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Abstract: Proteins function as integral actors in essential
life processes, rendering the realm of protein research a
fundamental domain that possesses the potential to propel
advancements in pharmaceuticals and disease investiga-
tion. Within the context of protein research, an imperious
demand arises to uncover protein functionalities and untan-
gle intricate mechanistic underpinnings. Due to the exorbi-
tant costs and limited throughput inherent in experimental
investigations, computational models offer a promising alter-
native to accelerate protein function annotation. In recent
years, protein pre-training models have exhibited note-
worthy advancement across multiple prediction tasks. This
advancement highlights a notable prospect for effectively
tackling the intricate downstream task associated with
protein function prediction. In this review, we elucidate the
historical evolution and researchparadigms of computational
methods for predicting protein function. Subsequently, we
summarize the progress in protein and molecule represen-
tation as well as feature extraction techniques. Furthermore,
we assess the performance of machine learning-based
algorithms across various objectives in protein function
prediction, thereby offering a comprehensive perspective on
the progress within this field.
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Introduction

Proteins, intricate biomolecules and macromolecules, are
composed of one or more elongated chains of amino acid
residues, synthesized via dehydration condensation. They
represent the ultimate outcome of genetic information
expression through processes of transcription and trans-
lation, playing a pivotal role as carriers and enactors of vital
biological activities. Polypeptide chains synthesized within
organisms spontaneously adopt zigzag conformations and
fold into stable three-dimensional structures. It is widely
acknowledged that the functionality of a protein heavily
depends on its specific three-dimensional structure. Conse-
quently, the discernment of protein structure and function
has emerged as a paramount pursuit within the realm of life
sciences [1]. The advancement of structural biology tech-
niques, coupledwith breakthroughs in deep learning-driven
protein structure prediction methodologies exemplified by
AlphaFold2 and RosseTTAFold, has propelled significant
leaps in the identification of protein structures [2, 3]. These
advancements will propel the annotation of protein func-
tionality and the comprehension of the intricate mecha-
nisms underlying it, which is the ultimate goal of protein
research.

The exploration of protein functionality encounters
challenges of greater complexity compared to the study of
protein structure, as proteins exhibit diverse forms of
functionality. Proteins serve not only as individual entities
catalyzing chemical reactions but also engage in multifac-
eted interactions with other proteins or molecules. For
instance, transcription factors and RNA-binding proteins
exert their influence by binding to nucleotide chains [4]. En-
tities like the proteasome and inflammasome function as
intricate complexes [5]. Furthermore, current understanding
acknowledges that proteins frequently participate in elabo-
rate interaction networks, thereby complicating the precise
delineation of their functional attributes [6].
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Traditionally, ascertaining protein function necessitates
a sequence of molecular biological experiments including
gene knockout, protein–protein interaction (PPI) experi-
ments, drug–protein interaction investigations, and other
methodologies [7, 8]. The experimental findings coupled
with manual annotation has long served as the gold standard
for ascertaining protein functionality. However, with the
development of omics techniques and progress in protein
structure research, the number of discovered protein
sequences and structures is increasing exponentially every
year [9–11]. Given the substantial time and resource costs,
the current annotation of protein functions by experimental
is unable to keep pace with the rate of natural protein
discovery.

Hence, the utilization of computational methodolo-
gies for predicting protein function has evolved over a
span exceeding two decades. Within this domain, the
scope of protein function prediction encompasses two
overarching research objectives (Figure 1). The first
objective revolves around the anticipation of proteins
possessing specific attributes or engaging with interacting
partners. Notably, investigations have been directed
towards predicting PPIs DNA-binding proteins, and
RNA-binding proteins. A noteworthy instance is the

critical assessment of prediction of interactions (CAPRI), a
community-wide competition centering on PPI predic-
tion [12]. The second objective pertains to the prediction of
protein function annotations. Illustratively, the gene
ontology (GO) database contains an extensive repository
of functional annotations for proteins, prompting certain
studies towards predicting GO annotations [13]. Focus on
this goal, the critical assessment of functional annotation
(CAFA) is an ongoing and global competition to improve
the computational annotation of protein function [14]. In
the early stage, most of the methods were based on
interpretable physical and chemical properties or anal-
ysis of interprotein relationships. These empirical and
manual feature extraction-based approaches are suscep-
tible to bottlenecks, due to some underlying assumptions
on which the algorithm relies that are not always hold
true. By contrast, data-driven methods do not rely on
empirical knowledge but are mainly affected by data
quantity and noise levels. In recent years, the accumula-
tion of data and the development of machine learning
have provided significant impetus and opportunities in
this domain. The accumulation of data and the advance-
ment of machine learning have furnished significant
impetus and opportunities within this field. The
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substantial discovery of sequences and structures has
yielded abundant samples for machine learning. Concur-
rently, the development of transformer models and graph
neural networks (GNN) on the foundation of extensive
samples holds the potential to provide enhanced struc-
tural and sequential feature inputs for function predic-
tion. Consequently, machine learning-based data-driven
approaches have gained prominence [15].

We have emphasized the significance of protein func-
tion prediction within the scope of life sciences and high-
lighted the potential inherent in computational methods
for predicting protein function. This field has witnessed
significant advancements over the years, with researchers
continuously striving to improve accuracy and efficiency. In
the subsequent sections, we will delve into the progression
of research paradigms in protein function prediction. We
will trace the evolution from traditional methodologies to
more advanced machine learning-based approaches that
have revolutionized this field. These modern techniques
leverage vast amounts of data and powerful algorithms to
extract meaningful insights from complex biological sys-
tems. To provide a comprehensive understanding, we will
review classical research workflows involved in predicting
protein function. This includes exploring different strategies
for representing proteins, extracting relevant features that
capture their functional characteristics, selecting appro-
priate frameworks ormodels for analysis, and training these
models using suitable datasets.

Notably, recent years have witnessed remarkable
breakthroughs in large-scale pre-training models in natural
language processing (NLP). These models have demonstrated
exceptional capabilities in understanding and generating
human-like text by learning from massive amounts of
textual data. The application of such pre-training tech-
niques holds great promise for advancing our under-
standing of proteins as well. By incorporating concepts
from NLP into protein function prediction research,
scientists are exploring new avenues to enhance pre-
dictions based on similarities between language structures
and protein sequences or structures. This interdisciplinary
approach opens up exciting possibilities for improving
accuracy and expanding our knowledge about how proteins
perform their vital functions within living organisms.
Consequently, pre-training models have progressively
assumed a pivotal role across various domains [16]. These
developments have revolutionized computational protein
research by providing innovative solutions for representing
proteins and molecules. One of the key contributions of NLP
frameworks is their ability to extract meaningful informa-
tion from vast amounts of unstructured text data related to

proteins and molecules. By leveraging techniques such as
named entity recognition, relation extraction, and semantic
parsing, these frameworks enable researchers to automati-
cally annotate and categorize protein-related information.
This not only saves significant time and effort but also en-
hances the accuracy and comprehensiveness of protein
representation.Moreover, pre-trainingmodels play a crucial
role in capturing intricate patterns within protein se-
quences or molecular structures. Through unsupervised
learning on large-scale datasets, these models learn rich
representations that encode both local structural features
and global contextual information. As a result, they can
effectively capture the complex relationships between
amino acids or atoms in proteins or molecules. The com-
bination of NLP frameworks with pre-training models has
opened up new avenues for exploring diverse research
prospects in computational biology. For instance, re-
searchers can now leverage these methodologies for tasks
such as protein structure prediction, drug discovery,
functional annotation of genes/proteins, and analysis of
genetic variations associated with diseases. Our focus will
be directed towards scrutinizing the influence of NLP
frameworks and pre-training models on computational
protein research, with a particular emphasis on in-
novations concerning the representation of proteins and
molecules. Finally, we will undertake a comparative
analysis of the research prospects presented by machine
learning-based methodologies across various tasks.

Paradigms for in silico protein
function prediction

The realm of protein function prediction has developed
concomitantly with progress in omics technology, structural
biology research, and machine learning theory. Thus, in this
progression, the paradigm of protein function prediction
remains dynamic and adaptable.

