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In this paper, an extended heterogeneous SIR model is proposed, which generalizes the
heterogeneous mean-field theory. Different from the traditional heterogeneous mean-field
model only taking into account the heterogeneity of degree, our model considers not only
the heterogeneity of degree but also the heterogeneity of susceptibility and recovery rates.
Then, we analytically study the basic reproductive number and the final epidemic size.
Combining with numerical simulations, it is found that the basic reproductive number
depends on the mean of distributions of susceptibility and disease course when both of
them are independent. If the mean of these two distributions is identical, increasing the
variance of susceptibility may block the spread of epidemics, while the corresponding
increase in the variance of disease course has little effect on the final epidemic size. It is
also shown that positive correlations between individual susceptibility, course of disease
and the square of degree make the population more vulnerable to epidemic and avail to
the epidemic prevalence, whereas the negative correlations make the population less
vulnerable and impede the epidemic prevalence.
© 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi Commu-
nications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The method of establishing the network-based models, which incorporates the contact patterns among people as static or
dynamic networks into epidemiology modeling, has become an essentially important research method to study the role of
nodes standing for individuals or edges denoting the interaction between individuals in the spreading process (Dorogovtsev,
Goltsev, & Mendes, 2008; Jin, Sun, & Zhu, 2014; Luo, Chang, & Jin, 2017; Pastor-Satorras, Castellano, Van Mieghem, & Ves-
pignani, 2015). The frequently investigated and most classical epidemiological models as the basic conceptual tools in un-
derstanding the epidemic spreading and the related effective strategies for epidemic controlling are the SIS model and the SIR
model. As is well known that the most valuable result in the standard SIS model (Bogun�a & Pastor-Satorras, 2002; Bogun�a,
Pastor-Satorras, & Vespignani, 2003; Luo, Zhang, Sun, & Jin, 2014; Pastor-Satorras & Vespignani, 2001) or SIR (May & Lloyd,
2001; Moreno, Pastor-Satorras, & Vespignani, 2002; Newman, 2002) model is that the basic reproductive numbers of an
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infection R0 is always larger than 1 for the scale-free networks in the thermodynamic limit, which implies that the het-
erogeneity of node's degree can reduce or even eliminate the existence of an epidemic threshold.

In most epidemiological models (Anderson, May, & Anderson, 1992; Jin et al., 2011; Keeling & Rohani, 2008; Li, Sun, Wu,
Zhang, & Jin, 2014, 2017; Peng, Xu, Small, Fu, & Jin, 2016), all individuals are assumed to be homogeneous, e.g., all susceptible
individuals acquire the disease with the same probability whenever in contact with an infected individual, and all infected
individuals recover, or go back to being susceptible, with the same rate. Such consideration is, however, far from the actual
situation. The individual variations of infectivity (Lloyd Smith et al., 2005; Riley et al., 2003), susceptibility (Boon et al., 2011;
Hardie et al., 2008; Li, Cao, & Cao, 2010; Zhang, Xie, Tang,& Lai, 2014; Zhang, Xie, Chen, Liu,& Small, 2016) and recovery rates
or infectious period are as widespread as network heterogeneity. These internal properties of individuals varying across a
population result from genetic (Segal& Hill, 2003) and immunogenetic (Fryer et al., 2010) factors, differences in age, previous
disease history, history of drug abuse, or differences in healthcare quality and can exert a non-negligible influence on the
epidemic spreading process.

Recently, several authors have applied the percolation theory to explore the effects of individual heterogeneity in the
context of network epidemics (Kenah & Robins, 2007; Miller, 2007, 2009; Neri, P�erez Reche, Taraskin, & Gilligan, 2010; Neri
et al., 2011). For instance, Kenah and Robins (Kenah& Robins, 2007) showed that the bond percolation model failed to predict
the correct outbreak size distribution and probability of an epidemic when there was a nondegenerate infectious period
distribution. Miller (Miller, 2007) showed that an epidemic was most likely if infectivity was homogeneous and least likely if
the variance of infectivity was maximized. Similarly, the attach rate was largest if susceptibility was homogeneous and
smallest if the variance was maximized. Later, Miller (Miller, 2009) showed that heterogeneity infectiousness was the
dominant factor controlling the probability of an epidemic and heterogeneity in susceptibility was the dominant factor
controlling the size of an epidemic.

There are some other works to study the effects of individual heterogeneity on the epidemic spreading process on
networks. Karrer and Newman (Karrer & Newman, 2010) introduced the message passing approach to study a generalized
SIR model that allowed for arbitrary distribution of transmission and recovery times. Using the message passing approach,
Sherborne et al. (Sherborne et al., 1611) derived a new pairwise-like model for epidemics with Markovian transmission and
arbitrary recovery period; and they also presented a novel extension of the edge-based compartmental model for epi-
demics with arbitrary distributions of transmission and recovery times. Li et al. (Li, Liu, Kim, Min, & Zhang, 2010) studied
the network epidemic dynamics with both individual mobility and heterogeneity and showed that the heterogeneity of
individual susceptibility and infectivity increased the epidemic threshold, and the positive correlation of individual sus-
ceptibility and infectivity availed to the epidemic prevalence. Wu et al. (Wu & Zhang, 2016) investigated the epidemic
spreading on random and regular networks through a pairwise-type model to evaluate the influence of individual
infectivity and susceptibility which were functions of individual activity. Smilkove et al. (Smilkov, Hidalgo, & Kocarev,
2014) found that heterogeneous susceptibility can make networks more vulnerable to the spread of epidemics if the
correlation between a node's degree and susceptibility were positive. Yang et al., (Yang, Tang, & Gross, 2015) using the
pairwise approximation method, showed that these correlations naturally arised in the adaptive network through
considering a plausible scenario where people had intrinsic differences in susceptibility and adapted their social network
structure to the presence of the disease. Abbas et al. (Abbas, Bhatia, Vorobeychik, & Koutsoukos, 2014) incorporated node
properties into a node-based SIRS model for infection propagation and proposed new heuristics to curb the spread of
infection in heterogeneous networks.

Although the studies mentioned above can explain how the individual heterogeneity influences the epidemic spreading
process on networks to some extent, this complex phenomenon is still poorly understood and some questions remain open.
Especially, there is less work to explore the effect of the heterogeneity of individual susceptibility and recovery rates at the
same time on the dynamic behaviors of epidemics spreading on networks. And this invites us to follow the precious works
and investigate how the heterogeneous susceptibility and recovery rates of individuals, combining with the network het-
erogeneity, influence the epidemic spreading process. We are interested in using or generalizing the heterogeneous mean-
field theory to address this problem. Meantime, the incorporation of differential susceptibility and recovery rates into
epidemic models does introduce a new dimension to epidemic modeling, since there are multiple ways for individuals with
differences in susceptibility and recovery rates to be arranged in a network. Therefore, we should consider not only variations
in the susceptibility and recovery rates of individuals, but also the correlations between individual susceptibility, recovery
rates and connectivity to do a complete study.

In this paper, we establish an extended heterogeneous SIR epidemic model defined on networks with arbitrary network
topology and analytically study the basic reproductive number R0 and the final epidemic size Rð∞Þ for this model. Our
findings show that the spread of epidemics is closely correlated to the structure of population in terms of individual sus-
ceptibility and course of disease. When individual degree, susceptibility and recovery rate are independent, R0 and Rð∞Þ are
increasing with the increment of the average susceptibility and the average course of disease of the entire networks. And if
averages of susceptibility and disease course are identical, increasing the variance of susceptibility may block the spread of
epidemics, while increasing the variance of disease course has little effect on the final epidemic size. Focusing on the indi-
vidual level correlations between the two of the susceptibility, the course of disease, and the square of the degree or con-
nectivity of individuals, we show that positive correlations between them make the network more vulnerable to epidemics
(increasing R0) and avail to the epidemic prevalence (increasing Rð∞Þ); whereas negative correlations make the network less
vulnerable (decreasing R0) and impede the epidemic prevalence (decreasing Rð∞Þ).
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This paper is organized as follows: in Section 2, we propose our extended heterogeneous SIRmodel. And in Section 3, there
are some analytical results of our extended model. Some numerical simulations are presented in Section 4. The paper con-
cludes in the last section with discussion of results and possible applications of this work.
2. The extended heterogeneous SIR model

In this section, we outline our extended heterogeneous SIR model that incorporates not only individual distinct suscepti-
bility and recovery rates but the topologyof networks toprovidemore accuratedescriptions of the epidemic spreading process.

