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Abstract: Objective: This study investigated the relationships between PM2.5 and 5 criteria air
pollutants (SO2, NO2, PM10, CO, and O3) in Heilongjiang, China, from 2015 to 2018 using global
and geographically and temporally weighted regression models. Methods: Ordinary least squares
regression (OLS), linear mixed models (LMM), geographically weighted regression (GWR), temporally
weighted regression (TWR), and geographically and temporally weighted regression (GTWR) were
applied to model the relationships between PM2.5 and 5 air pollutants. Results: The LMM and all
GWR-based models (i.e., GWR, TWR, and GTWR) showed great advantages over OLS in terms of
higher model R2 and more desirable model residuals, especially TWR and GTWR. The GWR, LMM,
TWR, and GTWR improved the model explanation power by 3%, 5%, 12%, and 12%, respectively,
from the R2 (0.85) of OLS. TWR yielded slightly better model performance than GTWR and reduced
the root mean squared errors (RMSE) and mean absolute error (MAE) of the model residuals by 67%
compared with OLS; while GWR only reduced RMSE and MAE by 15% against OLS. LMM performed
slightly better than GWR by accounting for both temporal autocorrelation between observations
over time and spatial heterogeneity across the 13 cities under study, which provided an alternative
for modeling PM2.5. Conclusions: The traditional OLS and GWR are inadequate for describing the
non-stationarity of PM2.5. The temporal dependence was more important and significant than spatial
heterogeneity in our data. Our study provided evidence of spatial–temporal heterogeneity and
possible solutions for modeling the relationships between PM2.5 and 5 criteria air pollutants for
Heilongjiang province, China.
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1. Introduction

Air pollutants can be emitted from anthropogenic and natural sources and may be either emitted
directly (primary pollutants) or formed in the atmosphere (as secondary pollutants) [1]. They may be
transported or formed over long distances and have influences on human health, ecosystems, the built
environment, and climate in large areas. It has been confirmed by extensive epidemiological studies
that air pollution is closely associated with increased risks of mortality or morbidity for cardiovascular
and respiratory diseases [2–5]. It was reported that air pollution ranked the 7th killer to the global
public health and contributed to 3.2 million and 4.2 million premature deaths Worldwide in 2010 and
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2016, respectively [6,7]. The European Environment Agency estimates that about 30% of Europe’s
urban population is still exposed to air pollution concentrations exceeding the European Union air
quality standards [1,8]. With the rapid urbanization and industrialization, China has experienced a
serious challenge of preventing and controlling air pollution as well. About 1.2 million premature
deaths in 2010 and 25 million disability-adjusted life-years annually in China resulted from ambient
or outdoor air pollutions [9]. Ambient particulate matter pollution has become the 4th killer to the
health of Chinese people in 2010, after dietary risk, high blood pressure, and smoking [6]. It is of great
importance to prevent and control air pollution for constructing ecological civilization in China.

In 2012, the Chinese Ministry of Environmental Protection (MEP) released the revised Ambient
Air Quality Standards and defined the 6 criteria air pollutants including the particular matter with
aerodynamic diameter of 10 µm or less (PM10), the particular matter with aerodynamic diameter of
2.5 µm or less (PM2.5), ozone (O3), nitrogen dioxide (NO2), and sulfur dioxide (SO2), and carbon
monoxide (CO) [10]. To mitigate the conflicts between air pollution and public health, the Chinese
State Council issued the Air Pollution Prevention and Control Action Plan (APPCAP) in September
2013 and proposed a goal of reducing PM2.5 by 10% in major cities by the end of 2017 compared to
2012 levels [11]. The Plan was a milestone of air pollution prevention and control efforts in China
and considered the most stringent air pollution control policy in China to date [12]. Although the
improvements to air quality in most cities in recent years, decreasing PM2.5 in the Northern Plain
of China is still a tough challenge and requires strong transregional collaboration [13]. Most studies
focused on the levels of air pollution in the Beijing-Tianjin-Hebei region, the Yangtze River Delta,
and the Pearl River Delta, which are the most developed regions in China in terms of a high level of
per capita GDP and high population density (e.g., [14–18]). There is no adequate attention paid to
the air pollution problems in northern China compared to above-developed regions, especially in the
Heilongjiang Province.

To clarify the pollution level, characteristics, and main sources of particulate matter,
the Heilongjiang government began to investigate the sources of atmospheric particulate matter
within the province in 2013 [19]. It found that the main pollutants in the cities of Heilongjiang Province
were inhalable particulate matter (PM10) and fine particulate matter (PM2.5). In particular, the increase
in coal-fired emissions during the heating season (late October, November, December, January, February,
and March) significantly increased the concentration of PM2.5. The local sources of PM10 and PM2.5

in Heilongjiang Province are mainly from coal-fired, followed by motor vehicle exhaust and dust.
The contributions of different sources have certain seasonal variations [19]. Although the sources of air
pollutants were explored, the spatial and temporal variation characteristics of different air pollutants
in Heilongjiang Province were barely investigated.

