

Near-Infrared Time-Resolved Spectroscopy for Assessing Brown Adipose Tissue Density in Humans: A Review

Takafumi Hamaoka^{1*}, Shinsuke Nirengi^{2,3}, Sayuri Fuse¹, Shiho Amagasa⁴, Ryotaro Kime¹, Miyuki Kuroiwa¹, Tasuki Endo¹, Naoki Sakane², Mami Matsushita⁵, Masayuki Saito⁶, Takeshi Yoneshiro⁷ and Yuko Kurosawa¹

¹ Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo, Japan, ² Division of Preventive Medicine, National Hospital Organization Kyoto Medical Center, Clinical Research Institute, Kyoto, Japan, ³ Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, Columbus, OH, United States, ⁴ Department of Preventive Medicine and Public Health, Tokyo Medical University, Tokyo, Japan, ⁵ Department of Nutrition, Tenshi College, Sapporo, Japan, ⁶ Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan, ⁷ Diabetes Center, University of California San Francisco, San Francisco, CA, United States

OPEN ACCESS

Edited by:

Jennifer L. Miles-Chan, University of Auckland, New Zealand

Reviewed by:

Francisco Miguel Acosta Manzano, Ministry of Economy and Competitiveness, Spain Valentina Hartwig, Italian National Research Council, Italy

> *Correspondence: Takafumi Hamaoka kyp02504@nifty.com

Specialty section:

This article was submitted to Obesity, a section of the journal Frontiers in Endocrinology

Received: 04 February 2020 Accepted: 08 April 2020 Published: 19 May 2020

Citation:

Hamaoka T, Nirengi S, Fuse S, Amagasa S, Kime R, Kuroiwa M, Endo T, Sakane N, Matsushita M, Saito M, Yoneshiro T and Kurosawa Y (2020) Near-Infrared Time-Resolved Spectroscopy for Assessing Brown Adipose Tissue Density in Humans: A Review. Front. Endocrinol. 11:261. doi: 10.3389/fendo.2020.00261

Brown adipose tissue (BAT) mediates adaptive thermogenesis upon food intake and cold exposure, thus potentially contributing to the prevention of lifestyle-related diseases. ¹⁸F-fluorodeoxyglucose (FDG)-positron emission tomography (PET) with computed tomography (CT) (¹⁸FDG–PET/CT) is a standard method for assessing BAT activity and volume in humans. ¹⁸FDG-PET/CT has several limitations, including high device cost and ionizing radiation and acute cold exposure necessary to maximally stimulate BAT activity. In contrast, near-infrared spectroscopy (NIRS) has been used for measuring changes in O₂-dependent light absorption in the tissue in a non-invasive manner, without using radiation. Among NIRS, time-resolved NIRS (NIRTRS) can quantify the concentrations of oxygenated and deoxygenated hemoglobin ([oxy-Hb] and [deoxy-Hb], respectively) by emitting ultrashort (100 ps) light pulses and counts photons, which are scattered and absorbed in the tissue. The basis for assessing BAT density (BAT-d) using NIR_{TRS} is that the vascular density in the supraclavicular region, as estimated using Hb concentration, is higher in BAT than in white adipose tissue. In contrast, relatively low-cost continuous wavelength NIRS (NIR_{CWS}) is employed for measuring relative changes in oxygenation in tissues. In this review, we provide evidence for the validity of NIR_{TBS} and NIR_{CWS} in estimating human BAT characteristics. The indicators (Ind_{NIRS}) examined were [oxy-Hb]_{sup}, [deoxy-Hb]_{sup}, total hemoglobin [total-Hb]_{sup}, Hb O₂ saturation (StO_{2sup}), and reduced scattering coefficient ($\mu_{\text{s}'\text{sup}}$) in the supraclavicular region, as determined by NIR_{TRS}, and relative changes in corresponding parameters, as determined by NIR_{CWS}. The evidence comprises the relationships between the Ind_{NIRS} investigated and those determined by ¹⁸FDG-PET/CT; the correlation between the Ind_{NIRS} and cold-induced thermogenesis; the relationship of the Ind_{NIRS} to parameters measured by ¹⁸FDG–PET/CT, which responded to seasonal temperature fluctuations; the relationship of the Ind_{NIRS} and plasma lipid metabolites; the analogy of the Ind_{NIRS} to chronological and anthropometric data; and changes in the Ind_{NIRS} following thermogenic food supplementation. The [total-Hb]_{sup} and [oxy-Hb]_{sup} determined by NIR_{TRS}, but not

1

parameters determined by NIR_{CWS}, exhibited significant correlations with cold-induced thermogenesis parameters and plasma androgens in men in winter or analogies to ¹⁸FDG–PET. We conclude that NIR_{TRS} can provide useful information for assessing BAT-d in a simple, rapid, non-invasive way, although further validation study is still needed.

Keywords: brown adipose tissue, adaptive thermogenesis, thermogenic food ingredients, androgens, lipid metabolites, seasonal temperature changes, non-invasive, ¹⁸F-fluorodeoxyglucose-positron emission tomography

INTRODUCTION

Human adipose tissues are of a variety of types, such as white (WAT) and brown adipose tissue (BAT) (1). WAT is capable of depositing extra-energy as triglyceride droplets under conditions where energy intake is greater than its expenditure. In contrast, BAT promotes non-shivering thermogenesis to respond to decreases in core body temperature and, in contrast to WAT, is characterized by an abundance of mitochondria and vasculature. BAT has been extensively investigated in animals, and it has been determined that BAT-specific uncoupling protein (UCP)-1, mainly stimulated upon β_3 -adrenergic activation by cold and/or dietary intervention, enables BAT to dissipate free energy to heat by proton discharge through the inner mitochondrial membrane (2, 3). BAT has drawn renewed attention since 2009, with several papers being published that report the existence of BAT deposits in adult humans (4-7), which had previously been thought to be lost during the process of maturation. Human BAT is reported to be related to lower adiposity [body mass index (BMI), the percentage of whole body fat (%BF), and visceral fat area (VFA)] (6-9) and increased glucose sensitivity (10). In experimental studies, repeated exposure to cold environment enhanced the BAT activity and improved glucose tolerance in obese counterparts (11) and patients with type 2 diabetes mellitus (12) as well as in healthy individuals (9, 13, 14). Thus, increasing BAT activity or volume may aid in combatting obesity and chronic diseases, such as type 2 diabetes mellitus.

It is well-known in humans that BAT can be evaluated by ¹⁸F-fluorodeoxyglucose (FDG)–positron emission tomography (PET) with computed tomography (CT) (¹⁸FDG–PET/CT) under cold-stimulated environments (3, 4, 6, 15). However, ¹⁸FDG–PET/CT has several limitations, including the enormous cost of the device and ionizing radiation exposure, and acute cold exposure—necessary to maximally stimulate BAT activity

(16), which make a longitudinal ¹⁸FDG–PET/CT study difficult and disrupt interventional research, specifically longitudinal ones in humans. Cold exposure is primarily required in ¹⁸FDG– PET/CT studies to activate human BAT, and various protocols have been applied in the past. While standardized guidelines have recently been proposed, differences between protocols remain a significant obstacle to the comparison of observations from different studies (17).

Other non-invasive technologies have been utilized for evaluating BAT characteristics in humans, such as magnetic resonance imaging (MRI) (18, 19), local skin thermal measurements (19), infrared thermography (20), and contrast ultrasound (21). A recent review on the detection of BAT using these non-invasive technologies can be found elsewhere (22). Regarding MRI technologies, proton-density fat fraction (PDFF) values are widely used to distinguish BAT from WAT (23, 24). However, the PDFF range in the supraclavicular region widely varies among individuals, which makes the differentiation of BAT from WAT difficult, although several new technologies, such as the measurement of T2* relaxation and diffusion-weighted imaging are under investigation (22). The local skin thermal measurements have been used for monitoring cold-induced temperature changes in the supraclavicular skin with infrared thermography (25, 26). However, heat measurements could be influenced by the tissue conductive properties and thickness of the subcutaneous adipose tissue (27), and the individual vasomotor response (28); these evaluation obstacles should be solved in the future.

In addition, near-infrared spectroscopy (NIRS) is a relatively newly introduced methodology to monitor BAT properties (29). The basis for the application of NIRS to evaluate BAT properties is that the microvascular bed, as evaluated by total hemoglobin (Hb) concentration [total-Hb]_{sup} in the supraclavicular region, is more abundant in BAT than in WAT (30). Furthermore, NIR time-resolved spectroscopy (NIR_{TRS}) may be used to assess the density of the microvasculature as well as mitochondrial content in BAT by measuring the reduced scattering coefficient (μ_s') , which reflects the *in vitro* mitochondrial content (31). BAT is a highly innervated tissue and is also highly perfused when exposed to cold (32). As the concentrations of oxygenated and deoxygenated Hb in the supraclavicular region ([oxy-Hb]_{sup} and [deoxy-Hb]_{sup}, respectively) are likely to change (especially [total-Hb]_{sup}, which reflects blood volume), it could be a valid measure of BAT vasculature.