In thispaper,weassume that all individuals once infectedare equally infectious. Inorder to introducedifferential susceptibility
and recovery rates,we assume thepopulation canbedivided intom subgroupsaccording to the susceptibility to infection, and the
susceptibility of individuals in the ith subgroup is bi; i ¼ 1;2;…;m: For each subgroup in which individual susceptibility is
identical,we furtherdivide them inton subgroupsaccording to individual recovery rate, and the recovery rate of individuals in the
jth subgroup is gj; j ¼ 1;2;…;n; correspondingly their course of disease is g�1

j . For each individual, we set a pair fixed values, i.e.,
bi and gj as individual internal property, that don't change over time, to depict the heterogeneity of individual susceptibility and
recovery rates. To further clarity, for the susceptible individuals with susceptibility bi and recovery rate gj, they will be infected
when theyhave contactwith an infected individualwith the probability bi and recoverwith the rategj if theyare infected. For the
infected individualswith susceptibility bi and recovery rate gj, they have been infected by one existing infectious individualwith
the probability bi and will recover with the rate gj. And for the recovered individuals with susceptibility bi and recovery rate gj,
they were once infected by one existing infectious individuals with the probability bi and recovered with the rate gj.

To take the topology of networks into account at the same time, it is necessary to traditionally denote the number of edges
attached to the nodes in a network as degree k. As a result, we denote the numbers of the susceptible, infected and recovered
nodes with susceptibility bi, recovery rate gj and degree k, in a network with arbitrary network topology as Si;j;k, Ii;j;k and Ri;j;k
respectively. The corresponding total number of nodes with susceptibility bi, recovery rate gj and degree k is

Ni;j;k ¼ Si;j;k þ Ii;j;k þ Ri;j;k;

and the total nodes of the network is

N ¼
XM
k¼1

Xn
j¼1

Xm
i¼1

Ni;j;k;

where M is the maximum degree of nodes. The joint distribution

Pði; j; kÞbNi;j;k

N

is the proportion of nodes with susceptibility bi, recovery rate gj and degree k in the total number of nodes, which implies the
structure of network in terms of node's susceptibility and recovery rates, as well as node's degree.

It is straightforward that the joint distribution

Psrði; jÞ ¼
XM
k¼1

Pði; j; kÞ

represents the structure of network in terms of node's susceptibility and recovery rates; the joint distribution

Psdði; jÞ ¼
Xn
j¼1

Pði; j; kÞ

represents the structure of network in terms of node's susceptibility and degree; the joint distribution

Prdði; jÞ ¼
Xm
i¼1

Pði; j; kÞ

represents the structure of network in terms of node's recovery rates and degree.
On the other hand, we can get some features of the topology of network and disease. We can deduce the degree distri-

bution PdðkÞ to represent the topology of network, which is obtained by

PdðkÞ ¼
Xn
j¼1

Xm
i¼1

Pði; j; kÞ:
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Hence, the average degree 〈k〉 is given by

〈k〉 ¼
XM
k¼1

kPdðkÞ ¼
XM
k¼1

Xn
j¼1

Xm
i¼1

kPði; j; kÞ:
About the features of disease, the susceptibility distribution can be denoted as

PsðiÞ ¼
XM
k¼1

Xn
j¼1

Pði; j; kÞ;

and the average susceptibility of the entire network is
〈b〉b
Xm
i¼1

biPsðiÞ ¼
XM
k¼1

Xn
j¼1

Xm
i¼1

biPði; j; kÞ:
The distribution of recovery rates is denoted as

PrðjÞ ¼
XM
k¼1

Xm
i¼1

Pði; j; kÞ;

and the average recovery rate of the entire network is
〈g〉b
Xn
j¼1

gjPrðjÞ ¼
XM
k¼1

Xn
j¼1

Xm
i¼1

gjPði; j; kÞ:

In particularly, it is necessary to introduce the average course of disease of the entire network, namely the average of all

individuals’ course of disease g�1

j

〈g�1〉b
Xn
j¼1

g�1
j PrðjÞ ¼

XM
k¼1

Xn
j¼1

Xm
i¼1

g�1
j Pði; j; kÞ:

The transmission of epidemics at time t is determined by the edges that link a susceptible node with an infected node at

that time. So we use ½Si;j;kIi0;j0;k0 � to indicate the number of the edges that link a susceptible node whose susceptibility, recovery
rate and degree are bi, gj and kwith an infected node whose susceptibility, recovery rate and degree are bi0 , gj0 and k0 at time t.
We assume that the time scale of the disease is much smaller than the lifespan of individuals and do not account for the birth
or natural death of individuals or nodes. What's more, we assume that the nodes with the same degree, susceptibility and
recovery rate show the identical dynamical characteristic, which generalizes the heterogeneous mean-field (HMF) theory
(Moreno et al., 2002; Pastor-Satorras & Vespignani, 2001). The HMF theory just assumes that the nodes of the same degrees
will show the same dynamical characteristic. Therefore, we can establish the following extended heterogeneous SIR model to
precisely describe the spread of epidemics on a network:

8>>>>>>>>>>><
>>>>>>>>>>>:

dSi;j;k
dt

¼ �bi
XM
k0¼1

Xn
j0¼1

Xm
i0¼1

h
Si;j;kIi0;j0;k0

i
;

dIi;j;k
dt

¼ bi
XM
k0¼1

Xn
j0¼1

Xm
i0¼1

h
Si;j;kIi0;j0;k0

i
� gjIi;j;k;

dRi;j;k
dt

¼ gjIi;j;k:

(2.1)
Duo to the existence of the term ½Si;j;kIi0 ;j0 ;k0 � in model (2.1), this model isn't closed and we can't directly analyse its dynamic
behaviors. Therefore, we introduce a generalized correlation coefficient to get some analytical results in the next section.

3. Analytical results

In this section, we consider the effect of the differences in susceptibility and recovery rates, combining with the topology
of networks, on the spread of epidemics involving their respective basic reproductive number R0 and the final epidemic size
Rð∞Þ. The basic reproductive number as epidemic thresholds sometimes has an important ramifications in many real-world
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scenarios. Theoretically speaking, it characterizes the critical condition above which a global epidemic occurs. Practically
speaking, quantifying it allows us to determine the effectiveness of a given immunization strategy. In addition, knowing the
final epidemic size helps us evaluate the severity of the epidemic spreading.

