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Background: fMRI data is inherently high-dimensional and difficult to visualize. A recent
trend has been to find spaces of lower dimensionality where functional brain networks
can be projected onto manifolds as individual data points, leading to new ways to
analyze and interpret the data. Here, we investigate the potential of two powerful
non-linear manifold learning techniques for functional brain networks representation:
(1) T-stochastic neighbor embedding (t-SNE) and (2) Uniform Manifold Approximation
Projection (UMAP) a recent breakthrough in manifold learning.

Methods: fMRI data from the Human Connectome Project (HCP) and an independent
study of aging were used to generate functional brain networks. We used fMRI data
collected during resting state data and during a working memory task. The relative
performance of t-SNE and UMAP were investigated by projecting the networks from
each study onto 2D manifolds. The levels of discrimination between different tasks and
the preservation of the topology were evaluated using different metrics.

Results: Both methods effectively discriminated the resting state from the memory task
in the embedding space. UMAP discriminated with a higher classification accuracy.
However, t-SNE appeared to better preserve the topology of the high-dimensional
space. When networks from the HCP and aging studies were combined, the resting
state and memory networks in general aligned correctly.

Discussion: Our results suggest that UMAP, a more recent development in manifold
learning, is an excellent tool to visualize functional brain networks. Despite dramatic
differences in data collection and protocols, networks from different studies aligned
correctly in the embedding space.

Keywords: brain networks, UMAP, t-SNE, manifold learning, machine learning

IMPACT STATEMENT

We investigate the potential of two powerful non-linear manifold learning techniques for functional
brain network representation: t-SNE and UMAP. While t-SNE has received attention by the fMRI
community for some time, UMAP is a much more recent development. Here, we investigate the
potential of these two techniques when embedding fMRI brain network data from different studies
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into a common 2D space despite differences in acquisition
protocols. These techniques are actively being used in the field
and we expect our study will provide useful information to the
neuroimaging community regarding their use.

INTRODUCTION

For the past 30 years, the generation, analysis, representation,
and, especially, interpretation of fMRI data has been challenging.
With the advent of using fMRI to determine brain connectivity,
this challenge has just magnified. fMRI data is inherently
high-dimensional and difficult to visualize. As such, a recent
trend in the neuroimaging community has been to find spaces
of lower dimensionality where the fMRI data corresponding
to multiple individuals can be projected onto manifolds as
data points, thereby facilitating the identification of patterns
within a given group of individuals and allowing new ways
to analyze and interpret the data. Reducing the dimensionality
of the data is critical for many applications as it allows
avoiding redundancy, compact visualization and finding latent
features in the data. Here, we investigate the potential
of two powerful non-linear manifold learning techniques
for functional brain networks representation. These two
techniques are: (1) T-stochastic neighbor embedding (t-SNE)
introduced by Van Maaten and Histon (2008) and (2)
Uniform Manifold Approximation Projection (UMAP), a recent
breakthrough in manifold learning developed by McInnes et al.
(2018). We were specifically interested in their capabilities
to represent functional brain networks from one group or
study based on the learned low-dimensional mapping from a
different dataset.

T-stochastic neighbor embedding has become popular in
omics where it has been applied, for example, to single cell
transcriptomics (Kobak and Berens, 2019), a field booming with
developments in manifold learning. Recently, several groups
have begun applying t-SNE to analyze neuroimaging data. Our
group investigated the value of embedding brain fMRI dynamic
networks in a low dimensional manifold using t-SNE (Bahrami
et al., 2019). We were able to show that these low dimensional
manifolds contain meaningful information, as they were able
to successfully discriminate between cognitive tasks and study
populations. Hu et al. (2020) used t-SNE to create an optimized
framework that combines automatic spectral clustering with
dimensionality reduction for fine-grained functional parcellation
of resting-state fMRI (rs-fMRI) of the human brain. Saggar et al.,
used topological data analysis (Carlsson, 2009) combined with
t-SNE to reveal the overall organization of whole-brain activity
maps at a single-participant level without arbitrarily collapsing
the data (Saggar et al., 2018). Using existing multitask fMRI
datasets, their approach tracks both within- and between-task
transitions at a fast time scale. They reported that individual
differences in the revealed dynamical organization predicted task
performance. Panta et al. (2016) have proposed t-SNE as a tool
for visualization and quality control of structural and functional
MRI as well. Tseng and Poppenk introduced a method based on
independent component analysis and t-SNE to identify breaks