The purpose of this article is to provide evidence concerning the ability of NIRS to evaluate BAT characteristics in humans. In

Abbreviations: adjStO₂, adjusted supraclavicular StO₂; AR, β 3-adrenergic receptor; BAT, brown adipose tissue; BAT-d, vascular or mitochondrial density in BAT; BMI, body mass index; CIT, cold-induced thermogenesis; CT, computed tomography; deoxy-Hb, deoxygenated Hb; FDG, ¹⁸F-fluorodeoxyglucose; Hb, hemoglobin; NE, norepinephrine; NIRS, near-infrared spectroscopy; NIR_{CWS}, NIR continuous-wave spectroscopy; NIR_{TRS}, NIR time-resolved spectroscopy; oxy-Hb, oxygenated Hb; StO₂, Hb O₂ saturation; PET, positron emission tomography; ROC, receiver operating characteristic; total-Hb, total hemoglobin; TRP, transient receptor potential channels; SUV_{max}, maximal standardized uptake value; SUV_{mean}, mean standardized uptake value; WAT, white adipose tissue; μ_a , absorption coefficient; μ_s' , reduced scattering coefficient.

this review, we included studies examining BAT characteristics using NIRS in humans: most studies used NIRTRS (29, 33-39), a technology to quantify both absolute tissue absorption and scattering characteristics, while some utilized NIR continuous wave spectroscopy (NIR_{CWS}), an inexpensive technology that only provides relative values of tissue oxygenation (32, 40). First, we present how NIRS functions to evaluate tissue oxygenation and blood volume. Then, we provide data indicating whether BAT characteristics can be evaluated using NIR_{CWS}. The main body of the paper presents a series of evidence for NIRTRS to assess BAT characteristics. The evidence tested comprises (1) the relationship between parameters determined using NIRS and those measured by ¹⁸FDG-PET/CT, (2) correlations between the NIRS parameters and cold-induced thermogenesis (CIT), (3) correspondence of the NIRS parameters to those reported using ¹⁸FDG-PET/CT regarding chronological and anthropometric data, (4) the correspondence between NIRS parameters and those reported with ¹⁸FDG-PET/CT in response to ambient temperature fluctuations, (5) the relationship between parameters determined using NIRS and plasma lipid metabolites, and (6) changes in NIRS parameters induced by supplementation with evidence-based thermogenic functional ingredients.

HOW NIRS FUNCTIONS AS EVALUATING TISSUE OXYGENATION AND BLOOD VOLUME

NIRS provides non-invasive monitoring of tissue oxygen and Hb dynamics in vivo (41-45). NIRS is able to monitor changes in O2-dependent light absorption in the heme in the red blood cells circulating in biological tissues (46). There are mainly three types of NIRS devices: NIR_{CWS}, NIR_{TRS}, phase modulation NIR spectroscopy (NIR_{PMS}), etc. (46-48). The most popular NIRS devices use NIR_{CWS} that outputs only the qualitative tissue oxygenation. To calculate the changes in [oxy-Hb], [deoxy-Hb], [total-Hb], and Hb O₂ saturation (StO₂) using NIR_{CWS}, a combination of multiple-wavelengths can be adopted in accordance with the Beer-Lambert law. The main reason why quantitative data cannot be provided as continuous NIR light path traveled through tissues is unknown (42-45). However, spatially resolved NIRS (a type of NIR_{CWS}) is able to provide quantitative values considering several assumptions, although it is still unable to provide the tissue absorption and scattering properties.

On the other hand, NIR_{TRS} and NIR_{PMS} are more accurate, as they can quantify both tissue absorption and scattering characteristics. NIR_{TRS} emits ultrafast (100 ps) light pulses from the skin surface and measures the photon distributions across the biological tissue with a 2- to 4-cm distance from the light emission. NIR_{TRS} is able to quantitatively measure the absorption coefficient (μ_a), μ_s' , and then calculates light path length, tissue [oxy-Hb], [deoxy-Hb], [total-Hb], and StO₂ (44, 45, 48). The validity of the signal obtained by NIR_{CWS} and NIR_{TRS} has been confirmed in an *in vitro* experiment using highly scattering IntralipidTM (43, 44). Using this system, μ_a in the NIR range was found to be strongly correlated with [total-Hb] (43, 48). Furthermore, the study found a significant relationship between μ_s' at 780 nm and the homogenized tissue mitochondrial concentration (31).

STUDIES USING NIR_{CWS}

Prior to the NIR_{TRS} study on human BAT, one study attempted to correlate oxygen dynamics using NIR_{CWS} and BAT parameters (32). In this cross-sectional study, adult human subjects (25 subjects; 15 women and 10 men; mean age \pm SD, 30 \pm 7 years) were assigned into high- (BMI, 22.1 \pm 3.1) and low-BAT groups (BMI, 24.7 \pm 3.9) based on the levels of ¹⁸F-FDG uptake in the cervical-supraclavicular region. It employed tripleoxygen PET scans (H₂¹⁵O, C¹⁵O, and ¹⁵O₂) and daily energy expenditure measurements under resting and mild cold (15.5°C) room conditions for 60 min using indirect calorimetry (32). They used a NIR_{CWS} parameter, adjusted supraclavicular StO₂ (adjStO₂), a balance between oxygen supply and uptake. In the high-BAT group, there was a significant negative correlation between oxygen consumption determined by PET scans and adjStO₂ (p = 0.02, $r^2 = 0.46$) in the supraclavicular region at rest and after the exposure to cold, indicating increased oxygen uptake in highly active BAT (32). However, it detected a limited effect on the difference in $adjStO_2$ between the two groups (32). It should be noted that the study presented several limitations to consider when interpreting its results: (1) a non-individualized cooling protocol was used; (2) only one NIR_{CWS} parameter, adjStO2, was used in the analysis; and (3) no kinetics data determined by the NIR_{CWS} were provided.

Recently, in young healthy women, a study using the standardized cold exposure aimed to investigate the association between NIR_{CWS} parameters in the supraclavicular and forearm regions and BAT capacity assessed by ¹⁸FDG-PET/CT (40). Briefly, the subjects arrived at the laboratory (a room temperature of 19.5-20°C) and wore a temperature-controlled water circulation cooling vest for 60 min, and the individual temperature to be exposed was determined, namely at ~4°C above the threshold of shivering, 48-72 h prior to the ¹⁸FDG-PET/CT measurements. No association was found between any NIR_{CWS} indicators and maximal standardized uptake value (SUV_{max}) and mean standardized uptake value (SUV_{mean}) of the radioactivity both under thermoneutral and cold conditions. Thus, NIR_{CWS} would not be an appropriate technology to evaluate BAT capacity in this demographic. The lack of significant association between NIR_{CWS} parameters is mainly due to differences in the instrumentation to that used in NIRTRS, which provides absolute values for tissue hemodynamics. Furthermore, NIR_{CWS} permits an \sim 15 mm depth of light penetration at a 30 mm input-output setups (44). However, the mean photon penetration would be deeper (~20 mm at the 30-mm input-output setups) and wider when NIRTRS is used (49), which influences the differences in sensitivity between NIR_{CWS} and NIR_{TRS} with respect to BAT detection. Table 1 shows the relationship between [oxy-Hb]_{sup}, [deoxy-Hb]_{sup},

								Corr	Correlation (r^2)						
						Supraclavi	Supraclavicular region				De	Deltoid (forearm) region	m) region		
Ref. no.	Instrument	2	Study design	Parameters	µs'	Oxy-Hb	Deoxy-Hb	Total-Hb	StO ₂	adjStO ₂	μs'	Oxy-Hb	Deoxy-Hb	Total-Hb	StO ₂
Muzik et al. (32)	NIR _{CWS}	25	Cross- sectional	VO _{2BAT} #	Q	Q	Q	Q	Z	0.46*	Q	Q	Q	Q	MN
Acosta et al. (40)	NIR _{CWS}	18	Cross- sectional	SUV _{mean}	QN	-0.24	-0.06	-0.24	-0.20	MN	ND	0.01	0.08	0.04	-0.01
				SUVpeak	QN	-0.06	-0.22	-0.07	-0.04	MN	QN	0.11	0.19*	0.15	0.05
				BAT volume	QN	0.00	-0.06	-0.02	-0.02	MN	QN	-0.01	0.12	0.03	-0.06

BAT volume, evaluated by summating all voxel volume with SUV > 2.0 assessed by ¹⁸FDG-PET/CT; Ref. no., reference numbers are obtained from the list of references in this paper; NM, not mentioned; ND, could not be determined.

[#]Data obtained under thermoneutral conditions.

< 0.05.

ġ.

Hamaoka et al

[total-Hb]_{sup}, StO_{2sup}, and adjStO_{2sup} determined by NIR_{CWS} and ¹⁸FDG–PET/CT parameters (SUV_{max} and SUV_{mean}), which have been documented in previous studies (32, 40). The only NIR_{CWS} parameter found to be significantly correlated with a ¹⁸FDG–PET/CT parameter, cold-induced oxygen uptake by BAT, is adjStO₂, and only in the high-BAT group.

Taken together, the studies using NIR_{CWS} (32, 40) present potential limitations beyond the fact that it cannot evaluate the absorption and scattering properties of the tissue, including that it is more sensitive to changes in the skin blood flow than NIR_{TRS} (32, 40). Therefore, NIR_{CWS} does not seem to be a valid measure for BAT function although emphasis should be placed in the need for further research examining this type of NIRS.