Attempting to generalize the Correlation CAB between nodes of type A and B (Keeling, 1999), we shall define CSi;j;kIi0 ;j0 ;k0 to be
the correlation between nodes of the susceptible one whose susceptibility, recovery rate and degree are bi, gj and k and the
infected one whose susceptibility, recovery rate and degree bi0 , gj0 and k0,

CSi;j;kIk0 ;i0 ;j0 ¼
〈k〉N
kk0

h
Si;j;kIi0;j0;k0

i
Si;j;kIi0;j0;k0

:

We say they are uncorrelated, if CSi;j;kIi0 ;j0 ;k0 ¼ 1. In this case, we have

h
Si;j;kIi0;j0;k0

i
¼ kk0

〈k〉N
Si;j;kIi0;j0;k0 ¼

kk0

〈k〉
Si;j;kPði0; j0; k0Þri0;j0;k0 :

where ri0;j0;k0 ¼ Ii0 ;j0 ;k0
Ni0 ;j0 ;k0

indicates the relative density of susceptible nodes with susceptibility bi0 , recovery rate gj0 and degree k0.
Similarly, si;j;k ¼ Si;j;k

Ni;j;k
and ri;j;k ¼ Ri;j;k

Ni;j;k
represent the relative densities of infected and recovered nodes with susceptibility bi,

recovery rate gj and degree k respectively.
On the base of the above work, under the generalized uncorrelation we deduce the following system according to system

(2.1):

8>>>>>>>>>>><
>>>>>>>>>>>:

dsi;j;k
dt

¼ �kbisi;j;k
XM
k0¼1

Xn
j0¼1

Xm
i0¼1

k0Pði0; j0; k0Þ
〈k〉

ri0;j0;k0 ;

dri;j;k
dt

¼ kbisi;j;k
XM
k0¼1

Xn
j0¼1

Xm
i0¼1

k0Pði0; j0; k0Þ
〈k〉

ri0;j0;k0 � gjri;j;k;

dri;j;k
dt

¼ gjri;j;k:

(3.1)
For convenience, we use Si;j;k, Ii;j;k and Ri;j;k to represent si;j;k, ri;j;k and ri;j;k respectively, and these variables obey the
normalization condition Si;j;k þ Ii;j;k þ Ri;j;k ¼ 1. Finally the spread of epidemics on the network can be described by the
following system:

8>>>>>>>>>>><
>>>>>>>>>>>:

dSi;j;k
dt

¼ �kbiSi;j;k
XM
k0¼1

Xn
j0¼1

Xm
i0¼1

k0Pði0; j0; k0Þ
〈k〉

Ii0;j0;k0 ;

dIi;j;k
dt

¼ kbiSi;j;k
XM
k0¼1

Xn
j0¼1

Xm
i0¼1

k0Pði0; j0; k0Þ
〈k〉

Ii0;j0;k0 � gjIi;j;k;

dRi;j;k
dt

¼ gjIi;j;k:

(3.2)
In this paper, we give the initial conditions as Si;j;kð0Þz1; Ii;j;kð0Þz0;Ri;j;kð0Þ ¼ 0; indicating the initial relative densities of
susceptible, infected and recovered nodes with susceptibility bi, recovery rate gj and degree k.

3.1. The basic reproductive number

In order to compute the basic reproductive number, we have attempted to apply the method of the next generationmatrix
(Van den Driessche & Watmough, 2002), actually we do obtain the same result, but it's a boringly tedious work. Fortunately,
we also can obtain the basic reproductive number according to whether the number of infected individuals increases
monotonically at the initial moment, which is excitingly easier.

On both sides of the second equation in system (3.2) multiplied kPði;j;kÞ
gj

and summing over i; j and k, with defining

fðtÞ ¼
XM
k¼1

Xn
j¼1

Xm
i¼1

kPði; j; kÞIi;j;kðtÞ
gj

;

we obtain
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f0ðtÞ ¼
0
@X

k¼1

M X
j¼1

n X
i¼1

m bik2Pði; j; kÞSi;j;kðtÞ
〈k〉gj

� 1

1
AX

k0¼1

M X
j0¼1

n X
i0¼1

m

k0Pði0; j0; k0ÞIi0;j0;k0 ðtÞ: (3.3)
According to the definition of the basic reproductive number, we just need to judge whether the number of infected
individuals increases monotonically at the initial moment. Note that whether the number of infected individuals increases
monotonically at the initial moment is equal to whether fðtÞ increases monotonically. According to equation (3.3), with

XM
k0¼1

Xn
j0¼1

Xm
i0¼1

k0Pði0; j0; k0ÞIi0;j0;k0 ð0Þ>0;

f0ð0Þ>0 is equal to
XM
k¼1

Xn
j¼1

Xm
i¼1

bik2Pði; j; kÞSi;j;kð0Þ
gj〈k〉

>1:
Finally, we obtain the basic reproductive number R0,

R0 ¼
XM
k¼1

Xn
j¼1

Xm
i¼1

bik2Pði; j; kÞSi;j;kð0Þ
gj〈k〉

:

Because Si;j;kð0Þz1, we have

R0 ¼
XM
k¼1

Xn
j¼1

Xm
i¼1

bik2Pði; j; kÞ
gj〈k〉

: (3.4)
From equation (3.4), we can conclude that the basic reproductive number is closely correlated with the joint distribution
Pði; j; kÞ. In other words, the structure of networks with the respect of individual susceptibility and recovery rates, as well as
individual degree has a significant influence on the vulnerability of networks to epidemics. Clearly, we alsowant to emphasize
that if m ¼ n ¼ 1, our extended heterogeneous SIR model will specialize to the standard SIR model (Moreno et al., 2002).

To further probe into the profound meaning of the basic reproductive number R0, we discuss the following four special
cases:

Case 1: Individual degree, susceptibility and recovery rate are all independent, namely Pði; j; kÞ ¼ PsðiÞPrðjÞPdðkÞ. In this
case, we have

R0 ¼ 〈k2〉
〈k〉

〈b〉〈g�1〉;

where 〈k2〉 is the average of the degrees squared.
Case 2: Individual degree is independent to individual susceptibility and recovery rate, namely Pði; j; kÞ ¼ PdðkÞPsrði; jÞ. In

this case, we have

R0 ¼ 〈k2〉
〈k〉

〈
b

g
〉 ¼ 〈k2〉

〈k〉

h
〈b〉〈g�1〉þ Corr

�
b;g�1

�
sbsg�1

i
;

where�1 � Corrðb;g�1Þ � 1 is the Pearson correlation coefficient between individual susceptibility and course of disease, sb
and sg�1 are their respective standard deviation.

Case 3: Individual recovery rate is independent to individual degree and susceptibility, namely Pði; j; kÞ ¼ PrðjÞPsdði; kÞ. In
this case, we have

R0 ¼ 〈g�1〉
〈k〉

〈k2b〉 ¼ 〈g�1〉
〈k〉

h
〈k2〉〈b〉þ Corr

�
k2; b

�
sk2sb

i
;

where�1 � Corrðk2; bÞ � 1 is the Pearson correlation coefficient between individual degree squared and susceptibility, sk2 is
the standard deviation of the degrees squared.

Case 4: Individual susceptibility is independent to individual degree and recovery rate, namely Pði; j; kÞ ¼ PsðiÞPrdðj; kÞ. In
this case, we have
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R0 ¼ 〈b〉
〈k〉

〈
k2

g
〉 ¼ 〈b〉

〈k〉

h
〈k2〉〈g�1〉þ Corr

�
k2;g�1

�
sk2sg�1

i
;

where �1 � Corrðk2;g�1Þ � 1 is the Pearson correlation coefficient between individual degree squared and course of
disease.

According to the above discussion, we can get the following conclusions. Firstly, if individual degree, susceptibility and
recovery rate are all independent, the vulnerability of networks to epidemic is determined by the topology of the network and
the average susceptibility and the average course of disease of the entire networks. Secondly, positive correlation between
individual susceptibility and course of disease makes the network more vulnerable to epidemic (increasing R0), whereas the
negative correlation makes the population less vulnerable (decreasing R0). Thirdly, if individual susceptibility and course of
disease have the larger standard deviations, the vulnerability of networks to epidemic will be increased or decreased to a
larger degree even though there are the same level of positive or negative correlations between individual degree, suscep-
tibility and course of disease. Fourthly, it is straightforward that heterogeneous susceptibility can make networks more
vulnerable to epidemic when individual degree and susceptibility are positively correlated, and less vulnerable when indi-
vidual degree and susceptibility are negatively correlated. And the effects of heterogeneous recovery rates lie in the fact that
the networks are more vulnerable to diseases when individual degree and course of disease are positively correlated, and less
vulnerable if they are negatively correlated. Noteworthily, even small correlations between individual degree and either
individual susceptibility or course of disease can lead to significant discrepancy of R0 when variation in connectivity, as
measured by sk2, is large compared to the average degree 〈k〉, which results from networks’ high heterogeneity of individual
degree.