In the early stage of protein function prediction, tradi-
tional algorithms were employed to predict protein function
based on sequence information. In this stage, “inheritance
through homology” serves as the primary foundation [17].
For example, PSI-BLAST is a classical method that can be
used as a fast and sensitive tool for protein sequence align-
ment, which can extract the functional signals with certain
noise from protein sequences [18]. There are also algorithms
to classify protein families by analyzing the differences and
similarities in protein sequences. For instance, BLAST is a
sequence homology search algorithm that has been widely
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used since its emergence. And the combination of Markov
clustering and pairwise similarity relationship algorithms
with BLAST enables rapid and accurate detection of protein
families [19, 20]. Furthermore, owing to the evident coevo-
lutionary pattern observed between interacting proteins,
several studies have employed the computation of distance
matrices derived from phylogenetic trees of two protein
families to extract coevolution information for accurate
protein function prediction [21–23].

With the development of structural biology, numerous
structure-based approaches have been developed. Protein
structures exhibit greater conservation than sequences, thus
studies based on structural similarity yield more precise
results. Since 2000, various attempts have been made to
predict enzyme classification (EC) based on structural simi-
larities [24]. Furthermore, the Protein Structure Classifica-
tion Database (SCOP) has been utilized in studies aiming to
predict cytokine families or subfamilies [25]. Additionally,
there were also studies to predict the interaction between
proteins based on the similarity of protein surface [26]. It is
worth noting that at this stage, in addition to inferring
functional similarity based on structural similarity, the
increase in the number of protein structures also greatly
promotes the study of PPIs. For example, employing a fast
fourier transform (FFT) algorithm for the spatial confor-
mation matching in protein–protein docking has demon-
strated exceptional performance, which often ranks among
the top contenders in protein–protein docking competition
(CAPRI) [27]. Furthermore, molecular dynamics simulation
has been utilized for studying PPIs. However, the param-
eters used in these methods are mostly based on experience
rather than first principles. Therefore, they are limited by
computational resources and the lack of a detailed under-
standing of mechanisms.

With the development of machine learning, a novel
research paradigm has emerged, shifting its reliance from
understanding or assuming protein interactionmechanisms
to data-driven approaches and feature extraction. In the
early years, this research paradigm actually had to discard
some of its interpretability, even if it achieved good perfor-
mance for some tasks. In recent years, due to the availability
of large-scale protein data, advancements in deep learning
frameworks, and improved computational hardware sup-
port, the research paradigm based on machine learning is
also changing gradually. Along with the improvement of
accuracy, it also facilitates comprehension of fundamental
principles underlying protein function. In the following
sections, we provide an overview of protein function pre-
diction methods based on machine learning.

Protein representation and feature
extraction

In general, the research flow in machine learning can be
divided into two steps. The first step involves encoding the
data as input, followed by the subsequent training of the
model through diverse algorithms or frameworks to facil-
itate forthcoming prediction tasks (Figure 2). Notably, a
primary challenge encountered when applying machine
learning to protein investigations pertains to the digital
representation of proteins and their effective utilization as
inputs within machine learning models. Although the func-
tion of a protein is inherently dictated by its sequence and
structure, the encoding of these attributes alongside the
extraction of other key features has consistently constituted
a significant theme in this field. Despite the absence of a
universal approach that comprehensively addresses this
problem, researchers persistently refine protein represen-
tation and feature extraction methodologies tailored to
varying data types and downstream objectives.

Traditional protein representation methods

During the preliminary phase of machine learning-driven
protein function prediction, the prevailing constraints
encompassing algorithmic limitations, data volume restric-
tions, and computational hardware barriers frequently
necessitated a manual one-step feature extraction process.
Instead of solely relying on direct sequence similarity or
clustering methodologies, certain algorithms embraced the
integration of proteins’ chemical properties as inputs for
machine learning models. To exemplify, select studies incor-
porated amino acid composition, hydrophobicity, solvent-
accessible surface area, and polarizability as input features.
Then these inputs were combined through a support vector
machine (SVM) classifier to solve the binary classification
problem of DNA-binding protein or RNA-binding
protein [28–30]. Correspondingly, akin methodologies have
found application within studies aiming at enzyme family
classification [24].

The recognition has gradually emerged that manual
feature summarization alone is insufficient to comprehen-
sively address the intricate challenges inherent in protein
function prediction. Acknowledging the potential of machine
learning in facilitating feature extraction, the incorporation of
comprehensive sequence information of proteins assumes
significance. Within this context, the most straightforward
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approach for encoding amino acid sequences (AAS) involves
the sequential arrangement of amino acids, accompanied by
the specification of amino acid types at respective positions.
Previous studies have demonstrated that combining AAS
with certain physical or chemical descriptors can yield
informative protein representations. Research groups have
developed several servers for computing these descriptors,
such as PROFEAT, which calculates 6 feature groups
composed of 10 features, including 51 descriptors and 1,447
values [31]. The features calculated by these servers include
amino acid composition, dipeptide composition, normalized
Moreau–Broto autocorrelation, Moran autocorrelation,
Geary autocorrelation, number of sequence-order coupling,
quasi-sequence descriptors, and distributions of various

structural and chemical properties. This method for protein
encoding and feature extraction has been widely used in a
variety of downstream tasks related to protein function,
such as predicting drug–protein interactions (DPI), anti-
hypertensive peptides, and RNA–protein interactions [32–34].

In order to enhance the feature extraction of protein
sequences, various protein encoding methods have been
proposed. To better facilitate amino acid alignment and
incorporate evolutionary information, substitution matrix
representation (SMR) was developed [35]. It calculates the
probability that amino acid at each position mutates into
another type of amino acid and represents any given protein
sequence with length N as an N × 20 substitution matrix,
where the sequential similarity depends on the divergence
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time and substitution rate in the matrix. This approach is
often applied to the prediction of interactions between
proteins and biomolecules. For example, some studies added
discrete cosine transform (DCT) on the basis of SMR for
protein interaction prediction in various species, and the
average accuracy is up to 96.28, 96.30, and 86.74 % for
different species, respectively, which is significantly better
than previous methods [36]. Meanwhile, this approach has
also been applied to predict drug–protein interaction. For
example, a study from Huang et al. encoded protein
sequences with SMR descriptors, which achieved more than
80.00 % accuracy on multiple benchmark datasets for the
prediction of drug–protein interaction [37].

In order to emphasize the specificity of different posi-
tions on the protein sequence, the position-specific scoring
matrix (PSSM) method was proposed. This method utilizes
PSI-BLAST (Position-specific Iterative BLAST) to calculate
the percentage of different residues at each
position [38], employing sequence alignment extract
evolutionarily relevant feature information. It was applied
in the PPlevo algorithm for predicting PPIs [39]. Further-
more, PSSM encoding method has been combined with
various classifiers to predict protein function classification
in yeast [40]. PSSM can also be integrated with other
methods such as orthogonal local preservation projection
(OLPP) to encode protein as a feature vector of fixed length
and then combined with a RoF classifier to identify non-
interacting and interacting protein pairs, with an accuracy
of more than 90.00 % in yeast [41]. Autocovariance based
on PSSM is another effective sequence-based protein rep-
resentation method. This method extracts features from
PSSMs by considering proximity effects, enabling the
highlighting of some specific patterns in the whole
sequence, which is also widely employed in protein clas-
sification tasks [42–46]. Following the principles in PSSM,
SPRINT (Protein interaction Score) and PIPE (Protein Inter-
action Prediction Engine) determine the interaction between
protein pairs by searching for similar pairwise regions among
known protein complexes [47, 48].

The Conjoint Triad Feature (CTF) encapsulates not only
the attributes of the target amino acid but also those of its
neighboring amino acids. By treating any three consecutive
amino acids as an entity, it extracts the intrinsic character-
istics of a protein. Consequently, it possesses the capability to
encompass both the protein sequence’s compositional in-
formation and the interconnected relationships among
adjacent amino acids. The application of CTF extends across
various domains, encompassing the prediction of PPI, RNA–
protein interactions, and enzyme function [49, 50]. For
example, Dey et al. used CTF protein representationmethods
combined with supervised machine learning methods (SVM,

KNN, NB) to predict the interaction between the DENV virus
and human proteins, as well as further predict the GO and
KEGG pathway [51]. Wang et al. combined CTF and chaos
game representation (CGR) with a random forest model to
predict RNA–protein interactions [52]. Another study
developed an SVM-based method to predict Enzyme Com-
mission (EC), which used CTF to represent a given protein
sequence [53].