between stable periods of brain network configuration or meta-
state transitions at a single-TR timescale and using rs-fMRI data
from single participants (Tseng and Poppenk, 2020). UMAP
is a newer manifold learning technique for visualization, and
this dimension reduction algorithm has been less applied to
neuroimaging data to date. UMAP has been previously used
by Gomez et al. (2020) to characterize temporally independent
functional modes, which are functional brain networks identified
based on their temporal independence.

The main goal of this work is to evaluate the potential of these
manifold learning techniques to embed functional brain network
data generated in different studies into a common 2D space.
Another objective of this work is to gain some understanding
about the differences between UMAP and t-SNE when used to
visualize and interpret functional brain networks in 2D space.
UMAP is an approach to deal with high-dimensional data that
is based on topological principles. It is becoming increasingly
popular in bioinformatics and machine learning communities
since several studies (Becht et al., 2018; McInnes et al., 2018) have
suggested it scales better to high dimensional problems (in terms
of sample size and number of variables) and produces more stable
results than the more widely used t-SNE, which has been the
state of the art for high-dimensional data visualization for several
years (Van Maaten and Histon, 2008; Kobak and Berens, 2019).
In addition, t-SNE was not designed for dimension reduction but
rather for visualization purposes, with it being unclear its value
for dimension reduction beyond 3D. While both methods aim
to preserve local structure present in the high-dimensional data,
UMAP developers have claimed that UMAP better preserves
global structure (Becht et al., 2018). However, it seems that there
is no agreement about the superiority of UMAP over t-SNE in the
field of transcriptomics (Kobak and Berens, 2019).

Importantly, our investigation will focus on the representation
of brain networks generated in different studies with different
data acquisition protocols, scanners, and populations. This is
an initial step in evaluating the potential of these techniques to
markedly improve visualization, potentially contribute to quality
control, and ultimately lead to new interpretations of brain
functional networks.

MATERIALS AND METHODS

Participants
The current study used two different datasets to demonstrate
the ability to combine data across studies using low-dimensional
manifold methods. Data from the Human Connectome Project
(Van Essen et al., 2013) (HCP) were used in the manifold
learning step. These data are publically available and can be used
without subject’s consent. A separate data set from a prior study
examining aging and alcohol consumption performed in our
laboratory (Moussa et al., 2015; Mayhugh et al., 2016) was used
for an independent test embedding. These data were collected
using procedures approved by the Institutional Review Board at
Wake Forest School of Medicine. All participants gave written
informed consent prior to participating in the research protocol.
Both studies had fMRI data from resting-state and from a 2-back
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working memory task, though there were notable differences in
the MRI sequences (described below) and the task designs.

Data Examples for Working Memory vs.
Resting State Connectivity Study
Example Data 1: Human Connectome Project S1200
Database
The HCP data released to date include 1,200 individuals. Of
those, 1,113 (606 females; 283 minority) have complete MRI
images, cognitive testing, and detailed demographic information
(see Table 1). The current project used the minimally processed
fMRI data provided by the HCP (Glasser et al., 2013) for resting
state and working memory. The 830 subjects used are what
remained after quality control assessment of head motion and
global signal changes for both scan types. The HCP performed
extensive testing and development to ensure comparable imaging
across sites (Van Essen et al., 2012). The BOLD-weighted images
were collected using the following parameters: TR = 720 ms,
TE = 33.1 ms, voxel size 2 mm × 2 mm × 2 mm, 72
slices, 1,200 volumes.