3.2. The final epidemic size

First, we show that for system (3.2) the disease will eventually die out, i.e., Ii;j;kð∞Þ ¼ 0 for any i; j; k.
One can find that all solutions of system (3.2) remain non-negative and bounded in the set defined by Si;j;k; Ii;j;k;Ri;j;k � 0

and Si;j;k þ Ii;j;k þ Ri;j;k ¼ 1. Observing that

d
dt

�
Si;j;kðtÞ þ Ii;j;kðtÞ

�
¼ �gjIi;j;kðtÞ: (3.5)
We see that Si;j;kðtÞ þ Ii;j;kðtÞ is decreasing whenever Ii;j;kðtÞ>0. However, Si;j;kðtÞ þ Ii;j;kðtÞ is bounded below by 0; hence, it
has a limit. Moreover, system (3.2) implies that S0i;j;kðtÞ þ I0i;j;kðtÞ is bounded, because Ii;j;kðtÞ is bounded. Hence,

lim
t/∞

ðS0i;j;kðtÞ þ I0i;j;kðtÞÞ ¼ 0, so Ii;j;kð∞Þ ¼ 0. Therefore, duo to the arbitrariness of i; j; k, the disease will eventually die out for

system (3.2).
If we integrate the third equation of system (3.2) from t ¼ 0 to ∞, we have

Ri;j;kð∞Þ � Ri;j;kð0Þ ¼ gj

Z∞

0

Ii;j;kðsÞds:
Note that Ri;j;kð0Þ ¼ 0, hence we have

Ri;j;kð∞Þ ¼ gj

Z∞

0

Ii;j;kðtÞdt:
Integrating equation (3.5) from t ¼ 0 to ∞, we have

Si;j;kð0Þ þ Ii;j;kð0Þ ¼ Si;j;kð∞Þ þ Ri;j;kð∞Þ: (3.6)
Nowwe canwork out the relative final size relation of the recovered. Integration of the first equation of system (3.2) from
0 to t gives

ln
Si;j;kðtÞ
Si;j;kð0Þ

¼ �kbi
X
k0¼1

M X
j0¼1

n X
i0¼1

m k0Pði0; j0; k0ÞRi0;j0;k0 ðtÞ
〈k〉gj0

:
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Hence,

Si;j;kðtÞ ¼ Si;j;kð0Þexp
2
4� kbi

XM
k0¼1

Xn
j0¼1

Xm
i0¼1

k0Pði0; j0; k0ÞRi0;j0;k0 ðtÞ
〈k〉gj0

3
5:
Letting t/∞, it arrives at

Si;j;kð∞Þ ¼ Si;j;kð0Þexp
2
4� kbi

XM
k0¼1

Xn
j0¼1

Xm
i0¼1

k0Pði0; j0; k0ÞRi0;j0;k0 ð∞Þ
〈k〉gj0

3
5:
Duo to equation (3.6), we have

Ri;j;kð∞Þ ¼
8<
:1� exp

2
4� kbi

X
k0¼1

M X
j0¼1

n X
i0¼1

m k0Pði0; j0; k0ÞRi0;j0;k0 ð∞Þ
〈k〉gj0

3
5
9=
;� Si;j;kð0Þ þ Ii;j;kð0Þ: (3.7)
The equation (3.7) provides the relative final size relation of the recovered, but we can't directly ascertain the existence of
Ri;j;kð∞Þ. Therefore, we provide the condition of this existence by the following theorem.

Theorem 3.1. If R0 >1, then the non-zero final size for the recovered population exists.
Proof. Let us define

4∞ ¼
XM
k¼1

Xn
j¼1

Xm
i¼1

kPði; j; kÞRi;j;kð∞Þ
〈k〉gj

:

Note that the positivity of 4∞ implies the existence of the non-zero final size for the recovered population.
On both sides of equation (3.7) multiplied kPði;j;kÞ

〈k〉gj
and summing over i; j and k obtains

4∞ ¼
X
k¼1

M X
j¼1

n X
i¼1

m kPði; j; kÞSi;j;kð0Þ
〈k〉gj

þ
X
k¼1

M X
j¼1

n X
i¼1

m kPði; j; kÞIi;j;kð0Þ
〈k〉gj

�
X
k¼1

M X
j¼1

n X
i¼1

m kPði; j; kÞSi;j;kð0Þ
〈k〉gj

expð�kbi4∞Þ:
Substituting the initial condition Si;j;kð0Þz1; Ii;j;kð0Þz0 into the above equation, we obtain the following self-consistent
equation for 4∞:

4∞ ¼
XM
k¼1

Xn
j¼1

Xm
i¼1

kPði; j; kÞ
〈k〉gj

½1� expð�kbi4∞Þ�: (3.8)
The value 4∞ ¼ 0 is always a solution. In order to have a non-zero solution, the condition

d
d4∞

0
@XM

k¼1

Xn
j¼1

Xm
i¼1

kPði; j; kÞ
〈k〉gj

½1� expð�kbi4∞Þ�
1
Aj4∞¼0 >1: (3.9)

must be fulfilled. This relation implies
XM
k¼1

Xn
j¼1

Xm
i¼1

bik2Pði; j; kÞ
〈k〉gj

¼ R0 >1: (3.10)
Therefore, if R0 >1, the non-zero final size for the recovered population exists.
According to Theorem 3.1, if R0 >1, the epidemic will outbreak. And combining with the equation (3.7), if the epidemic

outbreaks, namely 4∞ >0, Ri;j;kð∞Þ>0. Hence, we do want to stress that in general R0 >1 does guarantee a macroscopic
outbreak and a prevalent infection in the entire network. However, if bi is small enough, we have Ri;j;kð∞ÞzIi;j;kð0Þ, which
means that there hardly are epidemic outbreak in the corresponding subgroups. Interestingly, if we compute the derivation of
the equation (3.7) about bi, we have
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d
dbi

Ri;j;kð∞Þ ¼ Si;j;kð0Þk4∞expð�kbi4∞Þ>0:
This result shows that the larger bi usually means the relatively larger Ri;j;kð∞Þ under the condition R0 >1.
Furthermore,we have to state that if the epidemic outbreaks, thefinal epidemic size Rð∞Þ can be obtained by the computation:

Rð∞Þ ¼
XM
k¼1

Xn
j¼1

Xm
i¼1

Ri;j;kð∞ÞPði; j; kÞ: (3.11)
From equations (3.7) and (3.11), we can conclude that the final epidemic size has a close correlation with the structure of
the networks in terms of nodes’ degree, susceptibility, and recovery rates. This point will be illustrated clearly in Section 4 by
some numerical simulations.

Until now, we have put forward the formulas to compute the basic reproductive number R0 and the total final size for the
recovered population Rð∞Þ. However, these formulas have little practical application duo to the absence of complete infor-
mation about the network topology and the distribution of individual susceptibility and recovery rates. In real case, we can
divide population coarsely into some subgroups with b ¼ blow; bmedium and bhigh corresponding to low, medium and high
susceptibility respectively. Similarly, g ¼ glow;gmedium and ghigh corresponding to low, medium and high recovery rate
respectively. Obviously, the more subgroups we have, we can work out results which are closer to actual ones.
4. Numerical simulations

In this section, we directly take the value of individual course of disease and set its distribution to explore the effect of
differential recovery rates on the spread of epidemics. Actually, we take individual susceptibilitym values uniformly from 0 to
1, which means we divide the population into m subgroups according to individual susceptibility. And we take individual
course of disease n values uniformly from 1 to 100, hence we divide the population into n subgroups according to individual
course of disease. The fraction of initially infective individuals is 10�6.