Space and time are significant determinants of PM2.5. Similar to Tobler’s (1970) first law of
geography that is “everything is related to everything else, but near things are more related than distant
things” [20], many geographic processes (such as air pollution) followed similar rules in the temporal
domain. Over the last two decades, researchers developed various statistical models to deal with
spatial and/or temporal heterogeneities. Geographically weighted regression (GWR) was designed
to extend the traditional global model fitted by ordinary least squares (OLS) and could effectively
deal with spatial heterogeneity and autocorrelation in model errors [21–23]. GWR belongs to local
modeling techniques and fits a regression model at each geographic location based on the neighbors
within a specific bandwidth and distance-dependent weight function. In recent years, researchers have
extended GWR to a temporal dimension for spatiotemporal modeling, which is called geographically
and temporally weighted regression (GTWR) [24,25]. GTWR deals with both spatial and temporal
nonstationarities simultaneously by constructing a weight matrix based on spatiotemporal distance.
GTWR greatly expands the boundary of local modeling techniques, and has been applied in various
fields, such as environment, economics, sociology, and so on [24,26–30]. As a special case of GTWR,
GWR ignores the temporal non-stationarity, while TWR (temporally weighted regression) ignores the
spatial non-stationarity thus that GTWR integrates GWR and TWR into one uniform framework.
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Besides GTWR, linear mixed models (LMM) can be applied to deal with both temporal
autocorrelations and spatial heterogeneity problems. LMM can account for the sources of heterogeneity
and dependence in the data by using the random-effects and model temporal autocorrelations by using
appropriate covariance matrices for the model residuals, thereby aiding in statistical inference [31].
LMM can improve model fitting and performance if a random variation is focused, particularly in the
studies of ecological heterogeneity or the heritability of discrete characters [32]. However, LMM is
not widely applied for air pollution data but particularly suitable to this study because it can deal
with air pollutants as the fixed-effects and cities (spatial) as the random-effects within longitudinal
observations (temporal). Therefore, LMM is an appropriate alternative to model PM2.5 in this study.

Given the need for a better understanding of spatial–temporal heterogeneity between the
criteria air pollutants in Heilongjiang Province, spatial–temporal statistical techniques present an
important tool to quantitatively describe the amount of air pollution at particular locations at
specific times. The objective of this study was to model PM2.5 with the 5 criteria air pollutants
(SO2, NO2, PM10, CO, and O3) in Heilongjiang Province, China, from 2015 to 2018 using global and
geographically and temporally weighted regression models. Specifically, this study implemented
5 models, including ordinary least square regression (OLS) that was applied as the benchmark
for model comparisons, linear mixed model (LMM) that considered different cities (or regions)
as the random-effects and repeated measurements over time, traditional geographically weighted
regression (GWR), temporally weighted regression (TWR), and geographically and temporally weighted
regression (GTWR). The goodness-of-fit, prediction accuracy, uncertainty accuracy of models, and model
residuals were evaluated and compared based on corrected Akaike’s information criterion (AICc),
adjusted coefficient of determination (R2

a), and root mean squared errors (RMSE), mean absolute error
(MAE), normal (Z) scores, and Moran’s I of the model residuals. Understanding the spatial and
temporal heterogeneity of various air pollutants can assist in the PM2.5 prediction and air pollutants
control management in the future.

2. Materials and Methods

2.1. Study Area and Data

Heilongjiang Province is located in the Northeast of China between 43◦26′N and 53◦33′N Latitude,
and 121◦11′ E and 135◦05′ E Longitude. It has 13 prefecture-level administrative regions, including
12 prefecture-level cities (i.e., Harbin, Qiqiha’er, Mudanjiang, Jiamusi, Daqing, Jixi, Shuangyashan,
Yichun, Qitaihe, Hegang, Suihua, and Heihe) and 1 region (Da Xing’an Mountain) with a total area
of 473,000 km2 (Figure 1). Generally, the terrain of Heilongjiang is high in the northwest, north, and
southeast, low in the northeast and southwest, and is mainly composed of mountains, terraces, plains,
and water. The elevations of mountains, terraces and plains are between 300 and 1000 m (accounting
for 58% of the total area), between 200 and 350 m (14%), and between 50 and 200 m (28%), respectively.
Heilongjiang Province belongs to the continental monsoon climate of cold temperate and temperate
zone with a short frost-free period and has large regional differences in climate. The main characteristics
are low-temperature and drought in spring, warm and rainy in summer, dry and early-frost in autumn,
and long cold in winter. The precipitation is abundantly affected by the southeast monsoon in summer
and insufficient controlled by the dry and cold northwest wind in winter, which presents obvious
monsoon characteristics.

In this study, 6 criteria air pollutants, including SO2, NO2, PM10, CO, O3, and PM2.5, were obtained
from the Environmental Monitoring Station of Heilongjiang Province and had already aggregated
into the 12 prefecture-level cities and 1 region based on the 56 environmental monitoring sites in
Heilongjiang Province. All the pollutants were recorded by µg/m3, except CO (mg/m3). The daily
records of the criteria air pollutants were aggregated into weekly measurements of the 13 cities (region)
of Heilongjiang Province from 2015 to 2018 (i.e., 210 weeks per city or region, and 2730 records in total).
The descriptive statistics of the 6 air pollutants are summarized in Table 1.
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Figure 1. The geographical location of the study area: Heilongjiang Province, P.R. China (including
the Da Xing’an Mountain). Note: Jiagedaqi is a special residential area where the environmental
monitoring site of Da Xing’an Mountain region is located in.

Table 1. Descriptive statistics of the variables used in this study (n = 2730).

Variables Min. Q1 Mean Median Q3 Max. Std

SO2 (µg/m3) 2.00 7.57 16.48 12.00 21.29 178.00 14.17
NO2 (µg/m3) 2.86 15.43 22.95 20.29 28.29 104.43 11.12
PM10 (µg/m3) 10.71 36.00 58.67 50.21 71.57 363.86 33.69
CO (mg/m3) 0.10 0.50 0.72 0.64 0.87 3.03 0.34
O3 (µg/m3) 15.57 54.00 72.16 68.64 87.00 172.29 23.81