Example Data 2: Wake Forest School of Medicine
Aging and Alcohol Consumption Database
Data in this study was collected as part of a prior study examining
the effect of the interaction between age and alcohol consumption
on brain networks (Moussa et al., 2015; Mayhugh et al., 2016)
in community dwelling participants. The dataset is comprised of
forty-one older adults [65–80 years old, sex (M/F) = 22/19] and
twenty-two younger adults [24–35 years old, sex (M/F) = 10/12]
who consumed alcohol across a range of consumption levels.

All participants had brain imaging completed on a 3T Siemens
Skyra scanner in a single visit. T1-weighted structural data were
acquired in the sagittal plane using a single-shot 3D MPRAGE
GRAPPA2 sequence (resolution = 0.98 × 0.98 × 1.0 mm,
acquisition time: 5 min and 30 s, TR = 2.3s, TE = 2.99 ms,
192 slices). Resting-state as well as 1-back and 2-back working
memory fMRI data (resolution = 3.75 × 3.75 × 5.0 mm) were
acquired for each participant using BOLD-contrast images in an
echo-planar imaging sequence (acquisition time = 6 min and
20 s, TR = 2.0s, TE = 25ms, flip angle = 75o, volumes = 187,
slices per volume = 35). The resting-state and 2-back working
memory scans are used in the current study to compare with the
resting-sate and 2-back data from the HCP.

Description of the Tasks Performed During fMRI Data
Acquisition
Participants in the HCP completed two resting-state scans and
two working memory scans. The two scans were collected with
different phase encoding (right to left vs. left to right). The
resting-state scans were collected back-to-back while participants
quietly viewed a fixation point. The 2-back task was a block
design that interleaved the 2-back condition with a 0-back
condition and a rest period. The working memory task utilized
photos, and different blocks had different photo types (faces,
body parts, houses, and tools). Participants were alerted prior
to each block to indicate the task type. For the 2-back they
were instructed to respond anytime the current stimulus being
presented matched the stimulus two trials back. The aging study
collected a single resting-state scan while participants quietly
viewed a fixation cross. For the 2-back task, white letters were

TABLE 1 | Basic demographic characteristics of both cohorts.

HCP 830 Aging younger Aging older Aging combined

Total subjects 830 22 41 63

Sex

Male 385 (46.4%) 10 (45.5%) 22 (53.7%) 32 (50.8%)

Female 445 (53.6%) 12 (54.5%) 19 (46.3%) 31 (49.2%)

Avg Std Avg Std Avg Std Avg Stdv

Age 28.7 3.7 27.3 3.3 70.8 3.6 55.6 21.0

Education 15.0 1.7 19.2 2.2 16.4 2.5 17.4 2.8

Working memory performance (%) 87.4 9.8 96.3 3.8 78.3 23.2 84.6 20.7

Race Total Total Total Total

Am. Indian/Alaskan Nat. 2 0 0 0

Asian/Nat. Hawaiian/Othr Pacific Is. 53 3 0 3

Black or African Am. 97 1 2 3

White 637 16 38 54

More than one 23 0 1 1

Unknown or not reported 18 2 0 2

Ethnicity Total Total Total Total

Hispanic/Latino 77 2 0 2

Not Hispanic/Latino 742 20 41 61

Unknown or not reported 11 0 0 0
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sequentially presented on a black background. Participants were
asked to respond with either a right (yes) or left (no) finger
press to indicate if the letter they were currently viewing was the
same letter that was presented two letters before. The task was
presented in continuous fashion with no alternating blocks.