We first assume that the degree, susceptibility, and recovery rate are independent, and will later discuss the case where
the correlation of them is taken into account. In reality, individuals susceptibility and recovery rates, correspondingly their
course of diseasemay have some different distribution characteristics, for example, the small or large average and variance. So
in the following subsections, we choose to adopt both Poisson and power-law distributions to describe individual variant
susceptibility and course of disease, and observe the behaviors of R0 and Rð∞Þ to discover the effect of the uncorrelated
individual susceptibility and recovery rate, different levels of heterogeneity of individual susceptibility and course of disease,
and the correlated individual degree, susceptibility and recovery rate on the spread of epidemics. Necessarily illustrating, in
this paper we say the susceptibility follows Poisson distribution when setting the fraction of individuals with the i-th sus-

ceptibility as psðiÞ ¼ e�l l
ði�1Þ

ði�1Þ!; i ¼ 1;2;…;m; and the course of disease follows Poisson distributionwhen setting the fraction of

individuals with the j-th course of disease as prðjÞ ¼ e�l l
ðj�1Þ

ðj�1Þ!; j ¼ 1;2;…;n; where l is the sufficiently small parameters.

4.1. The effects of the uncorrelated individual susceptibility and recovery rate

To begin with, we show how the uncorrelated individual susceptibility and recovery rate affect the spread of epidemics.
Here, we just consider the following two cases: individual susceptibility and course of disease both follow Poisson distri-
bution or power-law distribution.

R0 and Rð∞Þ are plotted as the functions of 〈b〉 and 〈g�1〉 in Fig. 1. In a good agreement, when R0 � 1, Rð∞Þ ¼ 0, and when
R0 >0, Rð∞Þ>0. And R0 and Rð∞Þ congruously change with rebuilding the structure of population. On the whole, R0 and Rð∞Þ
are increasing with the increment of 〈b〉 and 〈g�1〉. In the left two panels in Fig. 1, R0 is equal, although individual suscep-
tibility and course of disease follow different distributions. This accords with our theoretical analysis that when individual
susceptibility and recovery rate are independent, the vulnerability of networks to epidemic reflected by R0 is mainly
determined by the average susceptibility and the average course of disease of the entire networks. From Fig.1, it is not difficult
to conclude that the structure of population in terms of individual susceptibility and course of disease have a non-negligible
impact on the vulnerability of network to disease and the prevalence of the epidemic. Lowering the average susceptibility and
the average course of disease of the entire networks will effectively control the outbreak and prevalence of the epidemic.

4.2. The effects of different levels of heterogeneity of individual susceptibility and course of disease

As shown in the right two panels in Fig. 1, there is relatively lower final size of the recovered in the bottom right subgraph.
This invites us to explore the effect of different levels of heterogeneity of individual susceptibility and course of disease on the
spread of epidemics which are measured by the variances of them, i.e., VarðbÞ and Varðg�1Þ.



Fig. 1. The effects of the structure of population. We plot R0 and Rð∞Þ as functions of 〈b〉 and 〈g�1〉. Here, m ¼ n ¼ 30, and individual degree satisfies power-law
distribution with exponent m ¼ 2:5 and M ¼ 100. Individual susceptibility and course of disease follow Poisson distributions in the top two panels and power-law
distributions in the bottom two panels.
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Considering the susceptibility, we plot Rð∞Þ and VarðbÞ (inset) as the functions of 〈b〉when it follows Poisson distribution
(blue squares) and power-law distribution (red circles) with fixing the distribution of individual course of disease as Poisson
distributionwith 〈g�1〉 ¼ 6:5000, Varðg�1Þ ¼ 18:7757, as shown in Fig. 2a. For individual course of disease, we simulate Rð∞Þ
and Varðg�1Þ (inset) as a function of 〈g�1〉when it follows Poisson distribution (blue squares) and power-law distribution (red
circles) with fixing the distribution of susceptibility as Poisson distribution with 〈b〉 ¼ 0:0556, VarðbÞ ¼ 0:0019, as shown in
Fig. 2b.

As visualized in Fig. 2a, the Rð∞Þ of the network with power-law distributed susceptibility is smaller than the one of the
network with Poisson distributed susceptibility, while the former network has a larger VarðbÞ. Differently, there is no devi-
ation of Rð∞Þ between the two case where the distribution of individual course of disease is power-law distribution and
Poisson distribution, even though there are two distinctly different variances, as shown in Fig. 2b.

From Fig. 2, it is straightforward to conclude that increasing the variance of individual susceptibility may block the spread of
epidemic intensely (decreasing Rð∞Þ). However, increasing the variance of individual course of disease has little effect on the
epidemic. This is instinctively understandable. Since individual susceptibility is differential, there are susceptible individuals
with lower susceptibility than the average susceptibility, who are less likely acquiring disease when in contact with infectious
individuals. Furthermore, the bigger variance of the power-law distributed susceptibility indicates that there are more sus-
ceptible individuals with poor susceptibility. As a consequence, the final epidemic size becomes smaller. To understand the
invalidation of the increasing of the variance of individual course of disease, we can regard individual course of disease as the
residence time of the disease in the individual. The length of different residence time in any individual doesn't lead to the
difference of the final epidemic size under the condition that the average course of disease of the entire networks is fixed.
4.3. The effects of the correlated individual degree, susceptibility and recovery rate

Note that we have not considered so far the correlation of individual degree, susceptibility and recovery rate in the
previous numerical simulations, where we assumed the degree, susceptibility and recovery rate of each individual are



Fig. 2. The effects of different levels of heterogeneity of individual susceptibility and course of disease. In (a), we plot Rð∞Þ and VarðbÞ (inset) as a function of 〈b〉,
where the distribution of susceptibility is tuned as Poisson distribution (blue squares) and power-law distribution (red circles), individual course of disease
satisfies Poisson distribution with 〈g�1〉 ¼ 6:5000, Varðg�1Þ ¼ 18:7757. In (b), we plot Rð∞Þ and Varðg�1Þ (inset) as a function of 〈g�1〉, where the distribution of
individual course of disease is tuned as Poisson distribution (blue squares) and power-law distribution (red circles), the susceptibility satisfies Poisson distri-
bution with 〈b〉 ¼ 0:0556, VarðbÞ ¼ 0:0019. Here, m ¼ n ¼ 30, and individual degree satisfies power-law distribution with exponent m ¼ 2:5 and M ¼ 100.
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independent. However, a complete study of differential susceptibility and recovery rates should consider not only variations
in the susceptibility and recovery rates of individuals, but also the correlations between individual degree, susceptibility and
recovery rate. In the following simulations, we carry on the exchanging processes (Li, Liu et al., 2010) to fulfill both the positive
and negative correlation between the susceptibility, the course of disease and the degrees squared.

4.3.1. The correlated individual susceptibility and recovery rate
Firstly, we explore the effect of correlated individual susceptibility and recovery rate through showing the relations of R0

and Rð∞Þ to the Pearson correlation coefficient between individual susceptibility and course of disease Corrðb;g�1Þ. For
convenience, we assume that individual degree is independent to individual susceptibility and recovery rates. R0 and Rð∞Þ
(red circles) are plotted as the function of the correlation coefficient Corrðb;g�1Þ in Fig. 3. As shown in the picture, R0 and rð∞Þ
Fig. 3. The effects of the correlated individual susceptibility and recovery rate. We show R0 and Rð∞Þ (red circles) as the function of Corrðb;g�1Þ, and the results
are obtained by 500 independent realizations for each value of Corrðb;g�1Þ. Here, m ¼ 50, n ¼ 50, and individual degree follows power-law distribution with
exponent m ¼ 2:5 and M ¼ 100. In (a), individual susceptibility and course of disease follow Poisson distribution with 〈b〉 ¼ 0:0556, VarðbÞ ¼ 5:6� 10�4, 〈g�1〉 ¼
6:5000 and Varðg�1Þ ¼ 5:5000; in (b), individual susceptibility follows Poisson distribution with 〈b〉 ¼ 0:0556, VarðbÞ ¼ 5:6� 10�4, and individual course of
disease follows power-law distribution with 〈g�1〉 ¼ 6:5000 and Varðg�1Þ ¼ 173:2610; in (c), individual susceptibility and course of disease follow power-law
distribution with the same averages 〈b〉 ¼ 0:0556 and 〈g�1〉 ¼ 6:5000, yet much bigger variances VarðbÞ ¼ 0:0177 and Varðg�1Þ ¼ 173:2610. For comparison,
we also compute R0 and Rð∞Þ (blue squares) when the susceptibility and recovery rates are independent correspondingly.
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are both increasing with the increment of Corrðb;g�1Þ. Comparing Fig. 3a,b,3c, the increasing or decreasing of R0 and Rð∞Þ in
Fig. 3b is larger than the change in Fig. 3a; and in Fig. 3c, the correlationmakes R0 and Rð∞Þ grow up or downmore apparently.
For comparison, we also compute R0 and Rð∞Þ (blue squares) when the susceptibility and recovery rate are independent with
the same distributions correspondingly. Taking them as a standard, it is easy to find that R0 and Rð∞Þ become bigger when
there is positive correlation, while R0 and Rð∞Þ become smaller when there is negative correlation.

