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Abstract

Background

Periodontitis is characterized by microbial infection, inflammation, tissue breakdown, and

accelerated loss of alveolar bone matrix. Treatment targeting these multiple stages of the

disease provides ways to treat or prevent periodontitis. Certain glycosaminoglycans

(GAGs) block multiple inflammatory mediators as well as suppress bacterial growth, sug-

gesting that these GAGs may be exploited as a therapeutic for periodontitis.

Methods

We investigated the effects of a synthetic GAG, GM-0111, on various molecular events

associated with periodontitis: growth of Porphyromonas gingivalis (P. gingivalis) and Aggre-
gatibacter actinomycetemcomitans (A. actinomycetemcomitans) pathogenic bacteria
associated with periodontitis; activation of pro-inflammatory signaling through TLR2 and

TLR4 in mouse macrophage RAW 264.7 cells and heterologously expressed HEK 293

cells; osteoclast formation and bone matrix resorption in cultured mouse pre-osteoclasts.

Results

(1) GM-0111 suppressed the growth of P. gingivalis and A. actinomycetemcomitans even
at 1% (w/v) solution. The antibacterial effects of GM-0111 were stronger than hyaluronic

acid (HA) or xylitol in P. gingivalis at all concentrations and comparable to xylitol in A. actino-
mycetemcomitans at�2% (w/v) solution. We also observed that GM-0111 suppressed bio-

film formation of P. gingivalis and these effects were much stronger than HA. (2) GM-0111

inhibited TLR-mediated pro-inflammatory cellular signaling both in macrophage and HEK

293 cells with higher selectivity for TLR2 than TLR4 (IC50 of 1–10 ng/mL vs. > 100 μg/mL,

respectively). (3) GM-0111 blocked RANKL-induced osteoclast formation (as low as 300
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ng/mL) and bone matrix resorption. While GM-0111 showed high affinity binding to RANKL,

it did not interfere with RANKL/RANK/NF-κB signaling, suggesting that GM-0111 inhibits

osteoclast formation by a RANKL-RANK-independent mechanism.

Conclusions

We report that GM-0111 inhibits multiple molecular events involved in periodontitis, span-

ning from the early pro-inflammatory TLR signaling, to pathways activated at the later stage

component of bone loss.

Introduction
Periodontitis is a chronic inflammatory disease characterized by recurrent infection and
inflammation that often progresses into alveolar bone loss. Moderate to severe forms of peri-
odontitis occur in approximately 10%-15% of middle-aged adults worldwide and approxi-
mately 20% of US adults [1–3]. Currently available treatment options are limited. There is a
need for more effective treatments to control this common disease.

In healthy individuals, the periodontium maintains local tissue homeostasis by balancing its
immune response to the local microbial ecosystem. Diseases or drastic alterations of the local
microenvironment in the oral cavity can break this homeostasis, leading to dysbiotic microbial
ecosystems in the periodontium. This process in turn increases the host immune responses,
causes tissue destruction, enhances the proliferation of pathogenic microorganisms, and fur-
ther exacerbates the host immune responses [4,5]. The development of this vicious cycle is key
to the pathogenesis of periodontitis. Therapeutics for periodontitis should aim to break this
continuum and restore tissue homeostasis in the periodontium.

Considerable research has focused on identifying the most pathogenic gingival microorgan-
isms and their molecular targets in host tissues. Currently, over 700 different types of microor-
ganisms living in the oral cavity have been identified [6]. Although protecting tissues from
these massively diverse microorganisms seems daunting, animals have evolved to cope with
this challenge by using innate and acquired immune systems to counter the potentially harmful
invaders. Periodontal tissues are comprised of epithelial and non-epithelial cells that constantly
face microorganisms and their byproducts. These cells use specialized innate pattern recogni-
tion receptors (PRRs) that recognize ligands called pathogen-associated molecular patterns
(PAMPs) [7,8]. Toll-like receptors (TLRs) belong to PRRs that recognize various PAMP mole-
cules produced by dangerous invaders. PAMP-activated TLRSs then signal cells to produce
pro-inflammatory cytokines and cellular responses.

Extensive research on various periodontal pathogenic microorganisms such as Porphyromo-
nas gingivalis (P. gingivalis) and Aggregatibacter actinomycetemcomitans (A. actinomycetemco-
mitans) have brought significant progress to our understanding of their contributions to the
pathogenesis of periodontitis [9–19]. Various bacterial molecular components have been iden-
tified such as lipopolysaccharide (LPS) and fimbriae that interact with host periodontal tissues
and immune systems [20–23]. Bacterial LPS and lipoproteins bind to cell surface PRRs such as
TLR2 and TLR4 to activate canonical nuclear factor κ-light-chain-enhancer of activated B cells
(NF-κB), cellular signaling that leads to the synthesis and release of various pro-inflammatory
cytokines such as IL-1, -6 and TNFα [24–26]. Moreover, recent studies by Nussbaum [27] and
Maekawa[13] have recently proposed that P. gingivalis uses a non-canonical TLR2 signaling
pathway to evade host bactericidal activities, providing important insight into the pathogenesis
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of chronic infection. Sustained inflammation associated with these pathogenic bacteria
enhances the activity of osteoclasts, bone-demineralizing cells [28–30]. The development of
osteoclasts in the periodontium is due to the increased secretion of the receptor activator of
nuclear factor-kappaB ligand, also known as sRANKL, from periodontal ligament cells [31].
Upon binding sRANKL, the receptor (RANK) on pre-osteoclasts in the periodontium causes
them to differentiate and demineralize alveolar bones [32–34].