Structural and Functional MRI
Processing
Human Connectome Project S1200 Database
The HCP data is currently available in multiple stages of
processing. Data run through the Minimally Processed pipeline
(Glasser et al., 2013) were used. In addition, the data were motion
corrected using ICA-AROMA (Pruim et al., 2015), a method that
automatically and robustly classifies the output of MELODIC, the
first 14 volumes were removed from each scan, and band-pass
filtering (0.009–0.08 Hz) was applied to remove physiological
noise and low-frequency drift.

The block design of the working memory task required some
additional processing before networks could be generated specific
to the 2-back condition. The block design was modeled in SPM12
using the Specify 1st-Level tool, providing regressors for 0-back
and rest blocks along with the cues for uses in the final regression
analysis. The modeling of these elements of the block design
allowed us to remove any persisting unwanted signals that bleed
into the 2-back blocks. Considering each scan was collected twice
with opposite phase encoding, the two scans were concatenated
and accounted for with the inclusion of a scan-specific regressor.
Additional regressors included the average gray matter (GM),
white matter (WM), and cerebrospinal fluid (CSF) signals along
with the realignment parameters All regressors were used in a
single regression analysis and the residual signal aligned with
the 2-back blocks were then extracted and concatenated into
a single time series. To ensure that any differences observed
between the rest and task scans were not due to the extraction
and concatenation of the individual 2-back blocks, the exact same
time points (from the beginning of the series) that were used for
the 2-back scan were extracted from the resting state scans and
concatenated. This process resulted in 268 functional volumes to
be used for generated functional brain networks described below.

Wake Forest School of Medicine Aging and Alcohol
Consumption Study
Standard image preprocessing was conducted using SPM121.
Structural images were segmented into six tissue probability
maps: GM, WM, CSF, bone, soft tissue, and air/background. GM
and WM maps were combined to create a brain tissue map. This
image was warped using Advanced Normalization Tools (ANTs)
(Avants et al., 2011) to Colin space2 to match the Shen atlas
(Shen et al., 2013). The inverse transform produced by ANTs
was applied to the atlas in order to put the atlas into the native
space of each subject. Structural images were then co-registered
to each functional image. Resulting transforms were applied
to segmentation maps as well as the native space atlas. Other
preprocessing of the functional data included: discarding the first

1www.fil.ion.ucl.ac.uk/spm/
2http://www.bic.mni.mcgill.ca/ServicesAtlases/Colin27

10 volumes to ensure that fMRI signals had achieved equilibrium,
slice time correction, realignment to the first volume, band-pass
filtering [0.009–0.08 Hz (Power et al., 2012; Yamashita et al.,
2018)], and regressing six rigid-body transformation parameters
that were generated during the alignment process along with
average brain tissue signals (GM, WM, and CSF). Functional data
were motion corrected using ICA-AROMA (Pruim et al., 2015).
Because the 2-back task was collected in continuous fashion with
no alternating blocks, the time-series clipping and concatenation
procedures used for the HCP data were not necessary.

Functional Network Generation
Although acquisition and preprocessing differed between the
HCP and Aging studies, network generation was the same for
both datasets. After preprocessing, the brain was parcellated into
268 regions as defined in the Shen Atlas (Shen et al., 2013) by
averaging the BOLD signal from all voxels within each region for
each participant. A functional network was constructed for each
participant by computing the Pearson (full) correlation between
the resultant time series for each region pair. All subsequent
analyses used fully connected weighted networks, comprising
both positive and negative connections.

T-Stochastic Neighbor Embedding
T-stochastic neighbor embedding is a non-linear machine
learning algorithm developed for visualization of high-
dimensional data. It is an unsupervised algorithm that projects
high-dimensional data into a lower space in two main steps.
First, a probability distribution over high-dimensional pairs
points is constructed such that similar (high-dimensional)
points get higher probabilities. Then, a t-Student probability
distribution over low-dimensional data is constructed, and the
Kullback-Leibler divergence between the two distributions is
minimized to obtain the final low-dimensional points locations
after sufficient number of optimization iterations.