STUDIES USING NIRTRS

Correlation Between Parameters Determined by NIR_{TRS} and ¹⁸FDG–PET/CT Parameters

It is speculated that, as BAT exhibits higher microvascular density and mitochondrial contents compared to WAT, NIRTRS can be used for assessing the density of microvascular or mitochondrial content in BAT (BAT-d) by measuring [total-Hb]_{sup} and $\mu_{s'}$ in the supraclavicular region ($\mu_{s'sup}$), which reflects the in vitro mitochondrial content (31). It may be expected that BAT would exhibit higher values for [total-Hb]_{sup} and $\mu_{s'sup}$ than those exhibited by WAT. As NIR_{TRS} measures the average tissue hemoglobin concentration in a volume of 4 cm³ with a 3-cm optode separation (50), the ¹⁸FDG-PET/CT-determined SUV_{mean} is the most appropriate indicators for comparison to those determined using NIR_{TRS}. Although the use of other radiotracer techniques, such as triple-oxygen scans (H₂¹⁵O, C¹⁵O, and ¹⁵O₂) would be more appropriate to reflect BAT activity, ¹⁸FDG-PET/CT has been mostly used for determination of BAT activity owing to routine availability in a clinical science setup. First, 18 healthy male subjects (20.3 \pm 1.8 years and BMI of 23.9 \pm 3.1 kg/m²) were recruited to examine changes in NIR_{TRS} parameters under acute cold environment. The [oxy-Hb]sup, [deoxy-Hb]sup, [total-Hb]sup, StO_{2sup}, and $\mu_{s'sup}$ were compared between a room temperature under thermoneutral conditions and cold conditions (19°C) for 2 h. As there was no change in the [total-Hb]_{sup} and $\mu_{s'sup}$ at 19°C compared to baseline conditions measured at 27°C, NIR_{TRS} can be used without the necessity of cold exposure (29). Second, to test this hypothesis, $[total-Hb]_{sup}$ and $\mu_{s'sup}$ were compared to the SUV_{mean} assessed by ¹⁸FDG-PET/CT (29) in a cross-sectional design. Twenty-nine healthy male subjects (23.3 \pm 2.2 years and BMI of 21.6 \pm 1.8 kg/m²) were recruited to evaluate the relationship between SUV_{mean} and NIRTRS parameters. The results demonstrated that [total-Hb]_{sup} and $\mu_{s'sup}$ under warm environment is significantly correlated with the SUV_{mean} under cold environment but only in the supraclavicular fossa, a region of BAT located (29). Other parameters, except adjStO₂ specifically in the supraclavicular region, also showed significant correlation with SUVmax and SUV_{mean} under cold environment (Table 2). Collectively, the

								Corr	Correlation (r ²)						
						Supraclavic	Supraclavicular region				De	Deltoid (forearm) region	m) region		
Ref. no.	Instrument	2	Study design	Parameters	μs'	Oxy-Hb	Deoxy-Hb	Total-Hb	StO ₂	AdjStO ₂	$\mu_{s'}$	Oxy-Hb	Deoxy-Hb	Total-Hb	StO ₂
Nirengi et al. (29)	NIR _{TRS}	1	Cross- sectional	SUV _{mean}	0.41*	0.52*	0.48*	0.53*	0.14*	0.07	0.08	0.25	0.21	0.20	0.08
				SUV _{max}	0.44*	0.52*	0.49*	0.53*	0.18*	0.08	0.04	0.27	0.23	0.12	0.05
The correlation coefficients of tissue-oxygenated hemoglobin (oxy-Hb), deoxygenated Hb (deoxy-Hb), total Hb (total-Hb), tissue Hb oxygen saturation (StO ₂₋), and optical scattering parameters as determined by NIR _{TRS} under thermoneutral conditions and the uptake of ¹⁸ F-fluorodeoxy glucose (FDG) or code-induced thermogenesis are presented. μ_s' , reduced scattering coefficient determined by NIR _{TRS} : adjusted StO ₂ in the supraclavicular region relative to the deltoid muscle; SUV _{mean} , the mean standardized uptake value of the radioactivity (SUV) assessed by ¹⁸ FDG–PET/CT; SUV _{mean} , the maximal SUV assessed by ¹⁸ FDG–PET/CT; Ref. no., reference number is obtained from the list of references in this paper.	fficients of tissue- tions and the upta ing coefficient dete il SUV assessed by	xygenat ke of ¹⁸ F mined i ¹⁸ FDG-	ted hemoglobin fluorodeoxy glu by NIR _{TRS} ; adjus -PET/CT; BAT vc	(oxy-Hb), deoxyger icose (FDG) or cold- sted StO ₂ in the sup blume, evaluated by	nated Hb (induced th raclavicula summating	deoxy-Hb), to ermogenesis a r region relativ 1 all voxel volur	eoxygenated Hb (deoxy-Hb), total Hb (total-Hb), or cold-induced thermogenesis are presented. the supraclavicular region relative to the deltoid m ated by summating all voxel volume with SUV >2.0	tissue Hb oxy scle; SUV _{mean} assessed by ¹	gen saturati , the mean ^s FDG–PET/	on (StO ₂ .), ar standardized u CT; Ref. no., r	nd optical s iptake value eference nui	scattering pare of the radioac mber is obtain	ameters as detern stivity (SUV) assee ed from the list of	mined by NIR _T sed by ¹⁸ FDG- references in th	_{RS} under -PET/CT; his paper.

[total-Hb]_{sup}, [oxy-Hb]_{sup}, and [deoxy-Hb]_{sup} show significant correlations to BAT activity determined by ¹⁸FDG–PET/CT. StO_{2sup}, however, proved to be inferior, and adjStO₂ was completely insensitive to changes in BAT activity (**Table 2**). A 2-h cold exposure doubles the BAT blood flow (32), which appeared to be inconsistent with our observations. In an attempt to interpret this apparent discrepancy, we speculated that NIR_{TRS} parameters are susceptible to the change in the

that NIR_{TRS} parameters are susceptible to the change in the volume but less sensitive to the change in the flow. The blood flow can be calculated by multiplying the blood flow velocity by the cross-sectional area of the vessel (the volume). There is presently a lack of NIR_{TRS}-derived data concerning blood flow in BAT. Alternatively, while muscle blood flow increases by some 10-fold during peak exercise (51, 52), [total-Hb], an indicator of blood volume, monitored by NIR_{TRS} elevates only 1.1-fold (43). Thus, the change in blood volume measurable by NIR_{TRS} is marginal compared to increases in blood flow velocity during metabolic activation. Collectively, both $\mu_{s'sup}$ and [total-Hb]_{sup} were evaluated using the NIR_{TRS} technique can be applied to assess BAT-d in humans and are equivalent to the active BAT intensity or the BAT volume, as measured by ¹⁸FDG-PET/CT under cold environment (29). Usually, to assign participants into high-BAT (BAT [+]) and low-BAT (BAT [-]) groups, a cutoff value of 2.0 for SUV_{mean} is applied. The accuracy of [total-Hb]_{sup} or $\mu_{s'sup}$ in representing BAT activity was analyzed. Accordingly, the area under the receiver operating characteristic (ROC) curve was determined by SUV_{mean} of 2.0 nearest to (0, 1) for $\mu_{s'sup}$ and [total-Hb]_{sup} (29). When 74.0 μ M or 6.8 cm⁻¹ was selected as the cutoff value, meaning that [total-Hb]_{sup} or $\mu_{s'sup}$ larger than 74.0 μ M or 6.8 cm⁻¹, respectively, are regarded as BAT [+], ROC analysis yields results that are very good when compared to SUV_{mean} (29).

Correlation Between Parameters Determined by NIR_{TRS} and CIT

It is well-documented in rodents that the upregulation of the UCP-1 in brown adipocytes upon cold increases whole body oxygen consumption, termed as CIT. Although several authors have shown that CIT does not always reflect BAT activity (53), that the contribution of BAT thermogenesis to CIT is marginal (\sim 10 kcal/day when maximally activated) (54), and no correlation is found between BAT and CIT (55), the magnitude of CIT is related to the amount of BAT activity and/or volume (9, 56-59). Thus, having already observed a significant correlation between NIR_{TRS} parameters and SUV_{mean} assessed by ¹⁸FDG-PET/CT (29) in humans, the validity of NIR_{TRS} parameters were further examined by comparing [total-Hb]_{sup} and $\mu_{s'sup}$ to CIT in healthy individuals [age of 20.0 (median), 19.0 (the first quartile), and 21.0 (the third quartile) year; BMI of 24.2 (21.6, 25.7) kg/m²] with [total-Hb]_{sup} of $50-125 \,\mu\text{M}$ in a cross-sectional study (37). The participants sat for 20 min at 27°C with a light clothing, and NIR_{TRS} measurements were conducted for 5 min after fasting for 6-12 h. Then, the participants were tested at room temperature of TABLE 3 | Relationship between parameters determined by near-infrared time-resolved spectroscopy (NIR_{TRS}) under thermoneutral or cold condition and pulmonary oxygen uptake during cold exposure.

								Correlation	n (<i>r</i> ²)					
					Supr	aclavicula	r region			D	eltoid (fore	arm) region		
Ref. no.	Instrument	n	Study design	Parameters	μ_{s}'	Oxy-Hb	Deoxy-Hb	Total-Hb	StO ₂	μ_{s}'	Oxy-Hb	Deoxy-Hb	Total-Hb	StO ₂
Nirengi et al. (37)	NIR _{TRS}	18	Cross- sectional	CIT 27°C	0.00	0.38*	0.49*	0.41*	0.14	0.09	0.06	0.04	0.06	0.04
				CIT 19°C	0.08	0.24*	0.16	0.23*	0.01	0.15	0.02	0.09	0.04	0.06

Results of NIR_{TRS} parameters [tissue-oxygenated hemoglobin (oxy-Hb), deoxygenated Hb (deoxy-Hb), total Hb (total-Hb), tissue Hb oxygen saturation (StO₂,), and optical scattering parameters] and cold-induced thermogenesis (CIT) for healthy men under thermoneutral (27°C) or cold condition (19°C) are presented.

