., Wilke, C., Liu, Z., & He, B. (2006). An enhanced

time-frequency-spatial approach for motor imagery classification.

IEEE Transactions on Neural Systems and Rehabilitation Engi-

neering, 14, 250–254.

19. Ang, K. K., Chin, Z. Y., Zhang, H., & Guan, C. (2012). Mutual

information-based selection of optimal spatial-temporal patterns

for single-trial EEG-based BCIs. Pattern Recognition, 45,

2137–2144.

20. Fukunaga, K. (2013). Introduction to statistical pattern recog-

nition. New York: Academic Press.

21. Koles, Z. J., & Soong, A. C. K. (1998). EEG source localization:

Implementing the spatio-temporal decomposition approach.

Electroencephalography and Clinical Neurophysiology, 107,

343–352.

22. Blankertz, B., Tomioka, R., Lemm, S., Kawanabe, M., & Muller,

K.-R. (2008). Optimizing spatial filters for robust EEG single-

trial analysis. IEEE Signal Processing Magazine, 25, 41–56.

23. Ang, K. K., Chin, Z. Y., Wang, C., Guan, C., & Zhang, H. (2012).

Filter bank common spatial pattern algorithm on BCI competition

IV datasets 2a and 2b. Frontiers in Neuroscience, 6, 1–9.

24. Pfurtscheller, G., & Neuper, C. (2001). Motor imagery and direct

brain–computer communication. Proceedings of the IEEE, 89,

1123–1134.

25. Vidaurre, C., Kramer, N., Blankertz, B., & Schlögl, A. (2009).
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