We used an extended version of t-SNE called Fit-SNE
(Linderman et al., 2019) that is much faster than the original
algorithm. We based our implementation on the examples
provided on the software’s website3. The initialization was set to
the PCA of the training data with 50 components, but the original
data was passed to fast_tsne to be embedded. The learning rate
was set to the number of subjects divided by 12. Two values
were provided for perplexity as a list, 30 and the number of
subjects divided by 100.

Uniform Manifold Approximation Projection
We also used UMAP, a recent breakthrough in the field of
manifold learning, to embed the functional brain networks
onto a low dimensional manifold. A detailed description of
UMAP and the underlying theory have previously been presented
(McInnes et al., 2018). Here, we will briefly describe general
technical details of the algorithm and main parameters. The two
main assumptions behind UMAP are: (1) the data is uniformly
distributed and (2) there is local connectivity. While in practice
data rarely behave uniformly, it is possible based on properties

3https://github.com/KlugerLab/FIt-SNE/
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of topological spaces to find metrics and representations that
approximately meet this assumption. Local connectivity implies
that no point is isolated. Overall UMAP generates: (1) a manifold
approximating the data in the high-dimensional space by creating
and patching local fuzzy simplicial sets (Spivak, 2012) into a
topological representation of the data; (2) a similar representation
in the low dimensional manifold onto which the data is to be
embedded and (3) an optimized layout of the data representation
in the low dimensional space by minimizing the cross-entropy
between the two topological representations.

Uniform manifold approximation projection has several
essential hyper-parameters: (1) the dimension (d) of the low
dimensional manifold where the data will be embedded; for
visualization d = 2–3 but for dimension reduction larger values
can be selected; (2) a metric or distance in the high-dimensional
space (e.g., Euclidean and Minkowski, etc); (3) the number
of neighbors (k) to use when constructing the topological
approximations of the data; and (4) the minimum distance
(min_dist) which is the desired separation between close points
in the embedding space.

In our study we used the latest available version of UMAP (0.4)
on a computer running Red Hat 7.6 with Python 3.7 installed.
The parameters used in this work to create UMAP embeddings
were as follows: number of neighbors = 15, min_dist = 0.0, d = 2,
random state = 42, and transform seed = 42. We set the repulsion
strength (gamma) to 0.45 for the transformation of new data to
the UMAP defined space. Any parameters not listed were kept at
their default values.

Extensions of UMAP and t-SNE have been developed to
allow the extension of new data onto an already existing low
dimensional embedding. For UMAP the new data point is
positioned using a weighted average position of the k-nearest
neighbors of the training data embedding (McInnes et al., 2018).
The same optimization step previously used to embed the
training data is applied to the new data point but keeping fixed
the data points corresponding to the training embedding which
optimizes the position of the new point with respect to them. To
guarantee reproducibility of results, the random state in the call
to UMAP function and the random seed in the transformation
were set to the same values. For t-SNE we used a procedure
described in Kobak and Berens (2019) which for each new data
point the k-nearest neighbors among the training networks in the
high-dimensional space are selected, using Pearson correlation as
distance. Then in the 2D map a new data point is positioned at
the median location of the corresponding k reference networks
as embedded by t-SNE during training.

Mapping Brain Networks to Two Dimensional Space
Figure 1 illustrates how the networks are provided as input to
t-SNE and UMAP. The matrices containing the edge information
(correlations) from all individuals in each group are vectorized
and stacked in a matrix where each row corresponds to a network
from a specific individual and each column correspond to edges
between two brain regions across individuals. This matrix is
directly input to UMAP algorithms and t-SNE. To investigate the
performance of both approaches embedding brain networks into
2D space, we designed 4 different experiments based on data from

both studies (HCP and aging study). We embedded resting state
and memory task networks from: (1) 830 subjects available in the
HCP project; (2) 63 subjects available in the aging study; (3) all
subjects in both studies combined. Finally, in (4) we transformed
the networks from the aging dataset into previously existing
embeddings of the HCP networks. These transformations were
accomplished using extensions that have been developed for
UMAP and fit-SNE.