Another notable approach is the multi-scale local
descriptor (MLD), which partitions the protein sequence
into segments of varying lengths to capture multi-scale local
insights. These methodologies have showcased pronounced
efficacy in the encoding of protein sequences and have found
widespread application across diverse domains connected to
protein function prediction [54, 55]. Despite their divergence
in processing techniques for protein sequences, these
methodologies collectively share a common hallmark: the
integration of essential empirical features and the applica-
tion of artificial feature extraction processes based on AAS.
While these methods demonstrate superior performance
compared to the mere encoding of protein sequences and
amino acid types, the integration of their respective strengths
becomes intricate when confronted with the intricate down-
stream task of protein function prediction.

NLP-based protein representation methods

The original object of NLP is human language, which shares
analogous data structures with protein sequences [56]. Both
utilize discrete units to construct structures endowed with
specific attributes, ultimately express specific semantics or
functions from this specific coding method. Experimental
and computational biology have provided a large amount of
protein-related data. In recent years, drawing inspiration
from the paradigms of NLP, pre-training models tailored for
protein encoding have emerged. In 2015, Asgari et al. intro-
ducedword2vec to the realm of biomolecules, pioneering the
protein representation method provec [57]. This represen-
tation method focused on the first-order and second-order
information in the protein sequences, generated vectors in
protein space, and extracted corresponding protein prop-
erties in the embedding space. Combined with the SVM
classifier, it was used for the classification of protein
families.

Over the past two years, several sequence-based protein
pre-training models have emerged. For example, Elnaggar
et al. used six mature models in the field of NLP, such as
Transformer-XL, XLNet, BERT, Albert, Electra, and T5, to
train 393 billion amino acids in UniRef [58]. They tried to
capture the biophysical features of protein sequences and
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verified the advantages of these embedded features on
downstream tasks such as protein secondary structure
prediction and protein subcellular localization predic-
tion [59]. Brandes et al. presented ProteinBERT, which is a
deep language model specifically designed for proteins [60].
The framework used in ProteinBERT is smaller and faster to
train, and it achieves near-state-of-the-art performance
across multiple benchmarks covering a variety of protein
properties including protein structure, post-translational
modifications, and biophysical properties. Roshan et al.
trainedmillions of protein sequences using a self-supervised
protein language model [61], which showed excellent
generalization capabilities with parametric efficiency far
higher than previous protein language models. It is worth
mentioning that the basic architecture of ESM-1b is trans-
former, which is a common model in the field of NLP.

Protein pre-training models based on sequences or MSA
have shown great potential, which indicates the rationality
of applying the pre-training model in NLP to the field of
bioinformatics. Protein structure information is also one of
the determinants of protein function, while a large number
of structural protein information has not been well utilized
in protein pre-trainingmodels. In this case, researchers tried
to add structural information to the pre-training model to
obtain richer protein embedding information. For example,
Gligorijević et al. proposed DeepFRI to predict protein
function by extracting features from both sequences and
structures [62]. DeepFRI utilized the LSTM-LM architecture
combined with a large number of available sequences and
3D structural data in the formof contactmaps. And the result
of protein function prediction based on DeepFRI out-
performed sequence-based methods on several tasks.

In addition to introducing 3D information in the form
of contact maps, GearNet attempted to encode structure
information by directly introducing geometric 3D repre-
sentation [63]. GearNet leveraged AlphaFold2 predicted
protein structure for pre-training through self-supervised
contrastive learning and outperformed the previous base-
lines with its acquired structural embeddings on some
metrics in the prediction of EC number and GO. Recently,
an energy-based protein pre-training model was proposed
and applied to two downstream tasks: Protein structure
quality assessment (QA) and PPI assessment [64].

In summary, empirically-driven protein feature
extraction methodologies continue to maintain a significant
foothold. And to deal with diverse task, a variety of well-
crafted designs have emerged, which include sequential
adjacency and evolutionary relationships among sequences.

On the other hand, in recent years, protein encodingmethods
based on pre-training models are gradually showing their
advantages.When confrontedwith vast amounts of data and
complex features, pre-training models have robust capabil-
ities for feature integration. Efficient protein representation
and feature extraction is the core of protein function pre-
diction. Within this framework, we have introduced a vari-
ety of protein encoding methods. These encoding methods
need to be combined with various classifiers, including
traditional machine learning classifiers and deep neural
network classifiers, for specific downstream tasks.

Protein interaction prediction

Prediction of protein–protein interaction

The process of protein interaction involves the binding of
two or more proteins, which plays a pivotal role in
numerous biochemical processes. For example, some
signaling molecules transmit extracellular signals into
the cell through PPI, which is the basis of many
biochemical functions [65]. Another example is that pro-
teins can form complexes through long-term interaction
and participate in important biological processes such as
transport. Moreover, some transient interactions can add
modifications to proteins and regulate their function. There-
fore, PPI is the core of cell biochemical reactions, and studies
about PPI can enhance the comprehension of themechanisms
behind the disease.

The dataset pertaining to PPIs originates from two pri-
mary sources. Firstly, a portion of this data is collected from
complexes from the Protein Data Bank (PDB), affording
atomic-level insights. Secondly, another segment emerges
from PPIs elucidated through high-throughput methodol-
ogies, including yeast two-hybrid assays, immuno-precipi-
tation, mass spectrometry-based protein complex
identification, and affinity purification. The amalgamation
of data from these diverse origins has been curated within
the publicly accessible Protein Interaction Database (DIP),
encompassing protein interaction records spanning
diverse organisms ranging from yeast to humans. This
reservoir of data constitutes a valuable resource,
furnishing ample material for the application of machine
learning techniques in the investigation of PPIs.

Traditional molecular docking algorithms can predict
the binding conformations of protein complexes, which
are effective approaches to study PPIs [66]. These molecular
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docking algorithmsmainly consist of two steps. The first step
involves employing a spatial search algorithm such as FFT
algorithm to search the spatial conformation of two proteins
bound to each other. The second step is to evaluate the
affintity of protein binding through scoring function. These
traditional molecular docking algorithms often require the
spatial conformational coordinates of the protein as input
and the three-dimensional space lattice. The traditional
molecular docking algorithm has the advantage of being
able to obtain multiple candidates binding conformations
for any two protein pairs [67, 68]. These algorithms also
exhibit certain limitations. First, the prediction of PPIs using
molecular docking algorithms heavily relies on the spatial
conformation of proteins, which is hampered by the fact that
the number of proteins with experimentally-resolved
structures is far less than that of protein sequences. Sec-
ondly, the interaction prediction of molecular docking al-
gorithm also depends on the scoring function, which is based
on experience, physical and chemical laws [69, 70]. The
scoring function itself still has considerable potential for
improvement. The inputs of molecular docking algorithms
are often the rigid conformations of individual proteins,
which may undergo flexible backbone changing during the
process of interaction. Therefore, to optimize the docking
poses, some molecular docking algorithms have to allocate
more computational time by introducing local molecular
dynamics simulations or flexible conformational li-
braries [71, 72]. How to deal with flexible docking remains an
unresolved issue in this field. Molecular docking algorithms
necessitate performing conformational searches for each
input protein pair, and occasionally even require conducting
conformational modeling from protein sequences. Conse-
quently, the execution of molecular docking algorithms on a
large-scale screening basis could potentially be hampered by
computational time constraints.

