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Sensory substitution is an effective means to rehabilitate many visual functions after
visual impairment or blindness. Tactile information, for example, is particularly useful for
functions such as reading, mental rotation, shape recognition, or exploration of space.
Extant haptic technologies typically rely on real physical objects or pneumatically driven
renderings and thus provide a limited library of stimuli to users. New developments in
digital haptic technologies now make it possible to actively simulate an unprecedented
range of tactile sensations. We provide a proof-of-concept for a new type of technology
(hereafter haptic tablet) that renders haptic feedback by modulating the friction of a
flat screen through ultrasonic vibrations of varying shapes to create the sensation of
texture when the screen is actively explored. We reasoned that participants should
be able to create mental representations of letters presented in normal and mirror-
reversed haptic form without the use of any visual information and to manipulate
such representations in a mental rotation task. Healthy sighted, blindfolded volunteers
were trained to discriminate between two letters (either L and P, or F and G;
counterbalanced across participants) on a haptic tablet. They then tactually explored
all four letters in normal or mirror-reversed form at different rotations (0◦, 90◦, 180◦,
and 270◦) and indicated letter form (i.e., normal or mirror-reversed) by pressing
one of two mouse buttons. We observed the typical effect of rotation angle on
object discrimination performance (i.e., greater deviation from 0◦ resulted in worse
performance) for trained letters, consistent with mental rotation of these haptically-
rendered objects. We likewise observed generally slower and less accurate performance
with mirror-reversed compared to prototypically oriented stimuli. Our findings extend
existing research in multisensory object recognition by indicating that a new technology
simulating active haptic feedback can support the generation and spatial manipulation
of mental representations of objects. Thus, such haptic tablets can offer a new avenue
to mitigate visual impairments and train skills dependent on mental object-based
representations and their spatial manipulation.
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INTRODUCTION

In everyday life, vision supports crucial functions that enable
us to successfully interact with our environment, such as
manipulation of objects as well as spatial orientation and
navigation in space. These functions depend on the correct
acquisition and maintenance of mental representations of
our environment and the objects within it. In sighted
individuals, vision typically predominates these functions and
spatial abilities more generally (e.g., Welch and Warren,
1980; Knudsen and Knudsen, 1989; Schutz and Lipscomb,
2007). However, visual impairments affect nearly 300 million
people globally, with another ∼36 million suffering from
complete loss of vision (World Health Organization, 2000).
This calls for effective rehabilitation methods, including sensory
substitution approaches.

Studies in visually impaired individuals document the
extensive neuroplasticity of both non-visual functions, as well
as within visual cortices. For example, visual deprivation
enhances tactile acuity not only in sighted individuals (Pascual-
Leone and Hamilton, 2001; Merabet et al., 2007; Norman
and Bartholomew, 2011), but also in blind and visually
impaired patients (Goldreich and Kanics, 2003; Lederman
and Klatzky, 2009). It is now well-established that cross-
modal plasticity can promote functions that are supported
predominantly by vision. Tactile information has been most
widely utilized to date to train functions such as reading
(e.g., Braille) and exploration of space (e.g., white cane).
Specifically, object geometry and form judgments based on
haptics have been demonstrated to activate visual areas along
the so-called dorsal pathway (Prather et al., 2004; Sathian, 2005).
Furthermore, visual areas have been found to be activated
during Braille reading in functional imaging studies (Sadato
et al., 1996, 1998, 2002; Burton et al., 2002; Amedi et al.,
2003). Sathian et al. (1997) were the first to demonstrate,
via haemodynamic imaging, that discrimination of orientation
of tactile gratings activates the same extrastriate areas as
those observed active during visual orientation discrimination.
This cross-modal functional recruitment of nominally visual
cortices for tactile perceptual functions most likely results
from cross-modal plasticity operating via the interplay between
unisensory and multisensory neurons (Amedi et al., 2001; Kitada
et al., 2006). More generally, there is now convergent and
consistent evidence for visual cortex activation during tactile
perception in both blind and sighted individuals (reviewed in
Lacey and Sathian, 2014).