From Fig. 3, we can come to some conclusions. Firstly, the positive correlation of individual susceptibility and course of
disease makes the population more vulnerable to epidemic (increasing R0), and avails to the epidemic prevalence (increasing
Rð∞Þ), whereas the negative correlation makes the population less vulnerable (decreasing R0) and impedes the epidemic
prevalence (decreasing Rð∞Þ). Instinctively understanding, it is natural that individuals with larger susceptibility and with
smaller recovery rate at the same time are more likely to be infected by the infectious individuals and last longer time in
infected state once he acquired the epidemic. As a consequence, the positively correlated individual susceptibility and course
of disease promote the vulnerability of population to epidemic. To the contrary, the negatively correlated individual sus-
ceptibility and course of disease will cripple the vulnerability of population to epidemic. This result derives from the fact
individuals with larger susceptibility and larger recovery rate who are more likely to be infected by the infected but last
shorter time in infected state are disable to facilitate the spread of epidemics.

Secondly, the existence of the correlation between individual susceptibility and course of disease makes the heteroge-
neous recovery rates play a totally different role on epidemic as increasing the variance of the course of diseasewith fixing the
same average does accelerate the variation of R0 and Rð∞Þ. This result is so different from the result obtainedwhenwe assume
the individual susceptibility and recovery rate are independent. This result suggests we can't ignore the effect of the het-
erogeneity of individual course of disease on the spread of epidemics when it is correlated to individual susceptibility.

4.3.2. The correlated individual degree and susceptibility
Then, we explore the effects of the correlated individual degree and susceptibility through uncovering the relations of R0

and Rð∞Þ to the Pearson correlation coefficient between individual degree squared and susceptibility Corrðk2; bÞ. In our
simulations, we set individual degree satisfying power-law distribution with the power-law exponent m ¼ 2:5 and M ¼ 100;
individual course of disease is set as a constant value g�1 ¼ 6:5000. R0 and Rð∞Þ (red circles) are plotted as the function of
Corrðk2; bÞ in Fig. 4. On the left, individual susceptibility follows Poisson distribution, while on the right it follows power-law
distribution. It can be found that R0 and Rð∞Þ are increasing functions of Corrðk2; bÞ. Similarly, R0 and Rð∞Þ is larger than the
standard obtained when we assume individual degree and susceptibility are independent if the correlations are positive, R0
and Rð∞Þ is smaller than the standard if the correlations are negative.
Fig. 4. The effects of the correlated individual degree and susceptibility. We show R0 and Rð∞Þ (red circles) as the function of Corrðk2; bÞ, and the results are
obtained by 500 independent realizations for each value of Corrðk2; bÞ. Here, m ¼ 100, the course of disease of all individuals is set as a constant value
g�1 ¼ 6:5000, and individual degree follows power-law distribution with exponent m ¼ 2:5 and M ¼ 100. On the left, the susceptibility follows Poisson distri-
bution with 〈b〉 ¼ 0:0556, VarðbÞ ¼ 5:6� 10�4; on the right it follows power-law distribution with 〈b〉 ¼ 0:0556, VarðbÞ ¼ 0:0177. For comparison, we also
compute R0 and Rð∞Þ (blue squares) when the degree and susceptibility are independent correspondingly.



Fig. 5. The effects of the correlated individual degree and recovery rate. We show R0 and Rð∞Þ (red circles) as the function of Corrðk2;g�1Þ, and the results are
obtained by 500 independent realizations for each value of Corrðk2;g�1Þ. Here, n ¼ 100, individual susceptibility is set as a constant value b ¼ 0:0556, and the
degree of individuals follows power-law distribution with m ¼ 2:5 and M ¼ 100. On the left, individual course of disease follows Poisson distribution with
〈g�1〉 ¼ 6:5000, Varðg�1Þ ¼ 5:5000; on the right it follows power-law distribution with 〈g�1〉 ¼ 6:5000, Varðg�1Þ ¼ 173:2610. For comparison, we also compute
R0 and Rð∞Þ (blue squares) when the degree and recovery rate are independent correspondingly.
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Therefore, we can conclude that individual level correlations between degree and susceptibility will promote the
vulnerability of the networks to epidemic and the epidemic prevalence when the correlation is positive; and cripple the
vulnerability and the epidemic prevalence when the correlation is negative. This result uncover a scenario of important
significance in the process of the spread of the disease that the individuals with high degree and large susceptibility make for
the spread of disease, while ones with high degree yet small susceptibility impede the contagion of disease.

4.3.3. The correlated individual degree and recovery rate
Finally, we explore the effects of the correlated individual degree and recovery rate through revealing the relations of R0

and Rð∞Þ to the Pearson correlation coefficient between the square of the degree and individual course of disease
Corrðk2;g�1Þ. In our simulations, we also set individual degree satisfying power-law distribution with the power-law
exponent m ¼ 2:5 and M ¼ 100; individual susceptibility is set as a constant value b ¼ 0:0556. We plot R0 and Rð∞Þ (red
circles) as functions of Corrðk2;g�1Þ in Fig. 5. On the left, individual course of disease follows Poisson distribution, while on the
right it follows power-law distribution. It can be seen that R0 and Rð∞Þ are increasing as Corrðk2;g�1Þ increases. Without
surprise, if the correlations are positive, R0 and Rð∞Þ is again larger than the standard obtained when we assume individual
degree and recovery rate are independent; if the correlations are negative, R0 and Rð∞Þ is smaller than the standard.

From Fig. 5, one can come to the parallel conclusion that the positive correlations between individual degree and course of
disease will increase the vulnerability of the networks to epidemic and the epidemic prevalence, while the negative corre-
lationwill decrease the vulnerability and the epidemic prevalence. Wewant to highlight the fact the infected individuals who
recover slowly and are prone to have plentiful neighbors boost the outbreak of disease, while individuals recovering slowly
and tending to possess scanty neighbors don't facilitate the existence of epidemic.

In summery, the positive correlations of the susceptibility, the course of disease, and the square of the degree of individual
can make the networks more vulnerable to epidemic and avail to the epidemic prevalence, whereas the negative correlations
make the networks less vulnerable and impede the epidemic prevalence. These results suggest that we should reduce the
susceptibility probability of the people who recover slowly or have many neighbors and cure the infected who have acquired
the disease with high probability or possess plentiful neighbors as soon as possible.
5. Discussion

In this paper we extend the traditional SIR epidemicmodel to incorporate not only the topology of networks but individual
heterogeneous susceptibility and recovery rates. We put forward the formulas to compute the basic reproductive number and
the final epidemic size and show that they both are altering with tuning the structure of population. Therefore, the spread of
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epidemics has a close connection with the structure of population, which is induced by the heterogeneity of individual
susceptibility and recovery rates. Additionally, we also show that increasing the variance of individual susceptibility may
block the spread of epidemics prominently, while increasing the variance of individual course of disease has little effect on the
final epidemic size. Furthermore, we uncover some significant scenarios in the process of spread of disease through inves-
tigating the effect of the individual level correlations between individual connectivity, susceptibility and course of disease.
Individuals with larger susceptibility but smaller recovery rates aremore likely to be infected by the infectious individuals and
last longer time in infected state once they acquired the epidemic, and they will promote the vulnerability of population to
epidemic and the epidemic prevalence. And the individuals possessing plentiful neighbors who are more likely to be infected
or recover more slowly once infected will accelerate the spread of epidemics. Therefore, it is not enough to only take into
account network heterogeneity to make an appropriate and fruitful immunization strategy. In fact, a good vaccination
campaign should target the most highly connected peoplewhowith high susceptibility are easier to be infected or with lower
recovery rate may be in the infected state for a long time once infected.