 ${\mu_{\text{s}}}'\text{, reduced scattering coefficient determined by NIR_{\text{TRS}}}$

*P < 0.05.

19°C for 2 h with their feet intermittently placed on a clothwrapped ice for ~4 min every 5 min (9). A significant correlation was found between [total-Hb]_{sup}, [oxy-Hb]_{sup}, or [deoxy-Hb]_{sup} only under thermoneutral conditions and CIT, but not between adjStO₂ or $\mu_{s'sup}$ and CIT (37). In contrast, previous studies reported a significant correlation in the supraclavicular region between the adjStO₂ and oxygen consumption by BAT under cold environment and between $\mu_{s'sup}$ and SUV_{max} and SUV_{mean} (29, 32). It is noted that a personalized cooling protocol may be a better procedure to induce a CIT response personalized to each individual (60). Collectively, although the [total-Hb]_{sup}, [oxy-Hb]_{sup}, and [deoxy-Hb]_{sup} are markers for BAT activity as evaluated by CIT, the adjStO₂ and $\mu_{s'sup}$ become less sensitive to CIT (**Table 3**).

Relationship Between NIR_{TRS} Parameters in the Supraclavicular Region and Chronological and Anthropometric Data

¹⁸FDG–PET/CT studies have revealed that a significant relationship exists between BAT activity and chronological and anthropometrical parameters (4, 5, 29, 56). Cold-stimulated ¹⁸FDG–PET/CT studies have shown that BAT activity negatively associated with age, sex, BMI, %BF mass, and VFA, and also that BAT was a significant independent determinant of glucose and HbA1c levels, after adjustment for age, sex, and body adiposity (10, 56).


A cross-sectional study using NIR_{TRS} demonstrated that [total-Hb]_{sup} under warm environment was negatively associated with age and body adiposity in 413 Japanese individuals [a median age of 43.0 (33.0–58.0, interquartile range) years, BMI of 22.5 (20.7–24.5) kg/m², and %BF of 26.8% (20.6–32.3%)] in winter (33) (**Figure 1**). With the exception of participants in their 20s, there were no sex-related differences in [total-Hb]_{sup} among the groups tested (**Figure 1**). Multivariate analyses revealed that the %BF and VFA were significantly negatively correlated with [total-Hb]_{sup} (33). The observation of the study was analogous to data acquired using ¹⁸FDG–PET/CT, indicating the usefulness of the parameter [total-Hb]_{sup}. In contrast, μ_s' was found to be significantly negatively correlated with some of the anthropometrical parameters. Together, the [oxy-Hb]_{sup} and

[deoxy-Hb] _{sup} displayed similar accuracy to the [total-Hb]_{sup} for detecting relationships with chronological and anthropometric data (**Table 4**).

Changes in NIR_{TRS} Parameters in the Supraclavicular Region in Response to Ambient Temperature Fluctuations

BAT increases in winter according to ¹⁸FDG-PET/CT studies (4, 56-59). However, one study reported that early winter showed higher BAT activity than late winter or early spring (61). A cross-sectional study (35) reported that [total-Hb]_{sup} was higher in winter than in summer. It has also been reported that a lower average ambient temperature during the 4-6 weeks before the measurement day increases [total-Hb]_{sup} (33). This finding is consistent with previous findings reporting that, while BAT activity rose during the winter, a few months are needed for the increase in BAT activity after a decrease in the air temperature (58). A longitudinal study using the same healthy subjects (men/women, 35/23; mean age, 37.4 years; mean BMI, 22.5 kg/m²; BAT positive rate, 48%) in summer and winter under thermoneutral conditions revealed a significant increase in [total-Hb]_{sup}, but not in the reference region or in the μ_s' from any regions (37). It is unclear why $\mu_{s'sup}$ region did not change between summer and winter. However, it is speculated that if triglyceride droplet in the supraclavicular area decreases in winter owing to the increase in BAT (or beiging), the μ_s' should decrease because WAT (triglyceride droplet) obtains high scattering characteristics (62). Thus, even increasing the mitochondria content (the increase in μ_{s}) would offset the decrease in WAT (the decrease in μ_s'), indicating that [total-Hb]_{sup} may be a better indicator of BAT activity than $\mu_{s'sup}$. We demonstrated seasonal changes in other NIRTRS parameters, which supplement previously published findings in Table 5 (35, 37). The [oxy-Hb]_{sup} and the [total-Hb]_{sup} obtain similar tendency for monitoring seasonal fluctuations in BAT-d. In winter, the decrease in the deltoid [deoxy-Hb] demonstrated that muscle metabolism blunted in winter and that this is less reliable than [oxy-Hb]_{sup} or [total-Hb]_{sup} (Table 5).

Collectively, the $[oxy-Hb]_{sup}$, $[total-Hb]_{sup}$, StO_{2sup} , and $adjStO_2$ can detect seasonal fluctuations of BAT-d, which is

FIGURE 1 [Chronological and sex differences in terms of the concentration of the supraclavicular total hemoglobin [total-Hb], an indicator of brown adipose tissue (BAT). The supraclavicular [total-Hb] potentially containing BAT. The BAT-positive rate (SUV_{max} > 2.0) is indicated in the bottom of the figure based on previous studies (29, 33). The values are presented as means \pm standard error (SE), adjusting for body mass index, body fat ratio, and visceral fat area. [©]SPIE. Reproduced by permission of the publisher. Adopted from reference (33).

TABLE 4 | Relationship between parameters in the supraclavicular region obtained by near-infrared time-resolved spectroscopy (NIR_{TRS}) and anthropometric and body composition parameters.

						Correlati	on (<i>r</i> ²)			
						Supraclavicu	lar region			
Ref. no.	Instrument	n	Study design	Parameters	μ_{s}'	Oxy-Hb	Deoxy-Hb	Total-Hb	StO ₂	AdjStO ₂
Fuse et al. (33)	NIR _{TRS}	413	Cross- sectional	Age	0.00	0.07*	0.04*	0.06*	0.02*	NM
				BMI	0.02*	0.11*	0.12*	0.12*	0.00	NM
				%body fat	0.00	0.16*	0.10*	0.15*	0.02*	NM
				Visceral fat area	0.01*	0.13*	0.12*	0.14*	0.00	NM

The correlation coefficients of brown adipose tissue (BAT)-related parameters [tissue oxygenated hemoglobin (oxy-Hb), deoxygenated Hb (deoxy-Hb), total Hb (total-Hb), tissue Hb oxygen saturation (StO₂,), and optical scattering parameters] as determined by NIR_{TRS} and body composition and anthropometric parameters are presented.

 μ_s' , reduced scattering coefficient determined by NIR_{TRS}; adjStO₂, adjusted StO₂ in the supraclavicular region relative to the deltoid muscle; BMI, body mass index; Ref. no., reference number is obtained from the list of references in this paper; NM, not mentioned.

 $^{*}P < 0.05.$

consistent with the findings of previous 18 FDG–PET/CT studies (4, 56–59).

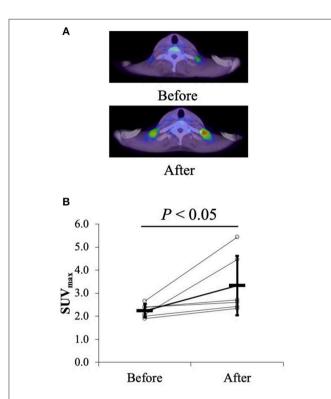
Correlation Between NIRS Parameters in the Supraclavicular Region and Lipid Metabolites

Finding blood biomolecules correlated with BAT characteristics would permit us to advance human BAT studies because PET/CT studies may be difficult owing to ionizing radiation and cold exposures. Studies on lipidomic profiles have clarified BAT and WAT characteristics according to muscle contractions or cold environment (11, 12, 14, 16). BAT characteristics are related to unique profiles of lipid metabolites, such as the concentration of lysophosphatidylcholine-acyl (LysoPC-acyl) C16:0 in humans (63), and the concentration of phosphatidylethanolamine (PE) in the BAT and WAT was decreased in high-fat diet-fed mice (14). The relationships have been examined in the winter and summer between [total-Hb]_{sup}, a parameter for evaluating BAT-d, measured using NIR_{TRS} and plasma lipids in humans (38). Healthy volunteers with [total-Hb]_{sup} values over 74.0 μ M (high BAT-d) were studied (n = 23) and control volunteers with lower [total-Hb]_{sup} values <70.0 μ M (low BAT-d) (n =23) were tested. Ninety-two plasma samples were examined (23 men and 23 women, aged 21–55; BMI, 21.9 \pm 3.0 kg/m²,

							Chan	Change by supplementation or season (%)	mentation	or season ((%				
						Supraclavic	Supraclavicular region					Deltoid region	gion		
Ref. no.	Instrument	r	Study design	Modulation	μs'	Oxy-Hb	Deoxy-Hb		StO ₂	Total-Hb StO $_2$ AdjStO $_2$ μ_s'	μs'	Oxy-Hb	Oxy-Hb Deoxy-Hb	Total-Hb	StO ₂
Nirengi et al. (35)	NIRTRS	40	Cross- sectional	Season	10.0	31.0*	9.2	23.7*	5.9*	5.1*	7.2	28.7	23.7	27.2	0.5
Nirengi et al. (37)	NIRTRS	58	Longitudinal Season	Season	-4.1	16.5*	5.7	12.9*	2.8*	1.5*	-0.3	-0.5	-4.5*	-3.0	1.3*

, reduced scattering coefficient determined by NIR_{This}; adjStO₂, adjusted StO₂ in the supraclavicular region relative to the deltoid muscle; NIR_{ONS}, NIR continuous-wave spectroscopy; Ref. no., reference numbers are obtained from seasonal temperature fluctuations. μs', 9

the list of references in this paper. *P < 0.05.