In addition to evidence pointing to the involvement of
visual cortices in tactile discrimination, spatial functions can
also be achieved in a modality-independent fashion, including
based solely on tactile information. For example, studies of
mental rotation where participants need to judge whether an
image is portrayed in its normal or mirror-reversed form
demonstrate a typical increase in reaction times (RTs) with
increasing rotation of the image (Shepard and Metzler, 1971;
Lacey et al., 2007a,b). Marmor and Zaback (1976) showed that
the same mental rotation effect occurs with tactile stimuli.
This and other findings have led to the belief that spatial

properties can be encoded in a modality-independent format
(Lacey and Campbell, 2006), and may thus engage a common
spatial representational system (Lacey and Sathian, 2012;
Lee Masson et al., 2016).

The discovery of modality-independence of spatial
representations has opened a new avenue for vision
rehabilitation, i.e., tactile-based sensory substitution. One
particularly striking example here is the successful use of haptic
stimulation of the tongue with the tongue-display unit (TDU)
to retrain ‘‘tactile-visual’’ acuity (TDU, Chebat et al., 2007).
The TDU is a sensory substitution device (SSD) that converts
a visual stimulus into electro-tactile pulses delivered to the
tongue via a grid of electrodes. Visually impaired individuals
were able to discriminate various orientations of the letter E
(i.e., the Snellen E test) based solely on stimulation with the
TDU (Chebat et al., 2007). While such efforts are impressive,
they risk remaining limited in their applications. However,
this is at least partially addressed in new technologies for
digitization of information, such as tablets digitally rendering
tactile information (e.g., Xplore Touch1). This digitization of
information has led to significant improvements in healthcare,
including reduced costs and increased accessibility and reliability
of treatments (Noffsinger and Chin, 2000; Dwivedi et al.,
2002). Currently, visually impaired individuals require
persistent training for the rehabilitation of visual functions
that support basic everyday activities such as cooking, cleaning,
and navigating one’s environment. This involves numerous
hours of work together with therapists. Digitalizing the method
of delivery of therapeutic procedures would likely allow
visually impaired patients to be more independent and, so,
successful, in their training. For one, the therapeutic programs
could be created online and then easily downloaded onto
a digital device. Second, patients would be able to practice
and improve their tactile acuity as well as their form and
object perception abilities without the constant presence
of a therapist.

It is known that spatial operations such as mental rotation
can be supported solely by tactile stimuli such as Plexiglas forms
or wooden blocks (Marmor and Zaback, 1976; Carpenter and
Eisenberg, 1978, for recent reviews see Prather and Sathian,
2002; Lacey et al., 2007a). By contrast, it is unknown whether
individuals can create and manipulate mental representations
of objects based solely on simulated haptic representations.
If spatial functions can be rehabilitated with digital devices,
this should substantially improve both the speed and the
extent of the recovery as well as the independence of
visually impaired patients. Haptic tablets thus promise to
open up unprecedented possibilities for recovery of visual
functions for blind and visually impaired individuals, due
to the ease of delivery of digital information and of the
transfer of the learnt information from tablet to veridical
environments. Being able to mentally rotate digitally presented
haptic objects would serve as an important proof-of-concept
for the successful acquisition of a representation of a simulated
haptic space.

1http://www.hap2u.net
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To this end, the present study investigated whether
participants would be able to successfully mentally rotate
representations of letters in their normal and mirror-
reversed forms, experienced solely via digitally-rendered
haptic feedback. We focused on the distinction of letter
forms (i.e., normal vs. mirror-reversed), because judgments
of letter identity (for example the distinction between a
letter and a number) do not necessarily implicate mental
rotation (White, 1980). We hypothesized that normally-
sighted participants should show the prototypical mental
rotation effect, with steadily decreasing accuracy (and
increasing RTs) with increasing angular disparity from the
prototypical upright letter orientation, which would translate
into a main effect of angle. Moreover, we expected that
participants would show better performance with letters
in their normal form compared to mirror-reversed letters,
due to the well-investigated effect of stimulus familiarity on
mental rotation (White, 1980; Bethell-Fox and Shepard, 1988;
Prather and Sathian, 2002). We also expected a main effect of
training, meaning that participants would perform better with
letters which they had trained with, compared to letters that
were untrained.