Nevertheless, the formulaswe provide to compute R0 and Rð∞Þ have little practical use in absence of complete information
about the network topology and the distribution of individual susceptibility and recovery rates (or course of disease). As a
consequence, it perfectly motivates our works to explore the significant but insufficient information of individuals in pop-
ulation. However, it still inspires and guides our practical application in the prevention and control of epidemic. As some
possible application, we can more accurately estimate the vulnerability of networks to epidemic and the severity of the
epidemics if it outbreaks through coarsely dividing population into some subgroups according to individual different sus-
ceptibility and recovery rates. It is a pity that our work carried out on the uncorrelated network, which is far from real world.
Actually, we don't knowwhat will happenwith taking link level correlations in the degree, susceptibility and recovery rates of
nodes into consideration. It will be an attractive option for future studies.
Acknowledgments

This work is supported by the National Natural Science Foundation of China under Grant No. 11331009, The Science and
Technology Innovation Team in Shanxi Province No. 201605D131044-06.
References

Abbas, W., Bhatia, S., Vorobeychik, Y., & Koutsoukos, X. (2014). Immunization against infection propagation in heterogeneous networks. In Network
computing and applications (NCA), 2014 IEEE 13th international symposium on (pp. 296e300). IEEE. http://dx.doi.org/10.1109/NCA.2014.51.

Anderson, R. M., May, R. M., & Anderson, B. (1992). Infectious diseases of humans: Dynamics and control (Vol. 28). Wiley Online Library.
Bogun�a, M., & Pastor-Satorras, R. (2002). Epidemic spreading in correlated complex networks. Physical Review E, 66(4), 047104. http://dx.doi.org/10.1103/

PhysRevE.66.047104.
Bogun�a, M., Pastor-Satorras, R., & Vespignani, A. (2003). Absence of epidemic threshold in scale-free networks with degree correlations. Physical Review

Letters, 90(2), 028701. http://dx.doi.org/10.1103/PhysRevLett.90.028701.
Boon, A. C., Finkelstein, D., Zheng, M., Liao, G., Allard, J., Klumpp, K., et al. (2011). H5n1 influenza virus pathogenesis in genetically diverse mice is mediated

at the level of viral load. MBio, 2(5). http://dx.doi.org/10.1128/mBio.00171-11. e00171e11.
Dorogovtsev, S. N., Goltsev, A. V., & Mendes, J. F. (2008). Critical phenomena in complex networks. Reviews of Modern Physics, 80(4), 1275. http://dx.doi.org/

10.1103/RevModPhys.80.1275.
Fryer, H. R., Frater, J., Duda, A., Roberts, M. G., Phillips, R. E., McLean, A. R., et al. (2010). Modelling the evolution and spread of hiv immune escape mutants.

PLoS Pathogens, 6(11), e1001196. http://dx.doi.org/10.1371/journal.ppat.1001196.
Hardie, R. A., Luo, M., Bruneau, B., Knight, E., Nagelkerke, N. J., Kimani, J., et al. (2008). Human leukocyte antigen-dq alleles and haplotypes and their

associations with resistance and susceptibility to hiv-1 infection. Aids, 22(7), 807e816. http://dx.doi.org/10.1097/QAD.0b013e3282f51b71.
Jin, Z., Sun, G., & Zhu, H. (2014). Epidemic models for complex networks with demographics. Mathematical Biosciences and Engineering, 11(6), 1295e1317.

http://dx.doi.org/10.3934/mbe.2014.11.1295.
Jin, Z., Zhang, J., Song, L. P., Sun, G. Q., Kan, J., & Zhu, H. (2011). Modelling and analysis of influenza a (h1n1) on networks. BMC Public Health, 11(1), S9. http://

dx.doi.org/10.1186/1471-2458-11-S1-S9.
Karrer, B., & Newman, M. E. (2010). Message passing approach for general epidemic models. Physical Review E, 82(1), 016101. http://dx.doi.org/10.1103/

PhysRevE.82.016101.
Keeling, M. J. (1999). The effects of local spatial structure on epidemiological invasions. Proceedings of the Royal Society of London B: Biological Sciences,

266(1421), 859e867. http://dx.doi.org/10.1098/rspb.1999.0716.
Keeling, M. J., & Rohani, P. (2008). Modeling infectious diseases in humans and animals. Princeton University Press.
Kenah, E., & Robins, J. M. (2007). Second look at the spread of epidemics on networks. Physical Review E, 76(3), 036113. http://dx.doi.org/10.1103/PhysRevE.

76.036113.
Li, X., Cao, L., & Cao, G. (2010). Epidemic prevalence on random mobile dynamical networks: Individual heterogeneity and correlation. The European Physical

Journal B-Condensed Matter and Complex Systems, 75(3), 319e326. http://dx.doi.org/10.1140/epjb/e2010-00090-9.
Li, M. T., Jin, Z., Sun, G. Q., & Zhang, J. (2017). Modeling direct and indirect disease transmission using multi-group model. Journal of Mathematical Analysis

and Applications, 446(2), 1292e1309. http://dx.doi.org/10.1016/j.jmaa.2016.09.043.
Li, J., Liu, Y., Kim, T., Min, R., & Zhang, Z. (2010). Gene expression variability within and between human populations and implications toward disease

susceptibility. PLoS Computational Biology, 6(8), e1000910. http://dx.doi.org/10.1371/journal.pcbi.1000910.
Li, M. T., Sun, G. Q., Wu, Y. F., Zhang, J., & Jin, Z. (2014). Transmission dynamics of a multi-group brucellosis model with mixed cross infection in public farm.

Applied Mathematics and Computation, 237, 582e594. http://dx.doi.org/10.1016/j.amc.2014.03.094.
Lloyd Smith, J. O., Schreiber, S. J., Kopp, P. E., & Getz, W. M. (2005). Superspreading and the effect of individual variation on disease emergence. Nature,

438(7066), 355e359. http://dx.doi.org/10.1038/nature04153.
Luo, X., Chang, L., & Jin, Z. (2017). Demographics induce extinction of disease in an sis model based on conditional markov chain. Journal of Biological

Systems, 25(01), 145e171. http://dx.doi.org/10.1142/S0218339017500085.
Luo, X. F., Zhang, X., Sun, G. Q., & Jin, Z. (2014). Epidemical dynamics of sis pair approximation models on regular and random networks. Physica A: Statistical

Mechanics and its Applications, 410, 144e153. http://dx.doi.org/10.1016/j.physa.2014.05.020.
May, R. M., & Lloyd, A. L. (2001). Infection dynamics on scale-free networks. Physical Review E, 64(6), 066112. http://dx.doi.org/10.1103/PhysRevE.64.066112.