%BF 23.3 \pm 8.0%), in summer and winter. Using liquid chromatography-time-of-flight-mass spectrometry, plasma lipid profiles were determined. The [total-Hb]_{sup} was determined as a parameter of BAT-d using NIRTRS under thermoneutral conditions. Body composition parameters, such as %BF and VFA, were examined. Univariate and multivariate regression analyses were used to determine factors affecting [total-Hb]_{sup}. In men, there were 37 metabolites showing positive correlations and 20 metabolites showing negative correlations (P < 0.05) with [total-Hb]_{sup}, respectively. After the Q values were obtained by correcting false discovery rate, only androgens (testosterone, androstanedione, dehydroandrosterone, dehydroepiandrosterone, or epitestosterone) showed a significant (Q < 0.05) positive correlation with [total-Hb]_{sup} in men in winter. Multivariate regression analysis revealed that [total-Hb]_{sup} showed a significant correlation with androgens in men and VFA in women in winter. Notably, the [total-Hb]_{sup} showed a significant relationship with androgens in winter in men but did not with any body-composition characteristics, such as whole body and visceral adiposity, which are generally associated with [total-Hb]_{sup}. Although androgens deteriorated the BAT capacity in vitro (64), testosterone induced a preferable effect on BAT activity, body adiposity, and energy expenditure in animal models (65-67). Thus, BAT characteristics might be predicted by measuring plasma androgens as a biomarker in men in the winter. However, further detailed research is needed to discover biomarkers that predict BAT in women.

Changes in NIRS Parameters in the Supraclavicular Region by Thermogenic **Functional Ingredients**

Recent studies have demonstrated that BAT can improve health status and has a protective effect on lifestyle-related diseases (4-11, 13, 14). Consequently, research has been focused on finding methods for effectively enhancing BAT activity and/or mass (9, 11–14). Developed strategies include cold acclimation (9, 11– 14) and acute treatment of β_3 -adrenergic receptor (AR) agonists in humans (68). However, cold exposure intervention would not be easy to apply to daily life (9), and β 3-AR agonists may elicit unpreferable influence, including a risk for hypertension and increased susceptibility to arterial sclerosis (68). Recent investigations have revealed the mechanisms underlying the effects of thermogenic food ingredients. Pathways involved include the transient receptor potential channels (TRP)-BAT axis, a site of adaptive thermogenesis evoked by β -adrenoceptor activation (69). The TRP-BAT axis comprises the activation of cold-sensitive TRP channels located in peripheral tissues, such as the skin and intestines. The activation of TRP channels results in the signal delivery through the afferent nerve to the hypothalamus, which then evokes sympathetic nerve activation within BAT. This causes norepinephrine (NE) release, initiating β-adrenergic tracts to brown adipocytes and eliciting UCP1 upregulation and adaptive thermogenesis (69). In contrast to cold exposure intervention, functional food ingredients may be easily incorporated into daily life. This has been confirmed in animals and humans and includes capsinoids as TRP vanilloid

ē

1 agonists, catechins as TRPA1/V1 agonists, and so on (70). Furthermore, they have the benefit of having no apparent side effects (9, 34, 36, 69, 70).

FIGURE 2 | (A) Typical images of the uptake of ¹⁸F-fluorodeoxy glucose (FDG) (mean standardized uptake value) before and after the 6-weeks capsiate supplementation in the supraclavicular region. **(B)** Maximal standardized uptake value (SUV_{max}) pre- and post-supplementation. [®]SPIE. Reproduced by permission of the publisher. Adopted from reference (34).

Among thermogenic food ingredients, substances, such as capsiate are known to increase BAT activity (9, 70). Previously, the effect of capsiate on [total-Hb]_{sup}, determined by the NIR_{TRS}, was examined (34). Twenty healthy individuals [capsiate group (n = 10) vs. placebo group (n = 10), 20.7 \pm 1.2 years vs. 20.9 ± 0.9 years; BMI, 21.4 ± 1.8 vs. 21.9 ± 1.0 kg/m²; %BF, $21.3 \pm 7.6\%$ vs. $22.9 \pm 8.7\%$] were supplemented either with capsiate (9 mg/day) daily for 8 weeks or a placebo in a paralleled, double-blind manner, and [total-Hb]_{sup} was measured during the treatment period, and for an 8-weeks follow-up period under thermoneutral conditions (34). The study also measured BAT activity with ¹⁸FDG-PET/CT under cold-exposure conditions as previously reported (29). This was only done twice (not every 2 weeks), pre- and post-supplementation, to reduce participant exposure to ionizing radiation. The study demonstrated a parallel change in BAT-d (+46.4%, P < 0.05) pre- and postsupplementation, evaluated as [total-Hb]_{sup}, or as BAT activity (+48.8%, P < 0.05) evaluated as the SUV_{max}, a parameter of the BAT capacity, by ¹⁸FDG-PET/CT, after the supplementation of thermogenic capsiate (Figures 2, 3). During the 8-weeks followup period, the [total-Hb]_{sup} decreased both in the capsiate and placebo groups; the decrease was greater in the capsiate group (albeit not significantly, P = 0.07) compared to that of the placebo group.

Previous studies examined whether a catechins-rich green tea extract increases energy consumption in humans (71– 74). Animal studies have shown that catechin intake increases BAT, the effects of which were abolished when the β -blocker was administrated (75, 76). Thus, we used NIR_{TRS} under thermoneutral conditions to test the effect of sustained catechinrich ingredient (540 mg/day) intake on [total-Hb]_{sup} and investigated potential associations between changes in [total-Hb]_{sup} and body adiposity in 22 healthy women college students [catechin group (n = 10) vs. placebo group (n = 11), 21.1



FIGURE 3 | The concentration of total hemoglobin [total-Hb], an indicator of brown adipose tissue (BAT) in (A) the supraclavicular fossa potentially containing BAT and (B) the deltoid, a control region. Adopted from Nirengi et al. (34). [©]SPIE. Reproduced by permission of the publisher.

							Change	Change by supplementation or season (%)	entation o	r season (%					
						Supraclavicular region	lar region					Deltoid region	gion		
Ref. no.	Instrument	r	Study design	Modulation	μs'	Oxy-Hb	Deoxy-Hb	Total-Hb	StO ₂	AdjStO ₂	µs'	Oxy-Hb	Deoxy-Hb	Total-Hb	StO ₂
Nirengi et al. (34)	NIR _{TRS}	20	Capsinoid	8 weeks on	9.3	49.5*	41.0*	46.4*	1.80	0.80	9.7*	-6.0	-7.5	-6.7	1.1
				8 weeks washout	11.1	-16.4*	-2.5	-12.5*	-4.8*	-4.2*	0.6	-2.1	1.3	-1.4	-0.7
Nirengi et al. (36)	NIRTRS	22	Catechins	12 weeks on	1.8	15.6*	35.1*	21.5*	-4.8*	-10.3*	-9.3	12.4	-8.5	4.0	7.3

the list of references in this paper. *P < 0.05.

 \pm 2.0 years vs. 20.5 \pm 2.1 years; BMI, 21.1 \pm 1.3 vs. 20.9 \pm 1.6 kg/m²; %BF, 24.0 \pm 3.5% vs. 25.8 \pm 7.6%] (36). That study revealed that the [total-Hb]_{sup} was elevated by 19% in the catechin group only after 12 weeks (36). As for the $\mu_{\rm s}'$, which was not documented in the previous study, it did not change during catechin ingestion. There was a significant negative relationship between the enhancement in [total-Hb]_{sup} and the decrease in extramyocellular lipids, an indicator for possible insulin insensitivity (77), in the vastus lateralis muscle determined by proton-magnetic resonance spectroscopy (r = -0.66, P < 0.05).

After further analysis, some of which has not been documented in the previous study (34), capsiate supplementation was shown to cause a significant increase in [total-Hb]_{sup}, [oxy-Hb]_{sup}, and [deoxy-Hb]_{sup} and, upon its withdrawal, a decrease in [total-Hb]_{sup}, [oxy-Hb]_{sup}, StO₂, and adjStO₂ (**Table 6**). Similarly, by the catechins intervention, the [oxy-Hb]_{sup}, [deoxy-Hb]_{sup}, StO₂, and adjStO₂ obtain the same result as the [total-Hb]_{sup} for assessing increases in BAT-d (36). Collectively, studies into functional ingredient supplementation using NIR_{TRS} suggest that [oxy-Hb]_{sup} and [total-Hb]_{sup} are particularly suitable for the evaluation of BAT-d in intervention studies where the use of ¹⁸FDG–PET/CT is not applicable (**Table 6**).