MATERIALS AND METHODS

Participants
All participants provided written informed consent to
procedures approved by the cantonal ethics committee in
accordance with the Declaration of Helsinki. We tested 17 adults
(12 women and five men; age range 25–37 years, mean ± stdev:
28.9 ± 3.5 years), who volunteered for our experiment.
Participants reported normal or corrected-to-normal vision.
No participant had a history of or current neurological or
psychiatric illnesses. Handedness was assessed via the Short
Form of the Edinburgh Handedness Inventory (Oldfield, 1971).
Two of our participants were left-handed, while the remainder
were right-handed. We also asked our participants about their
experience playing a musical instrument, due to evidence
of increased cortical representation of the hands of musical
instrument players (see e.g., Elbert et al., 1995). Nine participants
were active instrument players (i.e., actively played instruments
at the time of the testing session), five had formerly played
instruments (i.e., during childhood, adolescence and early
adulthood, however they were not actively practising at the time
of testing), and three played no instruments.

Apparatus
Haptic stimulation was delivered via a tablet with a
TFT capacitive 7-inch touchscreen with a resolution of
1,024 × 600 pixels. The screen of the tablet is controlled by
a Raspberry Pi 3 based system, and the operating system is
Raspbian (Linux). The processor of the tablet is a Broadcom
ARMv7, quadcore 1.2 GHz and it has 1 Go RAM and Rev C
WaveShare. The tablet comes with a haptic creation tool, which
is a software that allows for user control of haptic textures.
Several other APIs based on C++ or Java are installed, such as
library tools that allow the implementation of haptics on other

applications. Figures in jpeg format were re-coded in haptic
format using a kit written in C++. For more technical details
describing the rendering of the haptic feedback, see Vezzoli et al.
(2016, 2017) and Rekik et al. (2017).

Stimuli
Stimuli consisted of four capital letters—L, P, F and G—created
in Paint (see e.g., Carpenter and Eisenberg, 1978; see also
Figure 1). We chose these capital letters as their mirror-image
counterparts do not confuse, as compared to for example
lower-case ‘‘d,’’ whose mirror image is ‘‘b’’ and ‘‘b,’’ whose mirror
image is ‘‘d’’ (Corballis and McLaren, 1984). Moreover, these
letters have previously been used in mental rotation tasks (Cohen
and Polich, 1989; Rusiak et al., 2007;Weiss et al., 2009), including
tasks with tactile objects (e.g., Carpenter and Eisenberg, 1978).
The letters were resized to always be presented centrally on
the screen of the haptic tablet, which has a pixel resolution
smaller than that used to generate the images. Letters were then
rotated to 0◦, 90◦, 180◦ and 270◦ and mirrored in Matlab. Letter
size was 935 × 509 pixels. With regard to the image-to-haptic
conversion, the letters appeared centrally on a white background.
White pixels did not produce the feeling of a texture on a finger
(i.e. ‘‘empty’’ pixels). All non-white pixels were then coded with
the same haptic texture, which was created using the hap2u
pre-installed Texture Editor software. The ultrasonic vibration
was adjusted to have a square shape, as this offers the most
intense and quick reduction of the friction of the screen under
the finger, thus conferring a rather sharp and pointy sensation,
in contrast to a sinusoidal-shaped wave, which would confer
a rather smooth perception. The period of the window of one
square ultrasonic signal was chosen to be 3,500 µm (which is
considered a ‘‘coarse’’ texture, see Hollins and Risner, 2000),
and the amplitude was set at 100%, meaning roughly 2 µm
(as the friction reduction hits a plateau at this value, see e.g.,
Sednaoui et al., 2017).