PM2.5 (µg/m3) 3.57 17.86 34.09 26.43 42.71 235.57 24.50

Figure 2 presents the matrix of Pearson correlation coefficients (ρ) of the 6 air pollutants. It showed
that PM2.5 was highly correlated (ρ >0.5) with PM10, NO2, CO, and SO2; whereas O3 was weakly
(−0.25 < ρ < 0) to moderately (−0.5 < ρ < −0.25) correlated with the group of PM10, NO2 and PM2.5,
and the group of SO2 and CO, respectively. Figure 3 presents the variability of the 6 criteria air
pollutants cross locations (12 prefecture-level cities and 1 region) and periods (210 weeks from 2015 to
2018). There were obvious seasonal trends for all the air pollutants in most cities (region), especially in
Harbin, Qiqiha’er, and Suihua. On the other hand, Heihe, Yichun, and Da Xing’an Mountain region
showed relatively stable trends for all pollutants, except O3 compared to other cities. It indicated both
spatial and temporal variability visually existing in Heilongjiang Province.
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Figure 2. Pearson correlation coefficients (ρ) between the 6 air pollutants under study. The diagonal 
plots are the frequency distributions of SO2, NO2, PM10, CO, O3, and PM2.5. 
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Figure 2. Pearson correlation coefficients (ρ) between the 6 air pollutants under study. The diagonal
plots are the frequency distributions of SO2, NO2, PM10, CO, O3, and PM2.5.
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2.2. Methods

2.2.1. OLS and LMM

Traditional ordinary least square (OLS) regression was used as the benchmark for model
comparisons as follows:

Yi = β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + εi (1)

where Yi is the response variable (i.e., PM2.5 in this study), where i = 1, 2, . . . , n; β0 ~ β5 are the
regression coefficients to be estimated from the data; the predictors X1 ~ X5 represent SO2, NO2, PM10,
CO, and O3, respectively; and εi is the random error term following the normal distribution with zero
mean and constant variance, i.e., N(0, σ2I), with I denoting an n × n identity matrix.

The model coefficient vector βT = [β0, β1, . . . , β5] of OLS is estimated by

β̂ =
(
XTX

)−1
XTY (2)

where the superscript T denotes the transpose of a matrix, X and Y are the vectors of predictors and
response variables, respectively. The OLS regression represents a universal or constant relationship
between predictors and response variables across the entire study area.

The traditional OLS model was not only a global model but also a fixed-effects model for the
predictors (SO2, NO2, PM10, CO, and O3), which were the only levels or factors under consideration
for the statistical inference. In contrast, the random-effects were the factors that were randomly
selected from an infinite population of the possible levels or factors and could vary if the experiment
was implemented for another time thus that the statistical inference was direct towards the entire
population of factor levels, not just those “random” levels that were incorporated into the experiment.
In this study, the 13 cities (region) were considered as the random-effects because they were one subset
of the cities in Heilongjiang Province. Thus, the linear mixed model was used to incorporate both
fixed-effects (SO2, NO2, PM10, CO, and O3) and random-effects (13 cities), as well as account for time
series observations across the 4 year periods. LMM was an extension of the linear models, and can be
expressed as:

Y = Xβ+ Zγ+ ε (3)

where Y is an n × 1 column vector of the response variable, X is an n × p matrix of the (p − 1) predictors
with the first column of 1 for estimating the intercept coefficient, n is the number of sample observations,
p is the number of fixed-effects parameters, β is an p × 1 vector of unknown fixed-effects parameters, Z is
a known n × q design matrix for the q random-effects, γ is an q × 1 vector of unknown random-effects
parameters, and ε is an n × 1 vector of the random model errors. LMM follows several assumptions:

E(γ) = 0 and Var(γ) = G
E(ε) = 0 and Var(ε) = R

Cov(γ, ε) = 0, γ, ε ∼ Normal
Var(Y) = V = ZGZ′ + R

(4)

where E(·), Var(·), and Cov(·) denote expectation, variance, and covariance, respectively; “Normal”
represents “following a normal distribution”. The variance of Y can be estimated by random-effects
design matrix Z, and covariance matrices G and R. The estimates of the fixed-effects and random-effects
parameters can be expressed by Equations (5) and (6), respectively,

β̂ =
(
X′V̂−1X

)−1
X′V̂−1Y (5)

γ̂ = ĜZ′V̂−1
(
Y −Xβ̂

)
(6)
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where Ĝ, R̂, and V̂ are the reasonable estimates of G, R, and V, respectively, from the data.

2.2.2. GWR Model and Parameter Estimation

GWR model extends the traditional ordinary least square regression from a global to local
framework [24], and can be expressed as follows:

Yi = β0(ui, vi) +

p−1∑
k=1

βk(ui, vi)Xik + εi i = 1, 2, . . . , n (7)

where Yi is the response variable, (ui, vi) denotes the coordinates of the location i in space, β0(ui,vi)
and βk(ui,vi) represent the intercept and a set of (p − 1) slope parameters at the location i, respectively.
Xik represents a set of (p − 1) predictors (k = 1, 2, . . . , p−1) at the ith location, p is the total number
of parameters to be estimated, εi is the error term of location i. Comparing to the “fixed” coefficient
estimates of the global OLS model (Equation (1)), GWR captures the spatial heterogeneity using varied
parameter estimates over space.

GWR follows Tobler’s first law of geography [20], and is calibrated using a locally weighted least
squares approach, and the estimation of parameters is obtained by the following equation:

β̂(ui, vi) =
(
XTW(ui, vi)X

)−1
XTW(ui, vi)Y (8)

where W(ui,vi) is an n × n weight matrix whose off-diagonal elements are zero and diagonal elements
denote the geographical weighting of the neighboring observations for the focal observation i as follows:

W(ui,vi)
=


wi1 0 · · · 0
0 wi2 · · · 0
...

...
. . .

...
0 0 · · · win

 (9)

It is critical to select an appropriate weight matrix for estimating the parameters of GWR. The spatial
weights can be estimated by a spatial kernel function, also called a distance-decay function. According
to whether the bandwidth is varied, the 2 basic types of spatial kernels are fixed and adaptive kernels,
which use fixed bandwidth and a fixed number of nearest neighbors within an adaptive bandwidth,
respectively [33]. The commonly used spatial kernel functions include exponential kernel function,
Gaussian kernel function, and bi-square kernel function [21]. In this study, the bi-square function was
selected because it had the best (smallest) AICc for fitting the GWR model to the data. The adaptive
kernel of bi-square function is defined as follows [34]:

wi j =


[
1−

(
di j
hi

)2
]2

, i f di j < hi

0 , otherwise
(10)

where dij is the distance between locations i and j; hi is the bandwidth used to estimate parameters
at location i. The optimal bandwidth is usually selected based on a goodness-of-fit criterion such as
cross-validation or Akaike Information Criterion (AIC) [25]. The corrected AIC (AICc) approach was
applied for the optimal bandwidth selection in this study.