To characterize the performance of both algorithms we
used two metrics previously used in transcriptomics data
analysis (Kobak and Berens, 2019): (1) KNN - the fraction of
k-nearest neighbors in the original high-dimensional data that
are preserved as k-nearest neighbors in the embedding and
(2) CPD - Spearman correlation between pairwise distances in
the high-dimensional space and in the embedding. In addition,
we used Random Forests for classification (Breiman, 2001) to
quantify the discrimination of the representation of the two types
of brain networks in the low dimensional space. We used the
implementation available in the randomForestSRC R package
(Ishwaran and Kogalur, 2014).

RESULTS AND DISCUSSION

Table 1 presents the basic demographic characteristics of both
cohorts. The HCP participants overall were much younger
and scored higher in the memory task test compared to the
Aging study. The HCP cohort had a larger proportion of
females and in both studies White participants were a majority.
UMAP and t-SNE performance, in the four situations described
above, is illustrated in Figures 2–5 where the low dimensional
representation of the resting state and 2-back brain networks are
presented. In Figure 2A, UMAP’s embedding of the resting state
and 2-back networks corresponding to 830 HCP participants is
shown. In panel B the corresponding representation generated by
fit-SNE is presented. Both approaches generated low dimensional
representations where the two different types of networks could
be discriminated with high levels of accuracy (99.8 and 98.6%,
respectively). Figure 3 presents similar results for the Aging
study data. Although the accuracy of discrimination achieved
by Random Forests is not as high as for the HCP dataset, it is
still high (88.1 and 87.3%, respectively). It is possible that this
is due to the much smaller sample size and more heterogeneous
nature of the aging study dataset. Finally, Figures 4, 5 present
the performance of UMAP and fit-SNE when embedding the
combined datasets and when projecting the Aging study dataset
onto the already existing embedding of the HCP dataset. In both
cases the accuracy of discrimination was very high, indicating
that the type of brain networks of both studies aligned most of
the time correctly in the low dimensional manifold. Overall both
approaches were able in all situations to identify two large clusters
of brain networks derived from resting state and memory task
data. The KNN and CPD metrics showed that t-SNE more often
tended to preserve the neighbors and relative distances in the
high-dimensional space after their extension onto the 2D space.
It is important to only compare within rows the table between
methods due to differences in dataset sizes that can influence
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FIGURE 1 | (A) The edge information of individual networks is vectorized and stacked in a matrix which is provided as input to UMAP for low dimensional
representation. (B) For the Fit-SNE version of t-SNE, dimension reduction using principal components analysis (PCA) is applied to the vectorized, stacked matrix
during the initial embedding. Subsequently, the embedding is performed directly on the vectorized, stacked matrix.

these metrics (see Table 2). However, UMAP clearly generated
low dimensional representations with higher discrimination of
the types of brain networks (see Table 3) evaluated using a
machine learning classifier. We confirmed here that the use of
PCA initialization by t-SNE and spectral embedding by UMAP
make both approaches less dependent of random seeds increasing
the reproducibility of the results. We repeated the experiment
corresponding to the first entry of Table 2 using 20 different
random seeds observing very small variability of the results.

In this work we have used a recent breakthrough in
manifold learning, UMAP, to represent functional brain networks
generated by two different studies independently and combined
in a common low dimensional space. We also tested t-SNE, a
manifold learning technique, considered to be for several years

the state the art in the field. While t-SNE has been used more
often to visualize and investigate neuroimaging data including
fMRI, UMAP’s capabilities to deal with fMRI high-dimensional
data are less known. To the best of our knowledge this work is one
of the first instances where UMAP’s potential to represent and
visualize functional brain networks in a low dimensional space
has been tested.