Procedure and Task
Participants were tested in a sound-attenuated, darkened room
(WhisperRoom MDL 102126E). Subjects were blindfolded and
wore noise-canceling headphones (Bose model QuietComfort 2),
in order to block any residual light and the sounds of
the ultrasonic vibrations produced by the tablet. None of
the participants had any prior visual or haptic exposure to
the stimuli used in the paradigm, minimizing any cross-modal
facilitation (Lacey et al., 2007a,b). The participant’s task was
a two-alternative forced choice that required discrimination
of normal and mirror-reversed letters via a mouse click (left
mouse press for the normal form, right mouse press for the
mirrored form; same for all participants). Participants were
instructed to use a finger from their dominant hand for tablet
exploration, and the non-dominant one for responses. The
task was to feel the letter on the haptic tablet for 30 s,
recognize the letter, and if needed, to mentally rotate the
letter to the 0◦ form, in order to decide whether the normal
or the mirror-reversed form had been presented. We used
explicit instructions, since it has been reported that this is
not a determinant of whether a mental rotation effect is
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FIGURE 1 | (A) Stimuli used in the experiment. These images are based on reverse translation of the haptic “image.” The checkered portions refer to regions with
no haptic texture. The letters were created to have the same proportions on the haptic tablet screen, and thus they appear slightly distorted. Normal stimuli and their
mirror images were rotated at 90◦, 180◦, 270◦ and were individually presented to participants on the tablet. (B) Transformation of the stimuli into haptic renderings
was possible via a pre-installed kit. The transformation takes a cell (8 × 8 pixels) from the picture file and codes the cells into textures with the help of a haptic library
where different textures are defined. Participants were then able to feel the vibrations on the tablet screen only at those places where the cells were transformed.
(C) Experimental setup. Participants had their eyes blindfolded and wore noise-canceling headphones in order to prevent any other external stimulation interfering
with the haptic sensation. After exploring the letter on the tablet for 30 s with a single finger, they indicated if the letter was normal or mirrored via a computer mouse
button-press with their non-dominant hand, which would then initiate the passage to the next trial.

observed (reviewed in Prather and Sathian, 2002). Stimuli were
presented for a duration of 30 s. Next, participants had 20 s
for responding, and were instructed to respond as quickly
and as accurately as possible. After the response, the next
trial was initiated and was preceded by an inter-trial interval
randomly ranging between 500 and 1,000 ms. Each participant
completed three blocks of training, each comprising 16 trials
(two per condition; informed by a pilot study). Participants
were trained on pairs of two letters—either L and P or F and
G—that they were assigned in a counterbalanced manner across
individuals. We grouped these letters given their perceptual
closeness, which allowed a progressive learning procedure. We
decided to focus the training on a particular letter pairing in
order to investigate skill transfer to new, untrained stimuli.
Participants were first trained to explore the tablet screen via
lateral sweeps [(Stilla and Sathian, 2008), see e.g., (Lederman
and Klatzky, 1993) for a discussion of which tactile exploration
strategies are particularly appropriate to disclose specific object
characteristics, and (Hollins and Risner, 2000) for a discussion
of how dynamic vs. static exploration affects coarse (>100 µm)
as compared to fine texture discrimination], using only one
finger at a time. Subjects were allowed to change the finger
they used for exploration, due to a common complaint about
adaptation of their tactile sensation during the pilot experiments
or during the training blocks. However, they were not allowed
to change the hand used for exploration. Subjects were then
taught how to discriminate horizontal from vertical lines, and
finally, how to discriminate between the two letters that they were

trained on. The experimenter gave subjects verbal instructions
and feedback throughout the training session. The testing
phase comprised four blocks of 32 trials, making 128 trials
in total per participant (i.e., eight trials per each condition,
in total 16 conditions). During the experiment, participants
were allowed to take regular breaks between blocks of trials
to maintain high concentration and prevent fatigue. Stimulus
delivery and behavioral response collection were controlled by
Psychopy software (Peirce, 2007).