In recent times, machine learning-based methodologies
have in part addressed the limitations inherent in tradi-
tional approaches concerning the prediction of PPIs. Note-
worthy studies in recent years using machine learning-
based methods to predict PPI are listed in Table 1. First,
machine learning-based prediction methods can directly
treat the target of the task as binary classification, which
means that the input protein representation could be more
flexible. Beyond characterizing protein sequences and con-
formations, the integration of effective feature extraction
founded on physicochemical priori knowledge can be
incorporated into the model. Since 2001, computational
methods have been employed in attempts to predict PPIs
[73–75]. Until recent years, various protein representation

methods have been applied to this objective. For example,
Carlos et al. applied six different new features to represent
proteins [76]. Sun et al. applied the Autocovariance method
with Stacked autoencoder (SAE) to study sequence-based
human PPI predictions [77]. Bryant et al. used multiple
sequence alignment (MSA) as input [78]. Beyond augmenting
flexibility in protein representation and prediction targets,
machine learning-grounded PPI prediction algorithms pivot
around a data-driven paradigm rather than relying on prior
knowledge. Therefore, the use of extensive PPI datasets
significantly enhances the precision of machine learning-
based PPI prediction. For example, Hanggara et al. obtained
a large number of PPI datasets based on string-DB, and the
validation accuracy was close to 90 % [79]. Machine
learning-based prediction methods have also contributed
to the exploration of fundamental principles underlying
PPI. Methods have been devised to discern akin targets
within protein interaction networks. For instance, Zhou
et al. employed a PPIs network between SARS-CoV-2 and
human, constructed through high-throughput yeast ex-
periments and mass spectrometry, to unveil 361 new host
factors, including proteins devoid of specific experimental
structures such as BAG3—an entity implicated in diverse
diseases like heart disease and cancer [80]. Kovács et al.
delved into the role of BAG3 in bacterial infections
through the lens of a PPI network. These network-based
prediction methods even have the potential to challenge the
conventional wisdom that interacting proteins are not
necessarily similar, and that similar proteins do not neces-
sarily interact with each other [81].

AlphaFold2 greatly facilitated protein structure predic-
tion [2, 3], making it feasible to achieve structure informa-
tion from mere protein sequences. Since protein spatial
structure information is difficult to extract directly from the
embedding of protein sequences, integrating the predicted
protein spatial structure in the PPI prediction process can
effectively improve the accuracy in the post-AlphaFold era.
For example, TAGPPI relied solely on sequences and per-
forms PPI prediction end-to-end, without additional input of
protein 3D structure [87]. TAGPPI used AlphaFold2 in the
algorithm to construct the residue contact map of the
protein, which contained precise spatial structure infor-
mation, thus effectively improving the prediction ability of
PPI. For the protein complex prediction task, the DeepMind
team retrained AlphaFold-multimer for the protein
complexes [88]. They linked multiple proteins into single
chains with cross-chain positional encodings as input to
AlphaFold2. This approach demonstrated a great improve-
ment in heterologous complex structure prediction. Bryant
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et al. employed AlphaFold2 to incorporate species-specific
multiple sequence alignment (MSA), thereby enhancing the
precision of protein complex prediction [78]. AF2Complex
enables the structural inference of a polymeric protein
complex using a single protein sequence without necessi-
tating retraining of AlphaFold2. In contrast to other ap-
proaches, this method integrates MSA regions from diverse
proteins bymeans of sequence alignment. Leveraging these
sequence and template features, the AF2Complex model
generates a comprehensive complex model by iteratively
computing its interface score S for ranking the confidence
level [89].

In summary, PPI prediction is a crucial research direc-
tion for protein function prediction, with significant impli-
cations for comprehending protein interaction network and
identifying disease targets. Treating PPI prediction as a
classification task or directly predicting protein complex
binding conformations are both meaningful prediction tar-
gets. With the accumulation of protein data, data-driven
machine learning prediction algorithms are playing an
increasingly important role in PPI prediction. How to extract
features and integrate informationmore effectively remains
a problem.

Prediction of drug–protein interaction

The development of algorithms for predicting small
molecule-protein interactions is crucial not only for drug
screening, but also for identifying potential drug targets.
Additionally, these algorithms can be utilized to predict the
interactions between endogenous metabolic molecules and
proteins, including sugars, bioactive peptides, endogenous
regulatory factors, signaling molecules, etc., thereby shed-
ding light on cellular regulatory mechanisms. Similar to the
encoding of macromolecular proteins, representation of
small molecular compounds has experienced a paradigm
shift from traditional molecular descriptors to machine
learning training for embedding.

As shown in Figure 3, we will introduce the following
forms of molecular representation: one-dimensional linear
inputs (such as SMILES or selfies, inches), structural or
path-based fingerprints, and two-dimensional graphical
structures (atoms and bonds) that involving topological
information.

The characterization of small molecules through string
representation is widely employed in scientific research.
Molecular structures can be translated into machine-

Table : Algorithms for protein–protein interactions (PPI) prediction.

Authors Protein representation Framework Advantage Dataset Year Ref.

Juwen Shen
et al.

Kernel function, CTF SVM To explore any newly discovered
protein network of unknown
biological relevance

Human Protein Refer-
ences Database (HPRD)

 []

Fatma-Elzahraa
Eid et al.

Docvec SVM DBNS method to construct
negative datasets

VirusMentha  []

Tanlin Sun et al. Autocovariance Stacked autoencoder This model is the first PPI pre-
diction model based on deep
learning algorithm.

Pan’s PPI dataset from
[]

 []

Somaye Hashe-
mifar et al.

AAS Siamese-like convolu-
tional neural network

Superior to the stat-of-the-art
methods

Profppikernel  []

Carlos H.M.
Rodrigues

Physical and chemical properties,
PSSM Score

Graphical neural
network

The average Pearson Correlation
of . ± . is better than the
previous method

SKEMPI .  []

Stván A.
Kovács et al.

– L (length three) link
prediction methods

Significantly better than all the
existing link prediction methods

HI-tested, a subset of
the human interaction
dataset HI-II-

 []

Faruq Sandi
Hanggara et al.

CTF Stacked-autoencoder
and stacked-
randomized
autoencoder

The average validation accuracy
was .% ± .%

STRING-DB  []

Patrick Bryant
et al.

Several MSAs – Use Alphafold to predict heter-
odimeric protein complexes

CASP set,  novel
protein complexes

 []

Yang Xue et al. AAS, function tokens embeddings,
the vectorized Rips complex barc-
odes, and Alpha complex barcodes

The single-stream
multimodal trans-
former, Residual CNN

A multimodal protein pre-
trainingmodel with threemodes:
Sequence, Structure, and
Function

CATH, PDB  []

SVM, support vector machine; AAS, amino acid score; CTF, the conjoint triad feature; MSA, multiple sequence alignment.
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readable string representations that are more suitable for
NLP, among which, SMILES is typical molecular string rep-
resentation. Several deep generative models were developed
to learning the distribution of SMILES representation [90–92].
It is worth noting that the SMILES string is non-unique, often
leading to multiple encoded representations for a single
molecule. In this context, certain deep generative models
have proposed enhancements to the traditional SMILES
format. An illustrative example is SELFIES, which serves as
an advanced alternative to SMILES. Particularly in the
context of Pangu-based models, SELFIES is preferred over
SMILES as input. This preference stems from findings that

molecules generated using SELFIES exhibit an efficacy level
of up to 100 %.

The internal topological structure of the small molecule
naturally allows the molecule to be represented as a two-
dimensional graph. The atoms of a molecule are mapped to
nodes of a graph containing information such as atomic type,
chirality, etc. The edges are linked when there exists a
covalent bond between two atoms, and the edge attributes
include the types of chemical bonds. Such a graph structure
is often represented as inputs of GNN. Combined with deep
neural networks such as transformer, the topological
structure of molecules can be better extracted [93–96].
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Figure 3: Small molecule and protein representation based on machine learning pre-training models. LSTM, long short-term memory.
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Recent molecular characterization methods based on
deep learning pre-training models aim to add molecular
structure, molecular properties and other information into
the training process to generate efficient embedding.

Self-supervised frameworks are frequently employed in
small molecule pre-training. Given the substantial data
requirements of pre-trained models, leveraging contrastive
learning for data augmentation represents an effective
strategy. After data augmentation, the consistency between
similar inputs is maximized in the feature space and the
differences between different classes of data are enlarged. At
present, the prevailing approach to enhance smallmolecules
is to randomly mask the atoms, chemical bonds, and sub-
graphs of molecules. MolCLR, for example, constructed
molecular maps using extensive unlabeled data and devel-
oped graph neural network encoders to learn molecular
properties, which performed impressively in the benchmark
test [97]. iMolCLR reduced negative pairs between similar
molecules [98]. In addition to directly comparing the degree
of similarity between molecules, ATMOL compared the
molecular map with masked attention matrices generated
by graph attention networks (GAT), which improved the
performance on downstream tasks. There are also been
some studies trying to combine 3D information of molecules
with generative models. GraphMVP, for example, used 2D
topologies and 3D geometric views for sub-supervised
learning. GraphMVP used accurate 3D molecular confor-
mations from the GEOM dataset to do more discriminating
3D geometric enhancements than the 2D molecular map
encoder [99]. The success of denoising in image generation
has led to its application inmolecular characterization tasks.
A recent work utilized denoising-based autoencoders to
learn molecular force fields for pre-training, and improved
molecular property prediction performance on multiple
benchmark datasets [100].