2.2.3. GTWR and TWR Models

GTWR is an extension of GWR with temporal variations and incorporates both spatial and
temporal heterogeneity in the data. The spatiotemporal nonstationary in the parameter estimates is
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captured by constructing the weight matrix based on spatiotemporal distances [24,25]. The GTWR
model can be expressed as follows:

Yi = β0(ui, vi, ti) +

p−1∑
k=1

βk(ui, vi, ti)Xik + εi i = 1, 2, . . . , n (11)

The parameter βk(ui, vi, ti) should be estimated for every predictor k and every space-time location
i. The estimation of βk(ui, vi, ti) is very similar to that in GWR (Equation (8)), and can be expressed as
follows:

β̂(ui, vi, ti) =
(
XTW(ui, vi, ti)X

)−1
XTW(ui, vi, ti)Y (12)

Since GTWR considers both space and time, a spatial–temporal weight matrix is constructed based
on a spatio–temporal distance. In this study, the Euclidean spatio–temporal distance was applied and
determined as follows:

dST
ij =

√
λ
[(

ui − u j
)2
+

(
vi − v j

)2
]
+ µ

(
ti − t j

)2
(13)

where λ and µ are the scale factors in space and time metric system, respectively, which are used to
balance the different effects that measure the spatial and temporal distance; ti and tj are the observed
times at the locations i and j. In this study, an adaptive Gaussian distance–decay function was applied
to construct a weight matrix. The weight matrix was still a diagonal matrix in GTWR and the diagonal
elements are determined as follows [24]:

wi j = exp

−
(
dST

ij

)2

h2
ST

= exp

−
(
dS

ij

)2

h2
S

× exp

−
(
dT

ij

)2

h2
T

 (14)

where h2
ST is a parameter of spatio–temporal bandwidth, and h2

S = h2
ST/λ and h2

T = h2
ST/µ are

spatial and temporal bandwidth, respectively. dS
ij =

√[(
ui − u j

)2
+

(
vi − v j

)2
]

is the spatial distance,

and dT
ij =

√(
ti − t j

)2
is the temporal distance.

If no spatial variation exists in the observed data, the parameter λ would be zero (i.e., λ = 0) in
Equation (13), that leads to the temporally weighted regression. TWR only considers the temporal
variation based on the temporal distance. On the contrary, the parameter µ would be zero (i.e., µ
= 0) in Equation (13) and GTWR would reduce to the traditional GWR without considering the
temporal variation. Thus, both GWR and TWR are special cases of GTWR. All GWR-based local models
(GWR, TWR, and GTWR) were performed using R package Gwmodel [35] under R version 3.5.1 [36].

2.2.4. Model Assessment

The model goodness-of-fit was evaluated by the corrected Akaike’s information criterion
(AICc) [21], adjusted coefficient of determination (R2

a), root mean squared errors (RMSE), mean absolute
error (MAE), and Z score of the model residuals. AICc is one of the most commonly used goodness-of-fit
criteria for model comparisons and defined as Equation (15). The smaller the AICc is, the better the
model performs.

AICc = 2n loge(σ̂) + n loge(2π) + n
{

n + tr(S)
n− 2− tr(S)

}
(15)

where n is the sample size, σ̂ is the estimated standard deviation of the error term, and tr(S) denotes the
trace of hat matrix S (i.e., Ŷ = SY). The hat matrix is a function of bandwidth and defined as follows in
the GWR model:

S = X
(
XTW(ui, vi)X

)−1
XTW(ui, vi) (16)
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The coefficient of determination (R2) is another basic and widely used good-of-fit (Equation (17)).
It represents the percentage of the total variation in the observed Y that is explained by the model.
However, R2 tends to exaggerate the explained percentage since it never decreases by adding more
predictor variables. The adjusted coefficient of determination (R2

a) overcomes this drawback by dividing
RSS and SST by their associated degrees of freedom (see Equation (18)). As multiple predictors were
included, R2

a was adopted.

R2 = 1−
RSS
SST

(17)

R2
a = 1−

RSS/(n− p)
SST/(n− 1)

= 1−
(n− 1)

(
1−R2

)
(n− p)

(18)

where RSS is the residual sum of squares, and SST is the sum of squares of total variation of the
response variable, n is the sample size, p is the number of coefficients (including all of predictor
coefficients and intercept).

The R2 statistics of LMM is more complicated than the fixed-effects models and attracted many
scientists’ attention [37,38]. In this study, the conditional R2 (R2

c ) was used, representing the variance
explained by the entire model (including both fixed and random effects) [37], which can be expressed
as follows:

R2
c =

σ2
f + σ2

r

σ2
f + σ2

r + σ2
ε

(19)

where σ2
f , σ

2
r , and σ2

ε represent the variance of the fixed-effects, random-effects, and model
residuals, respectively.

In addition to AICc and R2
a , the root mean squared errors (RMSE), mean absolute error (MAE),

and Z score of the model residuals are calculated to evaluate model performance by Equations (20−22),
respectively:

RMSE =

√∑n
i=1(yi − ŷi)

2

n
(20)

MAE =

∑n
i=1

∣∣∣yi − ŷi
∣∣∣

n
(21)

Z =
yi − ŷi

std(ŷi)
(22)

where yi and ŷi are the observed and predicted values of the response variable, and std denotes
standard deviation.