Our work demonstrates the feasibility of projecting networks
generated by different studies in a common low dimensional
space. We have used a well-known and publicly available to
the neuroimaging community dataset, the Human Connectome
Project and a study developed in our lab (both independently
and combined), to derive and project functional brain networks
into a two dimensional space. This resulted in an excellent
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FIGURE 2 | (A) UMAP’s embedding of the resting state and 2-back networks corresponding to 830 HCP participants is shown. (B) The corresponding
representation generated by fit-SNE is presented.

FIGURE 3 | (A) UMAP’s embedding of the resting state and 2-back networks corresponding to 63 participants of the aging study is shown. (B) The corresponding
representation generated by fit-SNE is presented.

FIGURE 4 | (A) UMAP’s embedding of the resting state and 2-back networks from both studies combined is shown. (B) The corresponding representation
generated by fit-SNE is presented.
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FIGURE 5 | (A) UMAP’s embedding of the resting state and 2-back networks from both studies is shown. In this case the brain networks from the aging dataset
were projected into the already existent embedding of HCP brain networks. (B) The corresponding representation generated by fit-SNE is presented.

TABLE 2 | Metrics evaluating the preservation of the networks topological
Relationships are presented.

UMAP T-SNE

Dataset KNN-ratio CPD Dataset KNN-ratio CPD

HCP 830 0.10 0.43 HCP 830 0.14 0.45

Aging 0.27 0.34 Aging 0.30 0.36

Combined 0.08 0.38 Combined 0.13 0.40

HCP < −Aging 0.25 0.14 HCP < −Aging 0.18 0.09

discrimination of resting state networks from 2-back networks.
This high level of performance for co-embedding data across
different studies was achieved despite dramatic differences in
the details of the 2-back task, differences in the MRI scanners
and imaging protocols, and differences in study-specific image
preprocessing steps.

This opens new possibilities for functional brain networks
visualization, dimension reduction, and possible meta-analyses
across studies. The possibility of a quick and simple visualization
of such complex datasets as fMRI brain networks in 2 or 3
dimensions has the potential to allow identification of structure
or particular features like outliers within the data. Quality control
is an another area of potential application. We observed that
networks corresponding to some individuals fell into the wrong
cluster. While here we were not able to determine abnormalities
in these specific datasets collected in the past, this could be useful
for networks generated in the future. A tool like this could be
part of the quality control process. New datasets can be run
through it, and falling into the wrong cluster could be a red flag
signaling possible data quality problems. These could be checked
via the repetition of the scan or through thorough examination
of the fMRI data and its processing. Other possibilities could
be the discovery of specific individuals whose networks are
really different from the population being compared or the
detection of wrong settings of the transformations parameters.
These are topics that are beyond the scope of this project but
deserve more research.

TABLE 3 | Results of classification of the brain networks in the embedding space
using RF are presented.

UMAP Fit-SNE

Dataset Acc (%) Sens. (%) Spec. (%) Acc (%) Sens. (%) Spec. (%)

HCP 830 99.8 99.8 99.9 98.6 98.4 98.7

Aging 88.1 88.9 87.5 87.3 93.7 81.0

HCP830 + Aging 98.9 98.8 99.1 97.7 98.2 97.2

HCP830 < −Aging 99.9 98.9 99.1 97.3 96.1 98.4

There seem to be polemical views in the field of
transcriptomics about which method (UMAP or t-SNE) is
better (Becht et al., 2018; Kobak and Berens, 2019). While
McInnes et al. (2018) have claimed the superiority of UMAP
preserving global structure existent in the ambient space, Kobak
and Berens (2019) have presented computational experiments
suggesting that when using a proper initialization in the low
dimensional manifold both approaches perform similarly
preserving global structure. Overall this comparison is complex
and very difficult to do fairly since both approaches have multiple
parameters than can be tuned, and perhaps this also could
depend on the nature of the data in each specific problem.
It was not our goal to perform an exhaustive comparison of
the two approaches but rather to explore the feasibility of
transforming brain networks data from different studies into
a common 2D space. Our results clearly suggest that UMAP, a
more recent technique, is an effective data reduction method for
neuroimaging studies. However, our 2D analyses did not show it
to be superior to t-SNE. All our statements about performance of
both approaches are based on the specific settings of parameters
we selected and do not represent a rigorous comparison. It is
important to note that UMAP is designed to be a dimension
reduction technique to any dimension while t-SNE usually is
used in 2D-3D settings.