Most small molecular drugs exert their efficacy by
interacting with their target proteins, such as enzymes, ion
channels, and G-protein-coupled receptors. Therefore,
identifying DPI is an important prerequisite for drug dis-
covery, pharmacology, drug side effects, and other
studies [101]. Biochemical assays for experimentally un-
discovered DPI are costly and time-consuming. In the face
of a large number of potential unpaired small molecule
compounds and drug target proteins, large-scale virtual
screening by computational methods can provide a very
valuable reference and guidance for experimental
verification.

Similar to the prediction of PPI, there are three main
methods to predict DPI, the first of which is based on
molecular docking. Conformation search and molecular
dynamics simulation are combined to reconstruct the

contact relationship between small drug molecules and
proteins in 3D space, with the goal to find the best binding
pose. The disadvantage of molecular docking-basedmethods
is that they require accurate protein structure as input and
are time-consuming [102–104]. The second approach is to
predict interactions based on drug–protein association
networks [105, 106]. The underlying principle here is that
proteins sharing similar structures and exhibiting close re-
lationships are more likely to interact with the same drug.
This methodology typically involves the establishment of a
network encompassing existing drugs and proteins, fol-
lowed by the computation of similarity scores for both drug
pairs and protein pairs. However, given the absence of a
standardized protein similarity score, a drawback of this
approach pertains to the accuracy of similarity scoring,
particularly when dealing with rare or novel proteins. It is
imperative to acknowledge that network-based methodolo-
gies hinge upon assumptions that may not universally hold
true, as not all similar proteins necessarily interact with
similar drugs. The third approach involves a data-driven
method rooted in learning, which operates independently of
a priori assumptions but demands substantial data quantity
and quality to be effective [107]. Several databases, such as
PubChem, ChEMBL, DrugBank, and DUD-E contain a large
amount of information on the interaction of ligand mole-
cules with target proteins. The PDB database also contains a
large amount of structural data. The collective information
within these databases underpins the utilization of machine
learning techniques for the prediction of DPI. In this context,
machine learning algorithms have been widely used in the
field of computer-aided drug design (CADD) to predict DPI.

We have already reviewed the methods of small mole-
cule characterization commonly used in machine learning.
Small molecule compounds can be naturally described in
computer-readable formats, such as strings, graphs, etc. The
Simplified Molecular Input Line Entry System (SMILES) is
the most widely used string format. It is worth noting that
both small molecules and proteins are essentially composed
of atoms and chemical bonds, and are therefore very easy to
represent in the form of a connection graph. Representing
atoms as nodes and chemical bonds as edges, GNN are nat-
ural small molecule machine learning network frameworks.
Multiple variants of graph networks achieved state of the
art (SOTA) performance in multiple machine learning do-
mains, such as graph convolutional networks (GCNs),
graph attention networks (GATs), and graph isomorphic
networks (GINs). These network architectures can be effi-
ciently employed for various downstream tasks concerning
small molecules. Furthermore, the utilization of pre-
training models specifically designed for small molecules
to achieve effective embeddings is an emerging concept. This
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representation approach, rooted in pre-training, is relatively
novel and currently lacks comprehensive evaluation on
downstream tasks, particularly in the context of DPI.

Typical studies in recent years using machine learning-
based methods to predict DPI are listed in Table 2. The pre-
diction of DPI is quite different from the prediction of PPI.
DPI prediction requires not only integrating drug molecule
and protein databases but also embedding the chemical
space and protein space into a unified space. In this case, the
deep neural network framework is gradually showing more
advantages over traditional machine learning methods. A

straightforward idea for embedding small molecules and
proteins into the same hidden space is to use simple
concatenation to combine protein and small molecule
representations. However, this approach has limitations as
simple concatenation does not comprehensively capture the
intricate interactions between the two compound types.
Recent efforts have aimed at achieving more robust infor-
mation interactions that effectively capture the nuanced
connections between small molecules and proteins. For
instance, the Perceiver CPI model integrated a cross-
attention module to compel the model to discern the

Table : Algorithms for drug–protein interactions (DPI) prediction.

Author Algorithm Protein representation Framework Advantage Year Ref.

Nobuyoshi
Nagamine
et al.

MDMA AAS, Chemical Structure, and Mass
Spectrometry

SVM One of the earliest methods to
apply machine learning to the
study of small protein molecules

 []

Yoshihiro
Yamanishi
et al.

– Chemical structure and genome
sequence

A bipartite graph The D structural information of
the target protein is not required,
and the chemical and genomic
Spaces are integrated into a uni-
fied space

 []

Ming Wen
et al.

DeepDTIs ECFP + PSC Deep belief network The first to use deep learning  []

Hakime
Öztürk et al.

DeepDTA SMILES sequence D CNN Only sequence information was
used to predict binding affinity

 []

Qing Ye et al. KGE_NFM DistMult Neural factorization
machine

Pre-training model based on
knowledge graph

 []

Gengmo
Zhou et al.

Uni-Mol SE ()-equivariant transformer
architecture

Additional -layer Uni-Mol
and a simple differential
evolution algorithm to
sample and optimize the
complex

The first general D molecular
pre-training framework

 []

Vineeth R.
Chelur et al.

BiRDS The MSAs features, Token embed-
ding, position Embedding, Segment
Embedding

ResNet BiRDS can accurately predict the
most active binding site of a
protein using only sequence
information

 []

Ngoc-Quang
Nguyen et al.

Perceiver CPI Molecular: Molecular Graph + ECFP
Protein:D sequence

D-MPNN, MLP, D CNN Cross-attention module  []

Jian Wang
et al.

Yuel Employ rdkit to represent SMILES by a
graph (N, V, E)
Protein sequence

GCN, FC Predict interactions between
unknown compounds and un-
known proteins

 []

Penglei Wan
et al.

STAMP-DPI Molecular: Molvec
Protein: TAPE

Transformer decoder More attention is paid to protein
structural features

 []

Qichang Zhao
et al.

HyperAttentionDTI Molecular: SMILES
Protein: Protein sequence

CNN, attention mechanism Focus on complex noncovalent
intermolecular interactions
between atoms and amino acids

 []

YifanWu et al. BridgeDPI Molecular: Morgan finger-
print + physicochemical
Protein: one-hot + ,,-mer

CNN, FNN, GNN Capture network-level informa-
tion between molecules and
proteins

 []

Mehdi
Yazdani-
Jahromi et al.

AttentionSiteDTI Molecular: SMILES
Protein: Protein sequence

GAT Works well on new proteins  []

AAS, amino acid score; GCN, graph convolutional network; FNN, feedforward neural network; CNN, convolutional neural network; GAT, graph attention
networks; D-MPNN, directed message passing neural network; MLP, multi-layer perception.
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impact of compound information on protein informa-
tion [108]. Other investigations have focused on predicting
interactions between previously uncharacterized proteins
and unknown small molecules. Yuel, for instance, promi-
nently incorporated a characterized FC layer alongside an
attention-based affinity prediction module that employed the
outer product to combine protein and small molecule fea-
tures [109]. Additionally, a noteworthy example emphasizing
the prediction of DPI involving new proteins is AttentionSi-
teDTI, drawing inspiration from sentence classification
models [110]. Here, the drug target complex was likened to a
sentence with meaningful connections between its biochem-
ical entity (referred to as the protein pocket) and the drug
molecule. The authors highlighted that unlike previous
studies, this model demonstrated exceptional performance
when applied to novel proteins. Furthermore, to address
potential information loss when characterizing molecular
graphs through graph convolutional networks, SSGraphCPI
introduces a comprehensive approach by incorporating
both 1D SMILES representations and 2D molecular graphs,
thereby incorporating sequence and structural fea-
tures [111]. In contrast to many other methods for predicting
DPI, which primarily emphasize molecular representation,
STAMP-DPI places a stronger focus on protein representa-
tion and the higher-level relationships between distinct
instances [112]. STAMP-DPI employs TAPE encoding to inte-
grate contact maps and GNN as a protein representation and
establishes GalaxyDB, an esteemed benchmark dataset spe-
cifically designed for DPI prediction. HyperAttentionDTI
highlights the incorporation of intricate non-covalent in-
teractions between atoms and amino acids by employing an
attentionmechanism that assigns an attention vector to each
atom and amino acid [113]. HyperAttentionDTI has exhibited
noteworthy performance improvements on benchmark
datasets. Notably, BridgeDPI merges network-based and
learning-based concepts [114]. It constructs a drug–protein
association network by introducing a class of virtual nodes
designed to bridge the gap between drugs and proteins.
Furthermore, it leverages drug molecules and protein se-
quences as prior knowledge to generate features for inter-
action prediction.