Limitations and Perspectives

The studies using NIRS contain several limitations. Several optical issues should be considered, as the multilayer, inhomogeneous tissue property created by skin, adipose tissue, and muscle may affect in vivo tissue scattering and absorption characteristics and modulation of optical path. In a study (39), the optical characteristics in the deltoid, abdominal, and supraclavicular regions were tested using NIRTRS. The results indicate that there are unique region-specific relationships between [total-Hb] and μ_s' , suggesting that examining the [total-Hb]– μ_{s}' relationship is a practical way to distinguish BAT from other tissues. It could be noted that due to the nature of optical measurements, the placement of the optodes for the NIR_{TRS} must be always secure and in the same area, especially during longitudinal studies. Although NIR_{TRS} is able to quantify tissue oxygen dynamics, the values are affected by optical characteristics underlying subcutaneous adipose tissue in the supraclavicular region, which varies depending on the body composition of subjects, thereby influencing NIR_{TRS} measurements. The reason is that the values obtained is diluted by the lower [Hb] in the subcutaneous adipose tissue (78). The [total-Hb]_{sup} values can be recalculated by considering the thickness of the adipose layer (79).

As no change in the [total-Hb]_{sup} and $\mu_s'_{sup}$ was observed during 2-h conditions at 19°C compared to baseline conditions at 27°C (29), NIR_{TRS} cannot detect changes in BAT characteristics responding to an acute cold exposure in nature because NIR_{TRS} is insensitive to changes in the blood flow (33, 35–37). However, a newly developed NIR_{TRS} system contains six wavelengths (760, 800, 830, 908, 936, and 976 nm), of which the latter three wavelengths are adopted to detect optical characteristics of lipids and water (80). This system could provide information on the changes in tissue water and lipid content in response to acute interventions, such as experimental cold exposure, which cannot be obtained using the conventional three-wavelength NIR_{TRS} system. The new six-wavelength NIR_{TRS} system could contribute further insight on the chronic as well as acute responsiveness of BAT metabolism in humans.

Finally, future studies should obtain further evidence to validate BAT evaluation using NIR_{TRS} because¹⁸FDG-PET/CT measurements include several limitations. BAT mainly consumes intracellular lipids, as well as plasma non-esterified fatty acids and those derived from lipoproteins-whereas ¹⁸FDG-PET/CT measures a glucose analog. The lack of standardization when quantifying BAT by ¹⁸FDG-PET/CT is also a problem. Thus, additional experiments to reach this conclusion are required, such as (1) examining whether NIR_{TRS} parameters actually represent the in vivo mitochondrial density of BAT, or are related to molecules implicated in the vascularization and thermogenesis of BAT [e.g., vascular endothelial-cell growth factor (VEGF), UCP-1, peroxisome proliferator-activated receptor γ coactivator 1- α (PGC1- α)]. This could be carried out by taking human biopsies from the supraclavicular area and examining the relationship between NIRTRS parameters and the molecular signature of this tissue; (2) using other radiotracers beyond ¹⁸F-FDG, such as ¹⁵O, H₂¹⁵O, C¹⁵O, or ¹¹C-acetate, which will allow to measure the real oxygen consumption, tissue perfusion, and metabolic activity of human BAT and which are more likely to represent the thermogenic nature or activity of this tissue than ¹⁸F-FDG; (3) carrying out studies where the kinetics of NIR_{TRS} are related to the kinetics of the metabolic activity of BAT (dynamic PET/CT); (4) using different cooling protocols, aiming to standardize the cooling stress to which individuals are submitted (avoiding potential biases in individual BAT activation); and (5) performing reliability studies to examine whether NIR_{TRS} measures can be replicated in the short and long term.

CONCLUSION

Correlation coefficients are presented for parameters determined by NIRS and ¹⁸FDG–PET/CT, CIT, or anthropometric and body composition parameters. Significant correlations were found between [total-Hb]_{sup}, [oxy-Hb]_{sup}, [deoxy-Hb]_{sup}, $\mu_{s'sup}$, StO_{2sup}, or adjStO₂ and ¹⁸FDG–PET/CT indicators; between [total-Hb]_{sup}, [oxy-Hb]_{sup}, or [deoxy-Hb]_{sup} and

REFERENCES

- Chondronikola M, Sidossis LS. Brown and beige fat: from molecules to physiology. *Biochim Biophys Acta*. (2019) 1864:91–103. doi: 10.1016/j.bbalip.2018.05.014
- Davis TRA, Johnston DR, Bell FC, Cremer BJ. Regulation of shivering and nonshivering heat production during acclimation of rats. *Am J Physiol Legacy Content*. (1960) 198:471–5. doi: 10.1152/ajplegacy.1960.198.3.471
- Rothwell NJ, Stock MJ. A role for brown adipose tissue in diet-induced thermogenesis. *Nature*. (1979) 281:31–5. doi: 10.1038/281031a0
- Saito M, Okamatsu-Ogura Y, Matsushita M, Watanabe K, Yoneshiro T, Nio-Kobayashi J, et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. *Diabetes*. (2009) 58:1526–31. doi: 10.2337/db09-0530

CIT; and between [total-Hb]_{sup}, [oxy-Hb]_{sup}, or [deoxy-Hb]_{sup} and anthropometric and body composition indicators. The percentage changes in NIR_{TRS} parameters as a consequence of either seasonal temperature fluctuations or dietary supplementation with thermogenic ingredients are presented. Seasonal temperature fluctuations influenced [total-Hb]_{sup}, [oxy-Hb]_{sup}, StO_{2sup}, and adjStO₂. Studies on thermogenic capsinoid or catechin supplementation revealed a significant increase in [total-Hb]_{sup}, [oxy-Hb]_{sup}, and [deoxy-Hb]_{sup}. Upon withdrawal of these supplements, a decrease in [total-Hb]_{sup}, [oxy-Hb]_{sup}, StO_{2sup}, and adjStO₂ was seen. Recently, androgens were found to show a significant positive correlation with [total-Hb]_{sup} only in men in winter. Thus, BAT characteristics might be predicted by measuring plasma androgens as a biomarker in men in the winter.

We conclude that NIR_{TRS} would be a useful non-invasive technology for assessing BAT-d, although further validation is still needed. Among the parameters evaluated by NIR_{TRS}, the [oxy-Hb]_{sup} as well as [total-Hb]_{sup} would be applicable to assessing BAT characteristics in both cross-sectional and interventional studies.

AUTHOR CONTRIBUTIONS

TH, SN, SF, and YK collected the relevant literature and wrote the manuscript. SA, RK, MK, and TE assisted in illustrations, formatting, and collection of literature. NS, MM, MS, and TY coordinated and edited the relevant discussion on PET/CT measurements and BAT.

FUNDING

We have been granted by Japan Society for the Promotion of Science (15H03100 and 19H04061), which is an independent administrative institution, established by way of a national law for the purpose of contributing to the advancement of science in all fields of the natural and social sciences and the humanities.

ACKNOWLEDGMENTS

This work was supported by JSPS KAKENHI (15H03100 and 19H04061).

- Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med. (2009) 360:1509–17. doi: 10.1056/NEJMoa 0810780
- van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JMAFL, Kemerink GJ, Bouvy ND, et al. Cold-activated brown adipose tissue in healthy men. N Engl J Med. (2009) 360:1500–8. doi: 10.1056/NEJMoa 0808718
- Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, et al. Functional brown adipose tissue in healthy adults. N Engl J Med. (2009) 360:1518–25. doi: 10.1056/NEJMoa0808949
- Pfannenberg C, Werner MK, Ripkens S, Stef I, Deckert A, Schmadl M, et al. Impact of age on the relationships of brown adipose tissue with sex and adiposity in humans. *Diabetes*. (2010) 59:1789–93. doi: 10.2337/db10-0004