The Moran’s I is commonly used to investigate the spatial dependencies in the model residuals
from each regression model [23]. Moran’s I was positive when the model residuals tended to be similar,
negative when they tended to be dissimilar, and approximately 0 when they arranged randomly and
independently over space [39] and can be expressed as follows:

I =
n
W
·

∑
i
∑

j wi j(ei − e)
(
e j − e

)
∑

i(ei − e)2 (23)

where wij is the diagonal elements of the spatial weight matrix, W is the sum of all wij, ei denotes the
residual at location i and e denotes the mean of residuals. The expected value of Moran’s I under
the null hypothesis of no spatial autocorrelation (i.e., randomization) is E(I) = −1

n−1 . In this study,
the Moran’s I of the model residuals were calculated and plotted against the number of nearest
neighbors (i.e., bandwidth) to present the relationship between spatial autocorrelation of the residuals
and bandwidth. The p-value (two-tailed) calculated for the null hypothesis test of randomization was
also plotted against the number of nearest neighbors.
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3. Results

3.1. OLS and LMM

The OLS regression was used to model the relationships between PM2.5 and 5 criteria air pollutants
as the benchmark for model comparisons. OLS was global and fixed-effects in nature and represented
the average relationship between the response variable and predictors. Table 2 lists the parameter
estimates of the OLS model (Equation (1)). All model coefficients were statistically significant and
positive for predicting PM2.5, except O3. The OLS model indicated that PM2.5 increased as the 4 air
pollutants (SO2, NO2, PM10, and CO) increased, while PM2.5 increased as O3 decreased. This was
evident by the negative correlation between PM2.5 and O3 (Figure 2), which was consistent with a
previous study [40]. Table 2 also indicated that PM10 was the most influential factor on PM2.5 because
it had the largest standardized estimate (0.716). PM2.5 would increase 0.52 µg/m3 when PM10 increased
1 µg/m3 while keeping other predictors as constants. The OLS model fitted the data well according to
the R2

a , i.e., 85% of the total variation of PM2.5 can be explained by the OLS model.

Table 2. Parameter estimates of the ordinary least squares regression (OLS) model.

Parameter Estimate Std. Error t Test p-Value Standardized Estimate

Intercept −4.398 0.850 −5.173 0.000 0.000
SO2 (µg/m3) 0.081 0.017 4.679 0.000 0.047
NO2 (µg/m3) 0.380 0.025 15.368 <2 × 10−16 0.172
PM10 (µg/m3) 0.520 0.007 69.733 <2 × 10−16 0.716
CO (mg/m3) 5.640 0.715 7.884 0.000 0.079
O3 (µg/m3) −0.086 0.008 −10.221 <2 × 10−16 −0.083

Model fitting information
R2

a 0.846
AICc 20,109.26

The linear mixed model was applied for the 5 criteria air pollutants (SO2, NO2, PM10, CO, and O3)
as the fixed-effects and the 13 cities (or region) as the random-effects. The G matrix (Equation (4)) of
the random-effects was estimated by the covariance structure of variance components (VC), while the
R matrix (Equation (4)) of the model residuals was estimated by the covariance structure of first-order
autoregressive (AR(1)). The covariance structures of VC and AR(1) can be expressed by Equations (24)
and (25),

Var(γ) = G =


σ2

1 0 · · · 0
0 σ2

2 · · · 0
...

...
. . .

...
0 0 · · · σ2

6

 (24)

Var(ε) = R = σ2



1 r r2 r3 r4 r5

r 1 r r2 r3 r4

r2 r 1 r r2 r3

r3 r2 r 1 r r2

r4 r3 r2 r 1 r
r5 r4 r3 r2 r 1


(25)

where σ2
1 ~ σ2

6 represent the variance of β0 (intercept), β1 (SO2), β2 (NO2), β3 (PM10), β4 (CO), and β5

(O3), respectively; σ2 represents the variance of the model residuals, and r represents the first-order
temporal autocorrelation. The parameter estimates of the G and R matrices were listed in Table 3.
It seems that the temporal autocorrelations between the weekly observations were relatively high
(r = 0.552) and significant.
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Table 3. Estimates of the variance of linear mixed models (LMM).

Parameter σ2
1 σ2

2 σ2
3 σ2

4 σ2
5 σ2

6 r σ2

Estimate 78.092 0.022 0.082 0.009 157.010 0.001 0.552 75.110

Table 4 listed the parameter estimates of the fixed-effect (overall) of the LMM model. It indicated
that all the coefficient estimates followed the same signs of the OLS estimates. The standard errors of
the LMM coefficient estimates were much larger than those of the OLS estimates. This was because
LMM treated the air pollutants as the fixed-effects but adjusted each coefficient estimate for each of the
13 cities (the random-effects), while OLS fitted an average model using the air pollutants, thus that
underestimated the standard errors of the model coefficients. The LMM model explained 89.8% of the
total variation of PM2.5 in the data. The AICc (18,756.7) of the LMM model was much smaller than that
(20,109.26) of the OLS model, indicating a much better model fitting by LMM over OLS.

The 13 cities (or region) were treated as the random-effects in the LMM model thus that the model
coefficients can be derived for each of the 13 cities (or region), which were listed in the Supplementary
Materials (Table S1) due to the page limit. Figure 4 represents the relationships between predicted PM2.5

and the most significant predictor (PM10) as an example (while keeping other predictors as constants of
means). The solid black line was the overall or fixed-effects model, while the colored dotted lines were
the 13 models for the 13 cities (region). All the regression lines had slightly different slopes compared
with the slope of the overall model. Among the 13 cities (region), the slope coefficient β3 (PM10) of
Jiamusi (Figure 4a) and Shuangyashan (Figure 4b) were significantly greater (i.e., steeper slope) than
that of the overall model, indicating that increasing the PM10 level in Jiamusi and Shuangyashan
would cause a much higher PM2.5 than the other cities, especially for the higher concentrations of
PM10. In contrast, Daqing (Figure 4a), Heihe (Figure 4a), and Suihua (Figure 4b) had significantly
smaller β3 (i.e., shallower slope) than that of the overall model, indicating that increasing the PM10

level in Daqing, Heihe, and Suihua would cause a lower increase in PM2.5 than the other cities.
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Table 4. Parameter estimates of overall (fixed-effect) of LMM.