Behavioral Analysis
Data were pre-processed in Matlab and analyzed in R (R Core
Team, 2018) and SPSS (IBM Corp, 2017). First, we excluded
all trials with RTs longer than 15 s (5% of trials), as well as
missed trials (2.5% of trials), which were trials where a response
was not given within 20 s. We then excluded any remaining
outlier trials on a single subject basis (i.e., for each subject and
condition), applying a mean ± 2 standard deviations criterion
to their RTs (2.7% of trials, see Ratcliff, 1993; Field et al.,
2012). Accuracy was then calculated. RT data were not further
analyzed, since responses were only provided after stimulus offset
followed by a subsequent cue. Data from three participants were
excluded due to very low accuracy for the 0◦ condition (<50%).
We compared Accuracy with a 2 × 2 × 4 repeated measures
ANOVA with factors Training (trained/untrained), Condition
(normal/mirror) and Angle (0◦, 90◦, 180◦, 270◦), after not having
found a significant deviation from the Normal distribution and
from homoscedasticity.
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RESULTS

Mean accuracy rates are displayed in Figure 2. The
2 × 2 × 4 ANOVA with factors of Training (trained/untrained),
Condition (normal/mirror) and Angle (0◦, 90◦, 180◦, 270◦)
revealed a significant interaction and two main effects. The
Angle × Trained interaction was significant (F(1,13) = 4.912;
p < 0.05, η2p = 0.274), and there were main effects of Training
(F(1,13) = 5.88; p = 0.03, η2p = 0.314), with generally higher
accuracy scores for trained vs. untrained letters, and Condition
(F(1,13) = 6.02; p = 0.02, η2p = 0.317), with generally higher
accuracy scores for normal compared to mirrored stimuli.
Given this significant interaction, we carried out separate
2 × 4 ANOVAs (Condition × Angle) for trained and untrained
letters. Untrained letters revealed no interactions or main
effects (F ≤ 0.6). By contrast, trained letters exhibited a main
effect of Condition (F(1,13) = 11.46, p < 0.01, η2p = 0.470) and
a main effect of Angle (F(3,13) = 6.625, p = 0.02, η2p = 0.338).
Trained letters in their normal form had higher accuracy
scores compared to trained letters in their mirrored form,
and accuracy generally decreased with increasing angular
disparity. Performance on untrained normal letters was more
similar to performance on mirrored letters than to normal
trained letters.

DISCUSSION

Weprovide the first demonstration that digitally-rendered haptic
stimuli can support the creation of mental representations of
objects that can then be spatially manipulated. Participants’
accuracy scores decreased with greater angular disparity of
the presented letters from upright, indicating a prototypical
mental rotation effect for trained letters (Shepard and Metzler,
1971). Moreover, letters in their mirrored form were less
accurately detected compared to letters in their normal form,
consistent with the stimulus familiarity effect that has been
previously found to influence mental rotation with real visual

stimuli (White, 1980). Specifically, normally sighted participants
performed significantly better when tested on previously trained
compared to untrained letters. This effect was observed for
letters presented in their canonical form, and less for letters
in their mirrored form. In addition, our results show that a
short training session of about 45 min on the haptic tablet
was sufficient to significantly increase the ability to correctly
identify the correct form of haptic letters. These results extend
previous efforts to support rehabilitation of spatial functions
using SSDs, and open new avenues for applications of digital
haptic technology.

Mental rotation of objects created by haptic feedback
successfully modulated accuracy of object recognition; increasing
angular disparity away from the prototypical orientation linearly
reduced recognition accuracy. As expected, performance was
significantly higher for normal letters, compared to mirrored
letters, and for trained letters, as compared to untrained letters.
Accuracy for letters in their normal upright form decreased up
to 180◦, with a slight increase for stimuli rotated at 270◦. Similar
results have previously been found in mental rotation tasks with
stimuli of different kinds (see e.g., Kosslyn et al., 1998; Hyun and
Luck, 2007; Milivojevic et al., 2011; Zeugin et al., 2017), further
corroborating that our experimental manipulation was effective
and that mental rotation of our haptic letter stimuli indeed
took place. The significant interaction between factors Condition
and Angle illustrates the fact that mental rotation of familiar
stimuli was more successful than for unfamiliar stimuli. To be
precise, given that the stimuli were letters, they can generally
be considered familiar stimuli, however only letters presented
in their normal form can be considered overlearned (White,
1980), while letters in their mirrored form can be considered
unfamiliar, as individuals are seldomly using mirrored letters
in their everyday lives. In addition, the significant effect of the
factor Training indicates that with only little training on the task
and limited exposure to haptic stimulation before the testing,
participants were able to improve their performance, which was
not the case for untrained letters.