- Yoneshiro T, Aita S, Matsushita M, Kayahara T, Kameya T, Kawai Y, et al. Recruited brown adipose tissue as an antiobesity agent in humans. J Clin Invest. (2013) 123:3404–8. doi: 10.1172/JCI67803
- Matsushita M, Yoneshiro T, Aita S, Kameya T, Sugie H, Saito M. Impact of brown adipose tissue on body fatness and glucose metabolism in healthy humans. *Int J Obes.* (2014) 38:812–7. doi: 10.1038/ijo.2013.206
- Hanssen MJW, van der Lans AAJJ, Brans B, Hoeks J, Jardon KMC, Schaart G, et al. Short-term cold acclimation recruits brown adipose tissue in obese humans. *Diabetes*. (2016) 65:1179–89. doi: 10.2337/db15-1372
- Hanssen MJW, Hoeks J, Brans B, van der Lans AAJJ, Schaart G, van den Driessche JJ, et al. Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus. *Nat Med.* (2015) 21:863–5. doi: 10.1038/nm.3891
- Blondin DP, Labbé SM, Tingelstad HC, Noll C, Kunach M, Phoenix S, et al. Increased brown adipose tissue oxidative capacity in cold-acclimated humans. *J Clin Endocrinol Metab.* (2014) 99:E438–46. doi: 10.1210/jc.2013-3901
- van der Lans AAJJ, Hoeks J, Brans B, Vijgen GHEJ, Visser MGW, Vosselman MJ, et al. Cold acclimation recruits human brown fat and increases nonshivering thermogenesis. J Clin Invest. (2013) 123:3395–403. doi: 10.1172/JCI68993
- Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med. (2009) 360:1509–17. doi: 10.3201/eid1910.130203
- Borga M, Virtanen KA, Romu T, Leinhard OD, Persson A, Nuutila P, et al. Brown adipose tissue in humans: detection and functional analysis using PET (positron emission tomography), MRI (magnetic resonance imaging), and DECT (dual energy computed tomography). *Methods Enzymol.* (2014) 537:141–59. doi: 10.1016/B978-0-12-411619-1.00008-2
- Chen KY, Cypess AM, Laughlin MR, Haft CR, Hu HH, Bredella MA, et al. Brown adipose reporting criteria in imaging STudies (BARCIST 1.0): recommendations for standardized FDG-PET/CT experiments in humans. *Cell Metab.* (2016) 24:210–22. doi: 10.1016/j.cmet.2016.07.014
- Koskensalo K, Raiko J, Saari T, Saunavaara V, Eskola O, Nuutila P, et al. Human brown adipose tissue temperature and fat fraction are related to its metabolic activity. *J Clin Endocrinol Metab.* (2017) 102:1200–7. doi: 10.1210/jc.2016-3086
- Sun L, Verma S, Michael N, Chan SP, Yan J, Sadananthan SA, et al. Brown adipose tissue: multimodality evaluation by PET, MRI, infrared thermography, and whole-body calorimetry (tactical-ii). *Obesity*. (2019) 27:1434–42. doi: 10.1002/oby.22560
- Thuzar M, Law WP, Dimeski G, Stowasser M, Ho KKY. Mineralocorticoid antagonism enhances brown adipose tissue function in humans: a randomized placebo-controlled cross-over study. *Diabetes Obes Metab.* (2018) 21:509–16. doi: 10.1111/dom.13539
- Baron DM, Clerte M, Brouckaert P, Raher MJ, Flynn AW, Zhang H, et al. *In vivo* noninvasive characterization of brown adipose tissue blood flow by contrast ultrasound in mice. *Circ Cardiovasc Imaging*. (2012) 5:652–9. doi: 10.1161/CIRCIMAGING.112.975607
- Ong FJ, Ahmed BA, Oreskovich SM, Blondin DP, Haq T, Konyer NB, et al. Recent advances in the detection of brown adipose tissue in adult humans: a review. *Clin Sci.* (2018) 32:1039–54. doi: 10.1042/CS20170276
- Franz D, Weidlich D, Freitag F, Holzapfel C, Drabsch T, Baum T, et al. Association of proton density fat fraction in adipose tissue with imaging-based and anthropometric obesity markers in adults. *Int J Obes.* (2018) 42:175–82. doi: 10.1038/ijo.2017.194
- 24. Gifford A, Towse TF, Walker RC, Avison MJ, Welch EB. Characterizing active and inactive brown adipose tissue in adult humans using PET-CT and MR imaging. *Am J Physiol Endocrinol Metab.* (2016) 311:E95–104. doi: 10.1152/ajpendo.00482.2015
- Law JM, Morris DE, Astle V, Finn E, Muros JJ, Robinson LJ, et al. Brown adipose tissue response to cold stimulation is reduced in girls with autoimmune hypothyroidism. J Endocr Soc. (2019) 3:2411–26. doi: 10.1210/js.2019-00342
- El Hadi H, Frascati A, Granzotto M, Silvestrin V, Ferlini E, Vettor R, et al. Infrared thermography for indirect assessment of activation of brown adipose tissue in lean and obese male subjects. *Physiol Meas.* (2016) 37:N118–28. doi: 10.1088/0967-3334/37/12/N118
- Cypess AM, Haft CR, Laughlin MR, Hu HH. Brown fat in humans: consensus points and experimental guidelines. *Cell Metab.* (2014) 20:408–15. doi: 10.1016/j.cmet.2014.07.025

- Kamiya A, Michikami D, Iwase S, Mano T. Decoding rule from vasoconstrictor skin sympathetic nerve activity to nonglabrous skin blood flow in humans at normothermic rest. *Neurosci Lett.* (2008) 439:13–7. doi: 10.1016/j.neulet.2008.04.018
- Nirengi S, Yoneshiro T, Sugie H, Saito M, Hamaoka T. Human brown adipose tissue assessed by simple, noninvasive near-infrared time-resolved spectroscopy. *Obesity*. (2015) 23:973–80. doi: 10.1002/oby.21012
- Cinti S. Transdifferentiation properties of adipocytes in the adipose organ. Am J Phys Endocrinol Metab. (2009) 297:E977–86. doi: 10.1152/ajpendo.00183.2009
- Beauvoit B, Chance B. Time-resolved spectroscopy of mitochondria, cells and tissues under normal and pathological conditions. *Mol Cell Biochem*. (1998) 184:445–55.
- Muzik O, Mangner TJ, Leonard WR, Kumar A, Janisse J, Granneman JG. 15O PET measurement of blood flow and oxygen consumption in cold-activated human brown fat. J Nuclear Med. (2013) 54:523–31. doi: 10.2967/jnumed.112.111336
- 33. Fuse S, Nirengi S, Amagasa S, Homma T, Kime R, Endo T, et al. Brown adipose tissue density measured by near-infrared time-resolved spectroscopy in Japanese, across a wide age range. J Biomed Opt. (2018) 23:1–9. doi: 10.1117/1.JBO.23.6.065002
- 34. Nirengi S, Homma T, Inoue N, Sato H, Yoneshiro T, Matsushita M, et al. Assessment of human brown adipose tissue density during daily ingestion of thermogenic capsinoids using near-infrared time-resolved spectroscopy. J Biomed Opt. (2016) 21:091305. doi: 10.1117/1.JBO.21.9. 091305
- 35. Nirengi S, Sakane N, Amagasa S, Wakui S, Homma T, Kurosawa Y, et al. Seasonal differences in brown adipose tissue density and pulse rate variability in a thermoneutral environment. *J Physiol Anthropol.* (2018) 37:6. doi: 10.1186/s40101-018-0166-x
- 36. Nirengi S, Amagasa S, Homma T, Yoneshiro T, Matsumiya S, Kurosawa Y, et al. Daily ingestion of catechin-rich beverage increases brown adipose tissue density and decreases extramyocellular lipids in healthy young women. SpringerPlus. (2016) 5:1363. doi: 10.1186/s40064-016-3029-0
- 37. Nirengi S, Fuse S, Amagasa S, Homma T, Kime R, Kuroiwa M, et al. applicability of supraclavicular oxygenated and total hemoglobin evaluated by near-infrared time-resolved spectroscopy as indicators of brown adipose tissue density in humans. *Int J Mol Sci.* (2019) 20:2214. doi: 10.3390/ijms20092214
- 38. Fuse S, Sugimoto M, Kurosawa Y, Kuroiwa M, Aita Y, Tomita A, et al. Relationships between plasma lipidomic profiles and brown adipose tissue density in humans. *Int J Obes*. (2020). doi: 10.1038/s41366-020-0558-y. [Epub ahead of print].
- 39. Fuse S, Hamaoka T, Kuroiwa M, Kime R, Endo T, Tanaka R, et al. Identification of human brown/beige adipose tissue using nearinfrared time-resolved spectroscopy. In: *Biophotonics in Exercise Science, Sports Medicine, Health Monitoring Technologies, and Wearables* (2020). doi: 10.1117/12.2545273
- Acosta FM, Berchem J, Martinez-Tellez B, Sanchez-Delgado G, Alcantara JMA, Ortiz-Alvarez L, et al. Near-infrared spatially resolved spectroscopy as an indirect technique to assess brown adipose tissue in young women. *Mol Imaging Biol.* (2019) 21:328–338. doi: 10.1007/s11307-018-1244-5
- Jöbsis FF. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. *Science*. (1977) 198:1264–7. doi: 10.1126/science.929199
- 42. Delpy DT, Cope M. Quantification in tissue near–infrared spectroscopy. *Philos Trans R Soc Lond B Biol Sci.* (1997) 352:649–59. doi: 10.1098/rstb.1997.0046
- Ferrari M, Mottola L, Quaresima V. Principles, techniques, and limitations of near infrared spectroscopy. Can J Appl Physiol. (2004) 29:463–87. doi: 10.1139/h04-031
- 44. Chance B, Dait MT, Zhang C, Hamaoka T, Hagerman F. Recovery from exercise-induced desaturation in the quadriceps muscles of elite competitive rowers. *Am J Phys Cell Physiol.* (1992) 262:C766–75. doi: 10.1152/ajpcell.1992.262.3.C766
- Chance B, Nioka S, Kent J, McCully K, Fountain M, Greenfeld R, et al. Time-resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle. *Anal. Biochem.* (1988) 174:698–707. doi: 10.1016/0003-2697(88)90076-0
- 46. Hamaoka T, McCully KK. Review of early development of nearinfrared spectroscopy and recent advancement of studies on muscle

oxygenation and oxidative metabolism. J Physiol Sci. (2019) 69:799-811. doi: 10.1007/s12576-019-00697-2