In the last two years, with the development of protein
and small molecule databases, a few researchers tried to
build pre-training models of proteins and small molecules
for DPI prediction [119, 120]. One such instance is Uni-Mol, a
3D molecular pre-training model. Differing from its coun-
terparts, Uni-Mol directly employs the 3D molecular struc-
ture as input to the model, thereby eschewing the use of 1D
sequence or 2D graph structure representations. Uni-Mol
draws upon its own expansive dataset encompassing 3D
structural information of organic small molecules and

protein pockets. This model was trained via a unified pre-
training framework and strategic tasks on a large-scale
distributed cluster. The utilization of 3D information in rep-
resentation learning empowered Uni-Mol to yield remark-
able performance across multiple downstream tasks, while
simultaneously facilitating 3D conformation-related en-
deavors like molecular conformation prediction and
protein–ligand binding conformation prediction [112]. To
further explore a more comprehensive representation of
molecules and proteins, STAMP-DPI employed a pre-training
approach to encode the semantic information of small
molecules and proteins within an end-to-end deep learning
architecture [112]. Protein representation was accomplished
via a hybridization of structural topology mapping and Tape
Embedding pretraining features, while drugmolecules were
concurrently represented using molecular mapping and
Mol2vec Embedding pretraining features. Leveraging an
attention mechanism, STAMP-DPI captured the intricate
interaction information between molecules and proteins,
ultimately realizing the prediction of DPI.

In recent years, the proliferation of research on DPI
prediction has witnessed an escalation in methodological
intricacy, paralleled by an augmentation in predictive ac-
curacy. This trend has prompted a thoroughgoing evaluation
of this domain. For instance, they highlighted that excessive
similarity among samples in the validation set could lead to
inflated accuracy levels, while the spurious negative samples
could compromise the model’s generalizability. In addition
to the network architecture, equal emphasis should be
placed on the composition of the training dataset. This is
especially significant for big data-driven models which rely
heavily on data quality.

Prediction of proteins with specific
properties

There is also a need to predict specific functional proteins in
certain research scenarios [122–124]. The prediction of pro-
teins with specific properties relies on specifically collected
datasets, which also has considerable value in application.

There are proteins such as transcription factors or
RNA-binding proteins that function by binding to DNA or
RNA [125]. Recognizing these kinds of proteins is of great
significance for understanding transcriptional and trans-
lational regulation. Therefore, studies have been devoted to
predicting DNA-binding proteins based onmachine learning
[126–130]. A number of methods using deep multi-task ar-
chitectures to predict protein and DNA or RNA binding were
published in 2022. DeepDISOBind implemented intrinsically
disordered residues (IDR) that predicted the interaction
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between proteins and DNA as well as RNA. It used common
input layers that are followed by different layers that
distinguish between DNA and RNA interactions [131]. The
classifier architecture mainly consisted of CNN and FNN.
Using PSSM, HMM, DSSP and AlphaFold2 predicted struc-
tures to jointly construct amino acid features, GraphSite not
only improved the performance of predicting protein bind-
ing to nucleic acids, but also had the potential to identify
binding sites [132]. In predicting proteins of particular
functional categories, the utilization of protein structure
prediction tools, exemplified by AlphaFold2, offers signifi-
cant advantages. Huang et al., for instance, implemented a
high-throughput protein clustering approach relying on
tertiary structural information. They harnessed structural
clustering of proteins to identify deaminase functionality.
This method facilitated the identification of a deaminase
protein strongly amenable to editing in soybean plants, an
achievement unattainable through cytosine base editing
(CBE) alone. Moreover, their efforts yielded a suite of novel
base editing tools endowed with autonomous intellectual
property right [133].

There were also studies that attempted to summarize
the properties of drug target proteins and identified drug
target proteins based on machine learning methods
(Table 4). Most of the studies utilized traditional protein
representation methods, while in recent years, NLP-based
protein representation methods have also been
used [134, 135]. Sun et al. evaluated the performance of
various combinations of machine learning algorithms for
predicting druggable proteins, utilizing Word2Vec to
characterize protein sequences and showcasing its potential
in this regard [135]. Chen et al. integrated ESM1b, a sequence-
based self-supervised pre-trained protein language model,
with a graph convolutional neural network classifier to
develop an enhanced sequence-based identification method
for drug target proteins. The comprehensive model, named
QuoteTarget, successfully identified 1,213 potential untapped
drug targets when applied to all Homo sapiens proteins.
Additionally, the authors employed the gradient-weighted
class-activation Mapping (Grad-Cam) algorithm to infer re-
sidual binding weights from well-trained networks [136]. In
terms of classification algorithms, most drug–target protein

Table : Algorithms for predicting protein functional gene ontology (GO) annotations.

Author Algorithm Protein representation Pre-
training

Advantage Year Ref.

Domenico
Cozzetto et al.

FFPred   sequence-derived features F Representative functional predictors  []

Maxat Kulmanov
et al.

DeepGO AAS, the notion of dense embeddings F DeepGO is one of the first DL-based models  [,
]

Fuhao Zhang
et al.

DeepFunc Long sparse binary vectors of domains,
families, and motifs + Two layers neural
network

F DeepFunc outperforms DeepGO, FFPred, and
GOPDR in effects

 []

Nils Strodthoff
et al.

UDSMProt RNN, based on AWD-LSTM T Achieving advanced performance in many protein
classification tasks makes NLP a new paradigm

 []

Fuhao Zhang
et al.

NA Wordvec, InterPro, Bi-LSTM, multi-
scale CNN

F Combining the local and global semantic features
of protein sequences

 []

Vladimir
Gligorijević et al.

DeepFRI PDB structure, protein domain
sequence

T Structure-based  []

Amelia Villegas-
Morcillo et al.

NA Amino acid features, distance maps T Combining sequence representation with D
structural information of proteins does not lead to
performance improvement

 []

Mateo Torres
et al.

SF HMMER and InterPro F SF introduces a novel label diffusion algorithm to
interpret overlapping communities of proteins with
related functions

 []

Boqiao Lai et al. GAT-GO RaptorX Inter-Residue Contact, ESM-b
Residue-level Embedding D features

T Protein embedding is performed using sequence
and predicted structural information

 []

Weiqi Xia et al. PFmulDL one-hot strategy F A transfer learning method and the latest data of
GO

 []

Qianmu Yuan
et al.

SPROF-GO ProtT-XL-U T Sequence-based pre-trained model and the label
diffusion algorithm

 []

Zhonghui Gu
et al.

HEAL ESM-b T Hierarchical graph converter combined with graph
contrast learning

 []

LSTM, long short-term memory; CNN, convolutional neural network.
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prediction algorithms used traditional machine learning
algorithms or simple neural networks. And the highest ac-
curacy in these studies was above 90 %. It is worth noting
that fewer studies used deep neural network framework in
this objective, probably due to the fact that there are not
many drug target protein datasets available for training.

Liquid-liquid phase separation is a key principle of
intracellular organization in biological systems andhas been
implicated in a variety of biological processes as well as a
range of neurodegenerative diseases. In recent years, there
have been many in-depth studies on the LLPS phenomenon
of biomolecules [149, 150]. Liquid condensates formed by
LLPS are generally thought to be the result of multivalent
weak interactions of multiple interacting moieties in multi-
ple folded regions or intrinsically disordered regions (IDRs)
[151–153]. Because of this special property, many traditional
protein-coding methods may no longer be suitable. The
PLAAC tool is web to retrieve protein sequence domains and
extract pertinent information encompassing prion-like
amino acid compositions [154]. CatGRANULE is an algo-
rithm for a single species [155]. Based on the previously
published phase separate protein database PhaSepDB, Chen
et al. divided phase separate proteins into two sets of spon-
taneous phase separate proteins (hSaPS) and interaction
dependent phase separate proteins (hPdPS). The distribution
of the two phase isolated protein sets and the background
protein sets were significantly different from each other by
comparing the multimodal characteristics [156]. Chu et al.
has developed PSPredictor, a sequence-based protein pre-
diction tool for liquid-liquid phase separation (LLPS), which
integrates compositional and sequence information during
the protein embedding stage and employs a machine
learning algorithm to yield accurate predictions [157].