Parameter Estimate Std. Error t Test p-Value

Intercept −9.81 2.64 −3.71 0.00
SO2 (µg/m3) 0.07 0.05 1.27 0.23
NO2 (µg/m3) 0.42 0.09 4.78 0.00
PM10 (µg/m3) 0.47 0.03 17.27 <0.0001
CO (mg/m3) 11.86 3.62 3.28 0.01
O3 (µg/m3) −0.05 0.01 −3.54 0.00

Model fitting information
R2

c 0.898
AICc 18,756.70

Note: R2
c is the conditional R2 of LMM.

3.2. Local Models (GWR, TWR, and GTWR)

The local models, including GWR, TWR, and GTWR, were used to explore spatial and/or temporal
heterogeneity in PM2.5 and 5 criteria air pollutants across the study area. The adaptive bi-square kernel
function was used as the spatial weighting kernel function in this study. The appropriate bandwidth
(number of neighbors) was selected based on the smallest AICc. The parameters and model fitting
information of GWR, TWR, and GTWR are summarized in Table 5. The signs and magnitudes of the
all median coefficients of the three GWR-based models (GWR, TWR, and GTWR) were compatible
with those of the OLS model. However, the TWR’s model coefficients were more similar to those of
GTWR, while GWR’s model coefficients were slightly different from those of TWR and GTWR.

Table 5. Parameter estimates of geographically weighted regression (GWR), temporally weighted
regression (TWR), and geographically and temporally weighted regression (GTWR).

Models Parameter Min Q1 Median Q3 Max Model Fitting
Information

GWR
(Num of

Neighbors
= 262;

Adaptive)

Intercept −26.901 −10.534 −7.609 −3.836 5.662

R2
a : 0.884

AICc: 19,403.51

SO2 −0.270 −0.021 0.046 0.259 0.516
NO2 −0.282 0.084 0.400 0.676 1.061
PM10 0.325 0.437 0.536 0.586 0.628
CO −4.847 1.834 3.867 11.796 34.484
O3 −0.171 −0.102 −0.075 −0.026 0.052

TWR
(Num of

Neighbors
= 20;

Adaptive)

Intercept −99.573 −14.089 −5.141 2.918 91.439

R2
a : 0.968

AICc: 17,944.31

SO2 −2.985 −0.199 0.099 0.535 4.196
NO2 −2.667 −0.234 0.136 0.551 2.637
PM10 −0.259 0.283 0.471 0.704 1.140
CO −41.876 −3.172 6.125 19.781 137.483
O3 −1.250 −0.116 −0.017 0.065 0.918

GTWR
(Num of

Neighbors
= 20;

Adaptive)

Intercept −99.573 −14.412 −5.339 2.790 91.439

R2
a : 0.968

AICc: 18016.58

SO2 −2.985 −0.197 0.112 0.550 4.196
NO2 −2.667 −0.232 0.150 0.582 2.637
PM10 −0.259 0.279 0.456 0.700 1.140
CO −53.703 −3.128 6.111 19.953 137.483
O3 −1.250 −0.118 −0.017 0.065 0.918

Note: The unit of SO2, NO2, and PM10 and O3 is µg/m3, the unit of CO is mg/m3.

3.3. Model Assessment

Table 6 showed the model goodness-of-fit (i.e., R2
a and AICc), prediction accuracy (i.e., RMSE

and MAE), and prediction uncertainty (i.e., the mean and standard deviation (Std) of the Z score of
model residuals). The three GWR-based models fitted the data better than the OLS model (R2

a = 0.846),
with the order of TWR (R2

a = 0.968), GTWR (R2
a = 0.968), and GWR (R2

a = 0.884). Both GTWR and
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TWR also performed better than the LMM model (R2
c = 0.898), while GWR was slightly worse than

LMM (Table 4). In the terms of AICc, TWR (17,944.31) fitted the data best, followed by GTWR
(18,016.58), LMM (18,756.70), GWR (19,403.51), and OLS (20,109.26). The results indicated that the
temporal autocorrelations in the 210-week time series data played a more important role than the
spatial heterogeneity across the 13 cities (region). It was a bit surprising that LMM performed better
than GWR in terms of goodness-of-fit. However, the prediction accuracy measures of GWR were
slightly better than that of LMM in terms of RMSE (GWR 8.207 vs. LMM 8.482) and MAE (GWR 5.621
v.s. LMM 5.794). It was clear that TWR and GTWR were significantly superior to OLS, LMM and
GWR according to all comparison criteria, i.e., they had higher R2

a , smaller AICc, smaller RMSE,
and MAE. TWR and GTWR reduced RMSE and MAE of the model residuals by 67% from the OLS
model, while GWR only reduced RMSE and MAE by 15%.

Table 6. Comparison of OLS, LMM, and GWR-based models (GWR, TWR, and GTWR).

Num of
Neighbor

Model
Type AICc R2

a
RMSE of
Residuals

MAE of
Residuals

Mean of Z
Score

Std of Z
Score

—— OLS 20,109.25 0.846 9.598 6.587 0 0.426
—— LMM 18,757.5 0.898 § 8.482 5.794 −0.001 0.375
262 GWR 19,403.49 0.884 8.207 5.621 0 0.356
20 TWR 17944.39 0.968 3.13 2.175 0 0.129
20 GTWR 18016.58 0.968 3.16 2.187 0 0.131

Note: “§” represents the conditional R2 (R2
c ).