- Hamaoka T, Katsumura T, Murase N, Nishio S, Osada T, Sako T, et al. Quantification of ischemic muscle deoxygenation by near infrared timeresolved spectroscopy. *J Biomed Opt.* (2000) 5:102–5. doi: 10.1117/1.429975
- Hamaoka T, McCully KK, Quaresima V, Yamamoto K, Chance B. Nearinfrared spectroscopy/imaging for monitoring muscle oxygenation and oxidative metabolism in healthy and diseased humans. *J Biomed Opt.* (2007) 12:062105. doi: 10.1117/1.2805437
- Gunadi S, Leung TS, Elwell CE, Tachtsidis I. Spatial sensitivity and penetration depth of three cerebral oxygenation monitors. *Biomed Opt Express*. (2014) 5:2896–912. doi: 10.1364/BOE.5.002896
- Chance B, Leigh JS, Miyake H, Smith DS, Nioka S, Greenfeld R, et al. Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in brain. *Proc Natl Acad Sci USA*. (1988) 85:4971–5. doi: 10.1073/pnas.85.14.4971
- Stebbings GK, Morse CI, McMahon GE, Onambele GL. Resting arterial diameter and blood flow changes with resistance training and detraining in healthy young individuals. J Athl Train. (2013) 48:209–19. doi: 10.4085/1062-6050-48.1.17
- Ferreira LF, Hueber DM, Barstow TJ. Effects of assuming constant optical scattering on measurements of muscle oxygenation by nearinfrared spectroscopy during exercise. J Appl Phys. (2007) 102:358–67. doi: 10.1152/japplphysiol.00920.2005
- Blondin DP, Labbé SM, Phoenix S, Guérin B, Turcotte ÉE, Richard D, et al. Contributions of white and brown adipose tissues and skeletal muscles to acute cold-induced metabolic responses in healthy men. J Phys. (2015) 593:701–14. doi: 10.1113/jphysiol.2014.283598
- 54. u Din M, Raiko J, Saari T, Kudomi N, Tolvanen T, Oikonen V, et al. Human brown adipose tissue [150]O₂ PET imaging in the presence and absence of cold stimulus. *Eur J Nucl Med Mol Imaging*. (2016) 43:1878–86. doi: 10.1007/s00259-016-3364-y
- 55. Sanchez-Delgado G, Martinez-Tellez B, Garcia-Rivero Y, Alcantara JMA, Acosta FM, Amaro-Gahete FJ, et al. Brown adipose tissue and skeletal muscle ¹⁸F-FDG activity after a personalized cold exposure is not associated with cold-induced thermogenesis and nutrient oxidation rates in young healthy adults. *Front Physiol.* (2018) 9:1577. doi: 10.3389/fphys.2018.01577
- Yoneshiro T, Aita S, Matsushita M, Kameya T, Nakada K, Kawai Y, et al. Brown adipose tissue, whole-body energy expenditure, and thermogenesis in healthy adult men. *Obesity*. (2011) 19:13–6. doi: 10.1038/oby.2010.105
- Cohade C, Mourtzikos KA, Wahl RL. "USA-Fat": prevalence is related to ambient outdoor temperature-evaluation with 18F-FDG PET/CT. J Nuclear Med. (2003) 44:1267–70.
- Au-Yong ITH, Thorn N, Ganatra R, Perkins AC, Symonds ME. Brown adipose tissue and seasonal variation in humans. *Diabetes*. (2009) 58:2583–87. doi: 10.2337/db09-0833
- Yoneshiro T, Matsushita M, Nakae S, Kameya T, Sugie H, Tanaka S, et al. Brown adipose tissue is involved in the seasonal variation of cold-induced thermogenesis in humans. *Am J Physiol Regul Integr Comp Physiol*. (2016) 310:R999–1009. doi: 10.1152/ajpregu.00057.2015
- Martinez-Tellez B, Sanchez-Delgado G, Garcia-Rivero Y, Alcantara JMA, Martinez-Avila WD, Muñoz-Hernandez M V., et al. A new personalized cooling protocol to activate brown adipose tissue in young adults. *Front Physiol.* (2017) 8:863. doi: 10.3389/fphys.2017.00863
- Kim S, Krynyckyi BR, Machac J, Kim CK. Temporal relation between temperature change and FDG uptake in brown adipose tissue. *Eur J Nucl Med Mol Imaging*. (2008) 35:984–9. doi: 10.1007/s00259-007-0670-4
- 62. Yang Y, Soyemi OO, Landry MR, Soller BR. Influence of a fat layer on the near infrared spectra of human muscle: quantitative analysis based on twolayered monte carlo simulations and phantom experiments. *Opt Express.* (2005) 13:1570–9. doi: 10.1364/opex.13.001570
- Boon MR, Bakker LEH, Prehn C, Adamski J, Vosselman MJ, Jazet IM, et al. LysoPC-acyl C16:0 is associated with brown adipose tissue activity in men. *Metabolomics*. (2017) 13:48. doi: 10.1007/s11306-017-1185-z
- Varlamov O, White AE, Carroll JM, Bethea CL, Reddy A, Slayden O, et al. Androgen effects on adipose tissue architecture and function in nonhuman primates. *Endocrinology*. (2012) 153:3100–10. doi: 10.1210/en.2011-2111
- Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. *Physiol Rev.* (2004) 84:277–359. doi: 10.1152/physrev.00015.2003

- Law J, Bloor I, Budge H, Symonds ME. The influence of sex steroids on adipose tissue growth and function. *Horm Mol Biol Clin Investig.* (2014) 19:13–24. doi: 10.1515/hmbci-2014-0015
- Yanase T, Fan WQ, Kyoya K, Min L, Takayanagi R, Kato S, et al. Androgens and metabolic syndrome: Lessons from androgen receptor knock out (ARKO) mice. J Steroid Biochem Mol Biol. (2008) 109:254–7. doi: 10.1016/j.jsbmb.2008.03.017
- Cypess AM, Weiner LS, Roberts-Toler C, Elía EF, Kessler SH, Kahn PA, et al. Activation of human brown adipose tissue by a β3-adrenergic receptor agonist. *Cell Metab.* (2015) 21:33–8. doi: 10.1016/j.cmet.2014. 12.009
- Cannon B, Nedergaard J. Nonshivering thermogenesis and its adequate measurement in metabolic studies. J Exp Biol. (2011) 214:242–53. doi: 10.1242/jeb.050989
- Saito M, Yoneshiro T. Capsinoids and related food ingredients activating brown fat thermogenesis and reducing body fat in humans. *Curr Opin Lipidol*. (2013) 24:71–7. doi: 10.1097/MOL.0b013e32835a4f40
- Yoneshiro T, Matsushita M, Hibi M, Tone H, Takeshita M, Yasunaga K, et al. Tea catechin and caffeine activate brown adipose tissue and increase coldinduced thermogenic capacity in humans. *Am J Clin Nutr.* (2017) 105:873–81. doi: 10.3945/ajcn.116.144972
- Dulloo AG, Seydoux J, Girardier L, Chantre P, Vandermander J. Green tea and thermogenesis: interactions between catechin-polyphenols, caffeine and sympathetic activity. *Int J Obes Relat Metab Disord*. (2000) 24:252–8. doi: 10.1038/sj.ijo.0801101
- Gosselin C, Haman F. Effects of green tea extracts on non-shivering thermogenesis during mild cold exposure in young men. Br J Nutr. (2013) 110:282–8. doi: 10.1017/S0007114512005089
- Hursel R, Westerterp-Plantenga MS. Catechin- and caffeine-rich teas for control of body weight in humans. Am J Clin Nutr. (2013) 98:1682S-93S. doi: 10.3945/ajcn.113.058396
- Nomura S, Ichinose T, Jinde M, Kawashima Y, Tachiyashiki K, Imaizumi K. Tea catechins enhance the mRNA expression of uncoupling protein 1 in rat brown adipose tissue. J Nutr Biochem. (2008) 19:840–7. doi: 10.1016/j.jnutbio.2007.11.005
- Choo JJ. Green tea reduces body fat accretion caused by high-fat diet in rats through beta-adrenoceptor activation of thermogenesis in brown adipose tissue. J Nutr Biochem. (2003) 14:671–6. doi: 10.1016/j.jnutbio.2003. 08.005
- Hausman GJ, Basu U, Du M, Fernyhough-Culver M, Dodson M V. Intermuscular and intramuscular adipose tissues: bad vs. good adipose tissues. *Adipocyte.* (2014) 3:242–55. doi: 10.4161/adip.28546
- McCully KK, Hamaoka T. Near-infrared spectroscopy: what can it tell us about oxygen saturation in skeletal muscle? *Exerc Sport Sci Rev.* (2000) 28:123–7.
- Yamamoto K, Niwayama M, Kohata D, Kudo N, Hamaoka T, Kime R, et al. Functional imaging of muscle oxygenation using a 200-channel cw NIRS system. In: *BiOS 2001 The International Symposium on Biomedical Optics*, San Jose, CA (2001). p. 142–52.
- Suzuki H, Ohmae E, Yoshimoto K, Wada H, Homma S, Suzuki N, et al. Water and lipid contents measured at various parts of the human body with a sixwavelength time-resolved spectroscopy system. *Opt Tomogr Spectrosc Tissue XIII*. (2019) 10874:108740A. doi: 10.1117/12.2507429

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

The reviewer FA declared a past co-authorship with one of the authors TH to the handling editor.

Copyright © 2020 Hamaoka, Nirengi, Fuse, Amagasa, Kime, Kuroiwa, Endo, Sakane, Matsushita, Saito, Yoneshiro and Kurosawa. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.