Prediction of protein function
annotation

In the post-AlphaFold era, great progress has been made in
predicting protein structures from protein sequences. As a
follow-up task of protein structure prediction, protein func-
tion identification is the ultimate goal of protein research. The
relationship between protein sequence and protein function
is a long-standing question in biology.

Since 2000, many researchers have aimed to promote the
usage of unified descriptions to annotate the functions of gene
products and to assist computational studies [13, 158, 159]. To a
certain extent, GO achieves the goal of functional annotation
and provides computer-readable functional annotation. GO

terms consist of three ontologies: molecular function (MF),
biological process (BP), and cell component (CC). GO database
comprehensively annotates gene products at multiple levels
and is still being updated. The decline of sequencing costs and
the development of genome sequencing projects results in a
drastic increase in the number of known protein sequences
each year, while the functional database corresponding to
protein sequences is growing slowly. By integrating a large
amount of protein sequence and structural information,
combined with comprehensive functional annotation, re-
searchers have attempted to directly predict protein func-
tional annotation, which provided a rapid and accurate
reference for a large number of newly discovered proteins.

Protein function annotation algorithms are also of great
interest for protein design. Function prediction can provide
guidance for unconditional protein generation models to
explore the functional space of proteins. For instance,
Lisanza et al. developed a diffusion model in sequence space
to generate protein structures. In this model, during each
round of denoising, a sequence-based function prediction
model is employed to compute the gradient of sequence
features related to the target function. This process in-
corporates function-guided gradient descent alongside
denoising, progressively making the sequence features to
cater to the requirements of the target function. They trained
a predictive model for recognizing Immunoglobulin folds to
guide the unconditional generation model. Remarkably,
68.7 % of the generated protein structures can be categorized
under the same protein fold as existing Immunoglobulin
structures [160].

Traditional methods for functional prediction of protein
sequences usually require alignment of sequences with
large annotated sequence databases using BLASTp or
other algorithms. Using the pHMMmodels constructed by
sequence family information provided by Pfam is also a
method to predict protein function. However, the search
time of the whole dataset is linear with the dataset size, and
it is very time-consuming to identify the function of a new
protein sequence. Therefore, it is particularly important to
use machine learning to predict protein sequence function
more quickly and accurately. Although machine learning-
based protein function prediction models didn’t emerge
until 2015, it is developing at a rapid pace (Table 3). Unlike the
prediction of protein interactions, the prediction of protein
function tends to be a multi-label classification problem.
Hence, a distinctive hallmark of this domain lies in the uti-
lization of extensive annotation data in conjunction with
deep neural networks. Furthermore, the prediction of pro-
tein function annotations draws parallels with research
methodologies employed in NLP. In recent times, numerous
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investigations have employed protein pre-trainingmodels to
attain commendable performance [62, 141, 143]. ProteinBERT
was a deep protein language model that combined language
models in pre-training for GO annotation prediction. There
were also studies that did not depend on the physical and
chemical properties of proteins but used unsupervised label
propagation algorithms to predict protein function from the
interaction network, which has also achieved good re-
sults [144]. SPROF-GO used sequence-based protein pre-
training language model to extract sequence information
and combined with the label diffusion algorithm to make
function prediction [147]. PANNZER was a protein function
prediction web server that can be used to predict the func-
tional representation of new genomes [161]. In addition to
web servers, there are also open source software that can be
installed locally, such as Wei2GO [162]. HEAL utilized a
hierarchical graph transformer combined with graph
contrastive learning to maximize the similarity between
different views represented by the graph, and outperforms
DeepFRI on the PDBch test set. In the absence of an experi-
mental protein structure, HEAL outperformed DeepFRI and
DeepGOPlus on the AFch test set by utilizing the structure
predicted by AlphaFold2. HEAL exhibits proficiency in
identifying crucial functional sites through class activation
mapping [148].

For protein function prediction, in addition to intro-
duce NLP methods to encode protein sequences, some re-
searchers have made specific exploration of protein

characteristics. For example, PFmulDL was proposed to
solve the problem that existing prediction methods often
misclassify protein families in “rare classes” [146].
PFmulDL combined recurrent neural network with con-
volutional neural network to expand the number of an-
notated protein families and improved the performance of
protein function prediction for rare categories. Some
researchers have also explored whether the addition of
protein structure information can improve the prediction
accuracy. For example, GAT-GO found that predicted
protein contact map can improve the results of protein
function prediction. The LM-gvp approach harnessed both
one-dimensional protein AAS and three-dimensional
structural information for its prediction [167]. This
method combined a protein language model with a graph
neural network, and demonstrated impressive prediction
performance.

Prediction of protein function by
biological knowledge graph

The current landscape of protein function prediction
models is not without its challenges, as many existing
methods struggle to comprehensively capture and effec-
tively leverage biological knowledge. Knowledge graphs
present a promising avenue to address these limitations, as

Table : Algorithms for drug target protein prediction.

Author Protein representation Method Accuracy Year Ref.

Lian Yi Han et al. A descriptor encoding the structural and physicochemical properties of a
protein

SVM .%  []

Qingliang Li et al. Composition of the amino acid residues, Hydrophobicity, Polarity, polariz-
ability, Charge, Solvent accessibility, Normalized van der Waals volume

SVM .%  []

Ali Akbar Jamali
et al.

Three different sets of physicochemical properties SVM .%  []

Tanlin Sun et al. Wordvec, auto covariance, Cojoint Triad CNN and Traditional
machine learning methods

.%  []

Phasit Char-
oenkwan et al.

Amino acid composition, amphiphilic pseudo-amino acid composition,
dipeptide composition, Composition-Transition-Distribution, pseudo
amino acid composition

SVM .%  [,
]

Rahu Sikander et al. Grouped amino acid composition (GDPC), reduced amino acid alphabet
(RAAA), novel encoder pseudo amino acid segmentation (S-PseAAC)

ERT, XGB, RF .%  []

Lezheng Yu et al. Dictionary, dipeptide composition, tripeptide composition, Composition-
Transition-Distribution

CNN-RNN .%  []

Jiaxiao Chen et al. ESMb, predicted contact map GCN .%  []

SVM, support vector machine; GCN, graph convolutional network; CNN, convolutional neural network; RNN, recurrent neural network; XGB, eXtreme
gradient boosting; ERT, ensemble of regression tress; RF, random forest.
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they possess the capacity to amalgamate information from
extensive biomedical knowledge databases through a
graph-based representation. This framework is particu-
larly relevant for tasks involving the prediction of protein
properties.

The construction of biomedical knowledge graph relies
on a variety of data sources, including unstructured and
structured databases. Currently, prominent knowledge
repositories compile information centered around pro-
teins, each database emphasizing distinct data types that
contribute to the formulation of the knowledge graph. For
example, DrugBank [168] and SuperTarget [169] mainly
contain pharmaceutical properties, and PubChem [170] and
ChEMBL [171] mainly contain functional and biological
activities of compounds. KEGG [172] mainly includes
genome, biochemical reaction information and pathway
information. InterPro [173] integratesmultiple databases to
summarize protein sequences into protein families.

Knowledge graphs combine these data sources to model
complex associations between different types of biological
entities, such as drugs, proteins, antibodies, etc. Inmodeling,
various types of relationships between entities are included,
expressed as different association semantics. Traditional
biological networks help to recognize network topological
relationships and clarify associations between entities, but
their learning depends on path exploration processes, with
high computational and spatial costs and limited scalability.
In recent years, with the development of computer tech-
nology, newmethods formining and graphmodeling of high
dimensional biomedical networks have emerged. Entities
and associations are projected into low-dimensional spaces
by a knowledge graph embedding (KGE) model, and low-
rank vector or matrix representations of graph nodes and
edges are learned to preserve the inherent structure of the
graph.