To investigate the spatial dependencies in the model residuals from each model, the Moran’s
I of the model residuals of OLS, GWR, TWR, and GTWR were calculated and compared. Figure 5
presents the Moran’s I calculated using different bandwidths (i.e., number of neighbors) for all 5
models (Figure 5a). The positive Moran’s I indicated that the model residuals were clustering in
similar model residuals (either positive or negative), which may cause a serious violation of the
independence assumption of the model residuals and lead to insufficient estimation of the model
coefficients [39]. Therefore, the OLS model either under-predicted or over-predicted PM2.5 across the
study area. The Moran’s I of the model residuals for all 5 models approached zero (i.e., randomness)
with the increase of bandwidth (number of neighbors) and tended to be stable when the number of
neighbors reached about 650.
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However, the Moran’s I of the LMM and GWR-based models were much smaller than those of
OLS and approached zero in the opposite direction (negative) to that of OLS (positive), which indicated
that the residuals of LMM and GWR-based models were dissimilar to OLS when the bandwidth was
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small (Figure 5a). Figure 5b focused on the Moran’s I of LMM and GWR-based models only to see the
differences between the 4 models. The LMM and GWR-based models generated little under-predictions
or over-predictions for the patches of local areas and produced a significant reduction of spatial
autocorrelation in the model residuals to various degrees by explicitly applying the local information
among neighboring locations and/or time. The differences of Moran’s coefficients among LMM, GWR,
TWR, and GTWR were more obvious with small bandwidths than large bandwidths. The LMM
and GWR-based models had almost the same and little spatial autocorrelation when the number of
neighbors was greater than 850. TWR performed over GTWR, and then both over LMM and GWR
when the number of neighbors was less than 250. The performances of TWR and GTWR were almost
the same when the bandwidth was larger than 250. It was consistent with the results of Table 6 that
used the optimized bandwidth.

Figure 6 presents the p-value (two-tailed) for the randomization null hypotheses test of the model
residuals of OLS, LMM, GWR, TWR, and GTWR calculated using different bandwidths (i.e., number of
neighbors). It indicated that the residuals of OLS were not random at any bandwidths since the p-value
was much less than 0.05 (reject randomization null hypotheses) across all bandwidths. The residuals of
LMM and all GWR-based models presented randomized character across all bandwidth except the
residuals of LMM and GWR when the number of neighbors was smaller than 250. The magnitude of
randomness gradually increased with the increase of the number of neighbors and followed by order
of GWR, LMM, TWR, and GTWR. The TWR and GTWR had a similar trend. In general, the p-value of
the randomization null hypotheses test followed the same trend of Moran’s coefficients since they all
reacted to the spatial autocorrelation of the model residuals.Int. J. Environ. Res. Public Health 2019, 16, x 15 of 20 
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4. Discussion

Heilongjiang Province is the northernmost province in China, with the characters of high latitude,
low temperature, four distinct seasons, and long and chilly winter. The cold winter leads to a very long
heating season (from late October to March in the next year) in Heilongjiang. The industrial production,
urban heating, emissions from unorganized pollution sources (such as straw burning) around cities,
and motor vehicle exhaust emission mainly contributed to the air pollution of Heilongjiang [19].
Thus, effective measures should be implemented, such as the prohibition of open biomass burning,
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improvement of coal energy efficiency, and full use of clean fuels (nuclear, wind, and solar energy) for
municipal heating [41].

In recent years, the Heilongjiang government has attached great importance to the fight of “blue
sky defense” and made obvious progress in the prevention and control of air pollution. Fortunately,
the annual concentration of PM2.5 from 2015 to 2018 presented a decreasing trend in most cities,
except Jixi (Figure 7). The air pollutants are divided into 6 grades (I: Excellent; II: Good; III: Light
pollution; IV: Moderate pollution; V: Heavy pollution; VI: Serious pollution) in terms of the Technical
Regulation on Ambient Air Quality Index of China currently being tried [42,43]. Only Harbin (1 out
of 13) exceeded the national annual PM2.5 standards (≤35 µg/m3) in all 4 years, but with a declining
tendency within grade II. On the contrary, Heihe, Yichun, and Da Xing’an Mountain region were in
excellent condition of air in all 4 years, which was consistent with the stable seasonal trend of the 6 air
pollutants in Figure 3. The annual PM2.5 concentration of the other cities oscillated around the grade
I limit (35 µg/m3). Some cities exceeded the grade I limit in 2015 and 2016 and then fell within the
limit in the following 2 years (like Daqing, Hegang, and Mudanjiang), which indicated progress in
the prevention and control of air pollution. However, Jixi, one of the most vital coal origins of the
Heilongjiang Province, faced a more serious air pollution problem in 2017 than other years due to the
poor air quality in heating seasons resulting from long and icy winters. This situation was alleviated in
2018. The provincial city Harbin had an even bigger air pollution problem than other cities because of
the massive urban heating of around 9.5 million population, industry, and increased motor vehicle
exhaust emissions every year. The phenomenon of spatial and temporal non-stationarity of PM2.5

shown in Figure 7 is consistent with that in Figure 3.Int. J. Environ. Res. Public Health 2019, 16, x 16 of 20 
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I (35 µg/m3) and II (75 µg/m3) limits are shown. Note: For PM2.5 (µg/m3), grade I: ≤35, II: 35–75, III:
75–115, IV: 115–150, V: 150–250, VI: >250 (MEP, 2012).

Recently, researchers have investigated the relationship between PM2.5 and various factors, such as
aerosol optical depth (AOD) and normalized difference vegetation index (NDVI) derived from satellite
imagery, meteorological factors (like temperature, wind speed, relatively humidity), transportation
emission factors, density of industrial plants, land-use, gross domestic product (GDP), and digital
elevation model (DEM) and so on [44–50]. These studies have led to an increasingly comprehensive
understanding of PM2.5 and impact factors. Although PM2.5 correlates with many factors, it has the
most direct correlation with the criteria air pollutants, especially PM10. It is meaningful to evaluate
the spatial–temporal relationships between PM2.5 and criteria air pollutants since it can provide
useful information on the PM2.5 concentration without direct PM2.5 monitoring, especially before 2015,
when the PM2.5 monitoring network was sparse in Heilongjiang.