An important takeaway from our work is the effectiveness of
methods based on data topology to deal with high- dimensional
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data and specifically in this case functional brain networks
(> 30K variables or edges). Previously some groups have used
data topology principles to analyze fMRI data such as the Mapper
algorithm and persistent homology (Carlsson, 2009; Saggar et al.,
2018; Chung et al., 2019; Geniesse et al., 2019). These are
topological data analysis tools used for analyzing point cloud data
that show great promise. Since these techniques are relatively
new to the neuroimaging community, we expect this study and
our experiences reported here will be helpful to brain imaging
researchers interested in data reduction and high-dimensional
data visualization and analysis.

This work is not without limitations. We did not perform a
more exhaustive comparison of the impact of hyperparameters
setting on the 2D representations. Our analyses were based on
the metrics provided by the software packages. Our experiments
were limited to two types of networks resting state and a
memory task that were present in both of the studies that we
used. While this limits the generalizability of this work, it is
our anticipation that this method will be used more widely
to compare a wide range of tasks. Also it should be kept
in mind that in general fully representing the complexity of
high-dimensional spaces in two or three dimensions is not
possible. For example, in a 15 dimensional space there could
be found 16 equidistant points that are not possible to translate
to 2D or 3D spaces (Van Maaten and Histon, 2008). Also
the curse of dimensionality first reported by Richard Bellman
(Bellman, 1961) is associated with non-intuitive properties of
high-dimensional spaces (Hastie et al., 2001; Cherkassky and
Mulier, 2007) which constitute a challenge when translating high-
dimensional data to 2D or 3D spaces. More research is needed
to determine the utility of the data generated by UMAP and
fit-SNE. The metrics or distances that are used by UMAP and fit-
SNE are suboptimal and do not take into account the networks
structure and topology. Finding metrics based Riemannian or
topological distances (Chung et al., 2017; Venkatesh et al.,
2020) between networks or is a promising area for future
research

Further research is also needed to apply these methods to
dynamic brain networks due to differential within and between
subject variability. Finally, there is a clear difference between
manifold learning techniques (that can reduce data to an arbitrary
dimension) and those specifically intended for visualization in
2D or 3D such as t-SNE (and UMAP most popular usage).
Visualization is a useful tool that can uncover complex high-
dimensional structure and can accelerate data exploration,
bringing benefits to the neuroimaging community to make new
scientific discoveries. However, these tools should be used with
caution. Information is usually lost when transforming the data
into 2D which could lead to misleading analyses or conclusions
especially if the hyperparameters are not properly tuned.

CONCLUSION

We have investigated the performance of two high-dimensional
data visualization techniques (t-SNE and UMAP) considered to
be the state of the art in the field of manifold learning when
transforming brain functional networks into 2D spaces. We have
found that they are able to efficiently detect structure in the
network data derived from fMRI collected in the resting-state
and during working memory tasks. This was possible even when
the data from two studies were combined, despite dramatic
differences in nearly every aspect of the data including but not
limited to the MRI scanners, imaging and task protocols, study
populations/demographic differences, and study-specific image
preprocessing steps. Finally, we demonstrated that learning
the manifold with one dataset allowed the embedding of a
novel dataset without requiring modification of the learned
parameters. This may be useful for meta-analyses and for future
work that uses embedding of individual brain networks for
clinical applications such as diagnoses or classification of specific
brain conditions.
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