Knowledge graph can be constructed using a variety
of methods, such as Translation-based models, Tensor
factorization-based models, Neural network-based models.
Methods of tensor factorization include local linear embed-
ding (LLE) and Laplacian feature mapping (LE), which build
networks from non-relational data. The embedding vector is
obtained by factorization of the adjacency matrix between
nodes and adjacent nodes. Neural network-basedmodels use
deep architectures, such as SDNE and DNGR, which are
based on deep autoencoder architectures.

At present, many researchers have constructed knowl-
edge graphs related to biomedicine, such as GNBR and
DRKG, Hetionet, CBKH [174]. They all got information from
known publicly available data sets or from the biomedical
literature. PharmKG is a biomedical knowledge graph that
connects over 500,000 individuals related to genes, drugs,

and diseases. It contains diverse information specific to the
domain of biomedicine derived from various omics data
sources such as gene expression, chemical structure, and
disease word embeddings while maintaining semantic and
biomedical features [175]. PrimeKG is a comprehensive
knowledge graph designed for precise analysis in the field of
precision medicine. These scales include perturbations in
disease-associated proteins, biological processes and path-
ways, anatomical and phenotypic aspects, as well as an
extensive collection of approved drugs along with their
therapeutic effects [176]. According to the GO and the Uni-
prot knowledge base, ProteinKG65 incorporates diverse in-
formation by aligning descriptions and protein sequences
into GO terms and protein entities [177]. Biswas et al. sug-
gested a technique for constructing a biological knowledge
graph using tensor factorization. The approach involves
incorporating complex-valued embeddings into the knowl-
edge graph, which includes information on disease gene
associations and relevant contextual details [178].

Entities and associations of biological networks are
represented as matrices and vectors through KEGs, which
allows traditionalmachine learningmethods to be applied to
downstream tasks related to embedding of biological
entities, such as link prediction and node classification.More
specifically, a combination of network embedding tech-
niques and machine learning methods can cluster pro-
teins, drugs, or study drug–gene–disease correlations.
KEG provides an effective paradigm for promoting data
integration in the biomedical field.

In order to conduct a comprehensive evaluation of
various graph embedding techniques, Yue et al. selected 11
representative approaches and systematically compared
their performance across three crucial biomedical tasks:
prediction of drug–disease associations (DDA), drug–drug
interactions (DDI), and PPI. Additionally, they also per-
formed two node classification tasks involving the catego-
rization of medical terms based on semantic types and the
prediction of protein functions. The experimental findings
suggest that graph embedding methods have yielded prom-
ising results. The study conducted by Vlietstra et al. aimed to
assess the feasibility of utilizing protein knowledgemaps for
identifying targeted genes associated with disease-related
non-coding SNPs, achieved through a comprehensive eval-
uation and comparison of six established methodologies for
protein knowledge mapping [179].

In addition to the comprehensive evaluation of knowl-
edge graphs constructed by previous researchers, there are
also researchers who construct their own knowledge graphs
for the discovery of potential drug targets or the calculation
of drug–target interactions. Himmelstein et al. systemati-
cally simulated the efficacy of 755 existing treatments using
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Hetionet, amodel that integrates knowledge frommillions of
biomedical studies and connects various entities such as
compounds, diseases, genes, anatomical structures, pathways,
biological processes, molecular functions, cell components,
pharmacological classes, side effects and symptoms. The
predicted results were validated with two external treatment
groups [180]. The TriModel, a knowledge graph embeddings
model, constructs the knowledge base using multi-part em-
beddings. It generates vector representations for all drugs
and targets in the knowledge graph to compute candidate
drug target interactions [181]. KGE_NFM was a new method
for drug–protein interaction prediction based on knowledge
graph and recommendation system. In addition to the
traditional representation method, KGE_NFM combined
knowledge graph and recommendation system method-
neural factorization machine (NFM) to predict drug target
interaction, which improved the accuracy and stability in
real scenarios [119].

Fernández-Torras et al. constructed a comprehensive
knowledge graph, Bioteque, which encompasses over
450,000 biological entities and 30 million relationships
among them. Bioteque serves as a valuable tool for scruti-
nizing high-throughput PPIs data and predicting drug
responses. The graph comprises 12 biological entities such
as genes, diseases, drugs, drugs used to treat diseases,
and 67 types of associations including gene–gene in-
teractions [182]. Nasiri et al. approach the problem of pre-
dicting PPIs as a link prediction task in attribute networks,
utilizing attribute embedding techniques to forecast in-
teractions between proteins within the PPI network. The
key aspect of this method is assigning weights to features
based on their significance, enabling differentiation of each
feature’s contribution [183].

The biological network plays a crucial role in the
biomedical field as it serves as the primary source of data for
data-driven problems. knowledge graph embedding tech-
niques enable information-rich representations, facilitating
knowledge graph-based problem-solving through tradi-
tional machine learning methods. These techniques have
been extensively employed in various biomedical applica-
tions and are instrumental in protein function prediction.

Conclusion and perspective

In this article, we review the development history and
research paradigms of computational methods for predict-
ing protein function. We then summarize common ap-
proaches to protein and molecular representation and
feature extraction. Furthermore, we evaluated the perfor-
mance of the machine learning-based algorithms in four

task objectives of protein function prediction, which pro-
vided a comprehensive perspective for understanding the
field.

In the realm of protein function prediction, the land-
scape of downstream tasks has seen a limited evolution in
the realm of classification algorithms in recent times.
Traditional machine learning techniques such as SVMs and
random forests continue to effectively address a substantial
portion of prediction requirements. As a result, the neces-
sity for deep neural networks in this context remains
somewhat moderate. Conversely, the central focus has
shifted to refining protein representation and feature
extraction methodologies. The prevalent utilization of
feature extraction techniques, which involve the deliberate
design of features based on AAS, remains a predominant
strategy. This knowledge-based encoding approach offers
the flexibility to tailor features to specific task objectives,
albeit it may struggle to concurrently address multiple
objectives. Significantly, a notable trend has emerged in
recent years wherein pre-training models derived from
NLP are demonstrating their advantages. Protein pre-
training models are now being applied to various protein
function prediction tasks, notably in the realm of predicting
protein function annotations. Several of these protein pre-
training models have exhibited a robust generalization
capacity across a spectrum of downstream tasks.

In addition to the aforementioned objectives that we
have elucidated, the field of protein function prediction
encompasses a multitude of intricate downstream tasks.
While traditional computational methodologies retain a
significant foothold, they might encounter limitations in
accurately identifying certain proteins endowed with spe-
cific properties. Phase-separated proteins, for example,
often contain many IDRs [184]. Algorithms based on tradi-
tional machine learning to predict phase-separated
proteins tend to cover only specific scenarios or data-
sets [154, 156, 184]. In this case, with the accumulation of
massive data, data-driven protein pre-training models may
have great potential in the prediction of complex protein
functions. In addition, combining self-supervised deep
learning protein characterization methods with clustering
algorithms, researchers have opportunity to identify new
protein classes with specific functions [133]. Furthermore,
the addition of sequence and structure information makes it
easier for the network to learn a relatively complete protein
space, which is conducive to rational design and trans-
formation of proteins [185].

For protein function prediction, with the development
of ChatGPT, large language models based on protein lan-
guage have also been developed. For example, ProteinChat
and DrugChat are large languagemodels focusing on protein
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function and small molecule properties respectively. Within
the scope of existing literature research, these large lan-
guage models can effectively answer the questions raised by
users in the form of text interaction, including the query of
protein function and properties, queries for specific pro-
tein–small molecule interactions, etc. However, current
large language models may not be able to outperform
supervised deep learning algorithms for specific prediction
tasks with clear objectives. This performance variance could
arise due to differences in training data configurations,
feature extraction methodologies, and model architectures.
The distinctive value of these large language models, how-
ever, might reside in their capability to synthesize the in-
ternal logic governing the functioning and interactions of
proteins and small molecules. Recently, large language
models have been applied to single cell RNA-seq, successfully
learning the gene regulatory networks as well as protein
interaction networks in cells. The large language model
based on biological data can predict gene expression of the
perturbed networks without specific supervised training.
Thus, these models may harbor the potential to illuminate
unexplored inquiries that have yet to be thoroughly
investigated [186].
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