Meanwhile, PM2.5 modeling techniques vary according to the different predictors applied and
objectives. In general, there are four major categories for modeling PM2.5: (1) Time series analysis and
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related statistical analysis (e.g., [16,51–55]); (2) GTWR and its derivative models (e.g., [30,56–58]); (3)
machine learning method using plenty of predictors (e.g., [48,49]); (4) comprehensive approach by
integrating several above methods (e.g., [46]). Each method has pros and cons. It is vital to choose an
appropriate method instead of a complex approach to solve the problems according to a specific dataset.
And, it is meaningful to compare different methods using the same dataset and accuracy indices.

In this study, the spatial and/or temporal heterogeneity of PM2.5 concentrations of Heilongjiang
Province were investigated using LMM, GWR, TWR, and GTWR models based on the criteria air
pollutants from 2015 to 2018. The major problem of global models applied to environmental processes
is that they assume the processes to be constant across space or time. The spatial or temporal effects
(spatial/temporal autocorrelation and heterogeneity) may violate the assumptions of independent
observation and/or invariant variance, which biases the estimates of standard errors and results
in imprecise coefficient estimates [59,60]. Although LMM is a global method, it could deal with
spatial and temporal dependence and heterogeneity using appropriate variances of random-effects
and random errors (i.e., G and R matrices), thus obtaining a better model performance than OLS
(5% improvement of adjusted R2). However, the local model GWR did not perform better than LMM
because it only handled spatial heterogeneity by “borrowing” the data from surrounding locations and
ignored temporal information [25]. TWR and GTWR showed advantages over OLS by incorporating
temporal heterogeneity (12% improvement of adjusted R2). The obvious seasonal variation (Figure 3)
and decreasing tendency (Figure 7) lead to the high efficiency of incorporating temporal information in
local models. However, the GTWR was not significantly superior to TWR in terms of the adjusted R2,
AICc, RMSE, and MAE of the model residuals, which might result from the inadequate geographical
locations (only 13 cities or regions). It was also the reason why the improvement of the GWR (3.8%
of adjusted R2) was so limited. It is more efficient to incorporate temporal information than spatial
information in this case. The criteria air quality data from all 56 air monitoring stations across the entire
Heilongjiang Province could be applied to model the spatial and temporal heterogeneity of PM2.5.
However, it is a challenge to process a massive dataset with both spatial and temporal information
due to the limited calculation capability of the computer. Sometimes, it is a prerequisite to balance
between the calculation efficiency and data richness. We sacrificed some spatial information by using
the citywide average concentrations since they were the averages of concentrations at all monitoring
sites in each city, and also the daily concentrations of air pollutants reported to the public by the
government [61]. We also sacrificed some temporal information by aggregating daily data into weekly
data for balancing those two. Nevertheless, the TWR model based on 210 weekly data was sufficient to
describe the relationship between PM2.5 and the other 5 standard air pollutants in this study. Thus, it is
scientific to apply the same policy for prevention and control of air pollution throughout the entire
Heilongjiang Province with special attention paid to temporal changes.

Heilongjiang Province has begun to systematically and repeatedly measure the ambient air quality
data (6 air pollutants) since 2015. How to reduce or eliminate the harm of PM2.5 to public health has
become one of the most challenging problems for air pollution prevention in Heilongjiang Province.
PM2.5 is inextricably related to other standard pollutants. Although some researchers have been
investigated the spatial–temporal heterogeneity in the PM10–PM2.5 relationship using GWR-based
models (e.g., [62]), the relationship between PM2.5 and criteria air pollutants (e.g., PM10, SO2, NO2,
CO, O3) is still unclear and the spatial–temporal heterogeneity in the relationship is still to be studied.

5. Conclusions

In this study, we investigated the relationships between PM2.5 and 5 criteria air pollutants
(i.e., PM10, SO2, NO2, CO, O3) for 13 cities (or region) of Heilongjiang Province during 2015~2018 using
global and graphically and temporally weighted regression (i.e., OLS, LMM, GWR, TWR, and GTWR).
The daily data were integrated into weekly data due to excessive computation. The model performance
and spatial autocorrelation of model residuals were compared. The results showed that all parameter
estimates tended to be positive for predicting PM2.5, except O3. The LMM and all GWR-based models
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(i.e., GWR, TWR, and GTWR) showed great advantages over OLS in terms of model fitting, such as
producing higher R2 and more desirable model residuals, especially TWR and GTWR that incorporated
temporal variation. The GWR, LMM, and TWR and GTWR improved the explanation of variance
in PM2.5 by 3%, 5%, and 12%, respectively, from the R2 (0.85) of OLS. TWR yielded slightly better
model performance, prediction accuracy and uncertainty accuracy than GTWR (smaller AICc, RMSE,
MAE and standard deviation of Z score of model residuals), and also reduced RMSE and MAE of model
residuals by 67% comparing to OLS model; while GWR only reduced RMSE and MAE by 14%~15%
comparing to OLS. The traditional OLS and GWR were inadequate for describing the nonstationary
of PM2.5. The LMM slightly performed better than GWR since it considered different locations as a
random effect and meanwhile handled the repeated measurements using the R matrix, which provided
an alternative solution besides the GWR-based models. Although GWR that incorporates the spatial
non-stationarity of PM2.5 improved the model performance of OLS, it is still far from TWR that
incorporates temporal nonstationary of PM2.5. GTWR did not bring any improvements to TWR by
adding spatial information because of the limited number of locations. The temporal heterogeneity is
more obvious than spatial heterogeneity in this case. Thus, the incorporation of temporal information
is inevitable and adequate for modeling the relationship between PM2.5 and the other air pollutants in
this study. This work provides evidence of spatial–temporal heterogeneity in the relationship between
PM2.5 and the other standard air pollutants, and also provides possible solutions for modeling PM2.5

with the other air pollutants for Heilongjiang province. In addition, the localized model coefficients
and predictions of the GWR models can provide spatio-temporal “hot spots” of PM2.5 pollution,
which should be useful for assisting the governmental agencies to pin-point the seriousness of air
pollution or local emission in order to make better management decisions.
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