FIGURE 2 | Group-averaged (N = 14) accuracy data for normal and mirrored stimuli (SEM indicated). The left column displays results for normal stimuli, while the
right displays results for mirrored stimuli. Red lines refer to trained stimuli, while the blue lines represent untrained stimuli.
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Our findings replicate and extend prior studies of mental
rotation based on haptic information. Mental rotation has
been studied with Plexiglas letters and objects (Carpenter
and Eisenberg, 1978; Hunt et al., 1989), abstract Braille-like
stimuli (Röder et al., 1997), as well as with haptic versions of
the Shepard and Metzler (1971) stimuli (Robert and Chevrier,
2003). These and other similar works have likewise shown that
performance worsens with increasing angular displacement from
upright, independently of whether an explicit instruction was
provided to use a strategy based on mental rotation (reviewed
in Prather and Sathian, 2002). By contrast, evidence of mental
rotation with tactile stimuli does appear to vary with task. Tasks
requiring mirror-image discrimination yield mental rotation
effects, whereas those requiring identification of isolated stimuli
generally do not (Prather and Sathian, 2002). Our study required
participants to discriminate whether each stimulus was normal
vs. mirror-reversed, and we indeed observed a mental rotation
effect for trained letters. Our accuracy rates are consistent
with, albeit somewhat lower than, what has been reported in
sighted participants presented with physical objects (∼80%–90%
in Marmor and Zaback, 1976; Röder et al., 1997; Robert
and Chevrier, 2003). However, two important distinctions
in our study are the use of digital haptics, and moreover, that
participants could only use a single finger to explore the stimulus.
Ongoing efforts are working to enhance the haptic perceptual
qualia as well as to permit exploration by multiple fingers
simultaneously. Such notwithstanding, this limitation may
nonetheless help us hone in on specific exploration and haptic
learning strategies. Minimally, our results demonstrate that
mental representations of haptic objects and their discrimination
can be ascertained using information acquired with a
single digit.

To summarize, our results indicate that participants were
able to mentally manipulate internal representations of familiar
stimuli that they learned solely in a haptic manner, through
interaction with a digitally created texture. While our results
have potential applications in the simulation of tactile sensorial
perceptions in virtual reality, we do not have the space to
discuss these at length here. Instead, we would like to focus on
the important implications that our results have for cognitive
models of spatial functions, as well as on the implications for
the rehabilitation thereof in patients suffering from impairments
due to vision loss. In what follows, we will discuss these latter
two points.

Implications for Models of Spatial
Functions
Our results have implications for current models of cortical
mechanisms that decode spatial characteristics of objects.
Recently, evidence has been accumulating for a decoding
mechanism that is modality-independent, with spatial features
of objects and spaces being communicated through visual
(Koenderink et al., 1992; Erens et al., 1993), haptic (Kappers and
Koenderink, 1999; Prather et al., 2004; Snow et al., 2014; Lee
Masson et al., 2018), and auditory (Amedi et al., 2007, 2002)
information alone, as well as through multisensory information
(Lacey et al., 2009; Sathian et al., 2011; Lacey and Sathian, 2014;