http://dx.doi.org/10.1109/NCA.2014.51
http://refhub.elsevier.com/S2468-0427(17)30009-X/sref2
http://dx.doi.org/10.1103/PhysRevE.66.047104
http://dx.doi.org/10.1103/PhysRevE.66.047104
http://dx.doi.org/10.1103/PhysRevLett.90.028701
http://dx.doi.org/10.1128/mBio.00171-11
http://dx.doi.org/10.1103/RevModPhys.80.1275
http://dx.doi.org/10.1103/RevModPhys.80.1275
http://dx.doi.org/10.1371/journal.ppat.1001196
http://dx.doi.org/10.1097/QAD.0b013e3282f51b71
http://dx.doi.org/10.3934/mbe.2014.11.1295
http://dx.doi.org/10.1186/1471-2458-11-S1-S9
http://dx.doi.org/10.1186/1471-2458-11-S1-S9
http://dx.doi.org/10.1103/PhysRevE.82.016101
http://dx.doi.org/10.1103/PhysRevE.82.016101
http://dx.doi.org/10.1098/rspb.1999.0716
http://refhub.elsevier.com/S2468-0427(17)30009-X/sref13
http://dx.doi.org/10.1103/PhysRevE.76.036113
http://dx.doi.org/10.1103/PhysRevE.76.036113
http://dx.doi.org/10.1140/epjb/e2010-00090-9
http://dx.doi.org/10.1016/j.jmaa.2016.09.043
http://dx.doi.org/10.1371/journal.pcbi.1000910
http://dx.doi.org/10.1016/j.amc.2014.03.094
http://dx.doi.org/10.1038/nature04153
http://dx.doi.org/10.1142/S0218339017500085
http://dx.doi.org/10.1016/j.physa.2014.05.020
http://dx.doi.org/10.1103/PhysRevE.64.066112


W. Gou, Z. Jin / Infectious Disease Modelling 2 (2017) 353e367 367
Miller, J. C. (2007). Epidemic size and probability in populations with heterogeneous infectivity and susceptibility. Physical Review E, 76(1), 010101. http://dx.
doi.org/10.1103/PhysRevE.76.010101.

Miller, J. C. (2009). Spread of infectious disease through clustered populations. Journal of the Royal Society Interface. http://dx.doi.org/10.1098/rsif.2008.0524.
rsife2008.

Moreno, Y., Pastor-Satorras, R., & Vespignani, A. (2002). Epidemic outbreaks in complex heterogeneous networks. The European Physical Journal B-Condensed
Matter and Complex Systems, 26(4), 521e529. http://dx.doi.org/10.1140/ejpb/e20020122.

Neri, F. M., Bates, A., Füchtbauer, W. S., P�erez-Reche, F. J., Taraskin, S. N., Otten, W., et al. (2011). The effect of heterogeneity on invasion in spatial epidemics:
From theory to experimental evidence in a model system. PLoS Computational Biology, 7(9), e1002174. http://dx.doi.org/10.1371/journal.pcbi.1002174.

Neri, F. M., P�erez Reche, F. J., Taraskin, S. N., & Gilligan, C. A. (2010). Heterogeneity in susceptibleeinfectederemoved (sir) epidemics on lattices. Journal of The
Royal Society Interface. http://dx.doi.org/10.1098/rsif.2010.0325. rsife20100325.

Newman, M. E. (2002). Spread of epidemic disease on networks. Physical Review E, 66(1), 016128. http://dx.doi.org/10.1103/PhysRevE.66.016128.
Pastor-Satorras, R., Castellano, C., Van Mieghem, P., & Vespignani, A. (2015). Epidemic processes in complex networks. Reviews of Modern Physics, 87(3), 925.

http://dx.doi.org/10.1103/RevModPhys.87.925.
Pastor-Satorras, R., & Vespignani, A. (2001). Epidemic dynamics and endemic states in complex networks. Physical Review E, 63(6), 066117. http://dx.doi.org/

10.1103/PhysRevE.63.066117.
Peng, X. L., Xu, X. J., Small, M., Fu, X., & Jin, Z. (2016). Prevention of infectious diseases by public vaccination and individual protection. Journal of Mathe-

matical Biology, 73(6e7), 1561e1594. http://dx.doi.org/10.1007/s00285-016-1007-3.
Riley, S., Fraser, C., Donnelly, C. A., Ghani, A. C., Abu Raddad, L. J., Hedley, A. J., et al. (2003). Transmission dynamics of the etiological agent of sars in Hong

Kong: Impact of public health interventions. Science, 300(5627), 1961e1966. http://dx.doi.org/10.1126/science.1086478.
Segal, S., & Hill, A. V. (2003). Genetic susceptibility to infectious disease. Trends in Microbiology, 11(9), 445e448. http://dx.doi.org/10.1016/S0966-842X(03)

00207-5.
N. Sherborne, J. Miller, K. Blyuss, I. Kiss, Mean-field models for non-markovian epidemics on networks: from edge-based compartmental to pairwise

models, arXiv preprint arXiv:1611.04030.
Smilkov, D., Hidalgo, C. A., & Kocarev, L. (2014). Beyond network structure: How heterogeneous susceptibility modulates the spread of epidemics. Scientific

Reports, 4, 4795. http://dx.doi.org/10.1038/srep04795.
Van den Driessche, P., & Watmough, J. (2002). Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease trans-

mission. Mathematical Biosciences, 180(1), 29e48. http://dx.doi.org/10.1016/S0025-5564(02)00108-6.
Wu, Q., & Zhang, H. (2016). Epidemic threshold of node-weighted susceptible-infected-susceptible models on networks. Journal of Physics A: Mathematical

and Theoretical, 49(34), 345601. http://dx.doi.org/10.1088/1751-8113/49/34/345601.
Yang, H., Tang, M., & Gross, T. (2015). Large epidemic thresholds emerge in heterogeneous networks of heterogeneous nodes. Scientific Reports, 5, 13122.

http://dx.doi.org/10.1038/srep13122.
Zhang, H. F., Xie, J. R., Chen, H. S., Liu, C., & Small, M. (2016). Impact of asymptomatic infection on coupled disease-behavior dynamics in complex networks.

EPL (Europhysics Letters), 114(3), 38004. http://dx.doi.org/10.1209/0295-5075/114/38004.
Zhang, H. F., Xie, J. R., Tang, M., & Lai, Y. C. (2014). Suppression of epidemic spreading in complex networks by local information based behavioral responses.

Chaos: An Interdisciplinary Journal of Nonlinear Science, 24(4), 043106. http://dx.doi.org/10.1063/1.4896333.

http://dx.doi.org/10.1103/PhysRevE.76.010101
http://dx.doi.org/10.1103/PhysRevE.76.010101
http://dx.doi.org/10.1098/rsif.2008.0524
http://dx.doi.org/10.1140/ejpb/e20020122
http://dx.doi.org/10.1371/journal.pcbi.1002174
http://dx.doi.org/10.1098/rsif.2010.0325
http://dx.doi.org/10.1103/PhysRevE.66.016128
http://dx.doi.org/10.1103/RevModPhys.87.925
http://dx.doi.org/10.1103/PhysRevE.63.066117
http://dx.doi.org/10.1103/PhysRevE.63.066117
http://dx.doi.org/10.1007/s00285-016-1007-3
http://dx.doi.org/10.1126/science.1086478
http://dx.doi.org/10.1016/S0966-842X(03)00207-5
http://dx.doi.org/10.1016/S0966-842X(03)00207-5
http://dx.doi.org/10.1038/srep04795
http://dx.doi.org/10.1016/S0025-5564(02)00108-6
http://dx.doi.org/10.1088/1751-8113/49/34/345601
http://dx.doi.org/10.1038/srep13122
http://dx.doi.org/10.1209/0295-5075/114/38004
http://dx.doi.org/10.1063/1.4896333

	How heterogeneous susceptibility and recovery rates affect the spread of epidemics on networks
	1. Introduction
	2. The extended heterogeneous SIR model
	3. Analytical results
	3.1. The basic reproductive number
	3.2. The final epidemic size

	4. Numerical simulations
	4.1. The effects of the uncorrelated individual susceptibility and recovery rate
	4.2. The effects of different levels of heterogeneity of individual susceptibility and course of disease
	4.3. The effects of the correlated individual degree, susceptibility and recovery rate
	4.3.1. The correlated individual susceptibility and recovery rate
	4.3.2. The correlated individual degree and susceptibility
	4.3.3. The correlated individual degree and recovery rate


	5. Discussion
	Acknowledgments
	References