Lee Masson et al., 2016, 2017). Moreover, it was demonstrated
that multisensory regions, such as V1, IPS, and LOC, specifically
encode spatial characteristics such as shape, but not object
identity (Amedi et al., 2002). Our results further support
such modality-independent models of spatial representations.
In particular, it was possible for us to convey the shapes of
haptic objects (i.e., letters) to participants through unisensory
haptic stimuli. This indicates that spatial features of objects,
and, specifically, of object shape, can be decoded from a variety
of stimulus formats—be it visual, auditory, or somatosensory.
However, sensory impressions coming from haptic and visual
information are very different (Rose, 1994), and vision and touch
use different metrics and geometries (Kappers and Koenderink,
1999). Nevertheless, there is substantial neuroimaging evidence
showing that vision and touch are intimately connected even
if there is no direct, one-to-one mapping (see Amedi et al.,
2005; Sathian, 2005 for reviews). For one, cerebral cortical
areas previously regarded as exclusively unisensory in nature
are activated by sensory inputs in a task- and stimulus-specific
manner (Lacey et al., 2007a). New evidence also supports
high similarities between visual and haptic representations
of object perceptual spaces (Cooke et al., 2007; Wallraven
et al., 2014; Lee Masson et al., 2016). These results have been
further complemented by neuroimaging studies, that helped in
corroborating the result of high correlations between perceptual
spaces reconstructed using tactile vs. visual information (Snow
et al., 2014; Smith and Goodale, 2015). Indeed, clinical cortical
lesion studies demonstrate that lesions of visual brain areas,
such as the inferior occipito-temporal cortex, or the anterior
intraparietal sulcus, are accompanied by tactile agnosia for
objects, despite intact somatosensory cortical areas (Feinberg
et al., 1986; James et al., 2002). Collectively, our results support
a task-specificity, as compared to a stimulus-specificity, of
spatial functions.

Implications for Rehabilitation of Spatial
Functions
Our study further validates efforts of rehabilitation of spatial
functions through SSDs. Cross-modal and multisensory
integration are the drivers of neuroplasticity in visual areas
(Kirkwood et al., 1996; Amedi et al., 2004; Merabet et al., 2005;
Pascual-Leone et al., 2005; Murray et al., 2015), which promotes
a task-selective and modality-independent re-specialization of
these cortical structures. Besides the known applications of
tactile sensory substitutions such as the Braille alphabet, white
cane, or the TDU, our results open new avenues for mitigation
of deficiencies of spatial functions in the blind and visually
impaired. Indeed, it has been demonstrated numerous times
that tactile information can support spatial functions in blind,
visually impaired, and sighted subjects (Marmor and Zaback,
1976; Carpenter and Eisenberg, 1978; Grant et al., 2000; Ptito
et al., 2005; Sathian, 2005; Chebat et al., 2007; Wan et al., 2010;
Rovira et al., 2011; Vinter et al., 2012). However, the main
innovation introduced by our study is the digital simulated
nature of the tactile stimuli. As digital information is easily
recoded and reproduced, our results open new exciting venues
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for increased accessibility of traditionally visual functions, such
as reading, navigation, etc., to visually impaired people.

In addition, such tactile substitution and multisensory
techniques can also be used to retrain spatial functions after
sight restoration. Specifically, patients with long-lasting cataracts
have deficient depth perception after cataract removal (Hartung,
1962; Gregory, 2003; McKyton et al., 2015), despite normal
low-level visual perception. Thus, as auditory information is
unable to confer spatial information (Amedi et al., 2002), one
could imagine complementing rehabilitation programs with
tactile spatial information, in order to confer distance relations
in a multisensory manner. Another exciting endeavor for further
research that we are now also pursuing in the laboratory is the
extent to which simulated haptic information can support the
encoding of entire familiar and new spaces. In short, simulated
tactile information has critical implications for applications in
rehabilitation regimes. Besides being specifically able to convey
spatial relations, as opposed to auditory information, simulated
tactile stimuli have the added value of accessibility. This benefit
renders tactile tablets a promising solution for the mitigation
of complete or partial loss of spatial abilities due to sensory
loss or deprivation.

CONCLUSION

We trained normally-sighted participants on a haptic mirror-
image discrimination task, using a new technology that digitally
simulates texture. After only a short exposure and habituation
to the new sensation, and relatively little training on the
task, participants were able to mentally manipulate internal
representations of the trained letters. This indicates that spatial
functions and attributes such as object shape rely on a modality-
independent mechanism, and that multiple sensory modalities
are capable of supporting spatial computations. Furthermore,

our results have important implications for research on virtual
simulated sensorial perception, as well as for neural plasticity and
visual rehabilitation, and highlight the merit of restoring visual
functions through SSDs.
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