Glycosaminoglycans (GAGs), such as hyaluronic acid, heparin, and more recently synthetic
GAGs, have been shown to interfere with bacterial growth, TLR-mediated signaling, and
RANKL-induced osteoclast formation [35–41]. GM-0111, a highly sulfated GAG derived from
hyaluronic acid (Fig 1), has been shown to reduce inflammation in animal models of bladder
pain syndrome (previously known as interstitial cystitis) and rosacea [42,43]. In the present
study, we investigated whether GM-0111 disrupts events associated with periodontitis such as
the growth and biofilm formation of P. gingivalis, TLR2/TLR4-mediated cellular activation and
osteoclast formation in vitro. We report that GM-0111 inhibits multiple events spanning the
early pro-inflammatory TLR signaling to molecular pathways activated at the later stage com-
ponent of bone loss.

Materials and Methods

Bacterial culture and scanning electron microscopy
P. gingivalis strain 2561 (ATCC 33277) was cultured at 37°C in an anaerobic chamber. We
used a sterile tryptic soy broth medium containing: 3.0% (w/v) tryptic soy broth, 0.5% (w/v)
yeast extract, 0.05% (w/v) L-cysteine hydrochloride, 5 μg/mL hemin, and 1 μg/mL vitamin K1.
A. actinomycetemcomitans (ATCC 29523) was also cultured at 37°C in an anaerobic chamber
with a few modifications: we used a sterile modified Todd Hewitt broth containing 450 mL of
0.037% Bacto Brain Heart Infusion broth mixed with 10 mL of 12.5% sodium bicarbonate solu-
tion, pH adjusted to 7.8. The CO2 level was maintained by dissolving Alka-Seltzer (Bayer
HealthCare, NJ) in a separate bottle within the culture chamber. Aliquots of an overnight cul-
ture of P. gingivalis and a 3 day culture of A. actinomycetemcomitans were sub-cultured in
fresh medium containing varying concentrations of GM-0111 (detailed method for synthesis
appears in reference [44]), HA, or xylitol. Bacterial growth was determined by measuring the
absorbance at 600 nm as an approximate measure. We found the absorbance values were unre-
liable due to the slightly yellow to brown color hues of compounds in culture medium and
instead used flow cytometry analysis to count bacteria. These samples were diluted in sterile
PBS and sonicated for 5 min in an ultrasonic water bath. Bacteria were then directly counted
using preset forward- and side-scatter parameters set to detect P. gingivalis and A. actinomyce-
temcomitans in the culture medium using the Guava HT-8 flow cytometer (EMDMillipore,
MA) [45].

Fig 1. Chemical structures of GM-0111 (A), HA (B), and xylitol (C).GM-0111 shares the same disaccharide backbone with that of HA.

doi:10.1371/journal.pone.0157310.g001
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To determine the presence of biofilm formation, 100 μL of P. gingivalis overnight culture
was added to 1.5 mL of tryptic broth in sterile 22 mm-glass bottom dishes (Ted Pella #14023–
20, Redding, CA). The dishes were gently rocked at 100 rpm for 36 hrs at 37°C in an anaerobic
chamber. GM-0111 or HA (final concentration of 0, 0.1, 1, 5, and 10% w/v) was added to the
dishes containing bacteria and gently rocked at 100 rpm for an additional 36 hrs at 37°C. The
glass bottoms were removed, washed with a 0.15 M sodium cacodylate solution, and incubated
in a 0.15 M sodium cacodylate solution containing 2% (w/v) glutaraldehyde, 2% (w/v) parafor-
maldehyde, and 0.15% (w/v) alcian blue 8GX (dissolved in 3% acetic acid, pH 2.5) in water for
2 hrs at room temperature. These samples were washed 3 times with 0.15 M sodium cacodylate,
incubated in a solution containing 0.15 M sodium cacodylate and 1% (v/v) osmium tetroxide
for 1 hr at room temperature, and dehydrated in graded ethanol (70%, 20 min; 95%, 20 min;
100%, 30 min). Next, the samples were treated with hexamethyldisilizane for 5 min, desiccated,
and sputter coated with gold using a Desk V HP sputterer (Denton Vacuum, Moorestown, NJ)
under Ar gas at 30 mA for 30 sec. Samples were examined in blinded fashion using a Quanta
600 FEG scanning electron microscope (Field Emission, Inc., Hillsboro, OR).

GM-0111 effects on TLR2- and TLR4-mediated cellular responses
The effects of GM-0111 on TLR2- and TLR4-mediated cellular responses were determined
using two different cell systems: (1) RAW 264.7 mouse macrophage cells endogenously
expressing both receptors along with their signaling complexes and (2) HEK 293 cells heterolo-
gously expressing TLR2 or TLR4 along with their respective co-receptors and reporter
proteins.

1. RAW 264.7 (ATCC # TIB-71) is a mouse macrophage cell line that expresses all the neces-
sary molecules to activate both TLR2 and TLR4 [46–48]. RAW 264.7 cells were maintained
in Dulbeco's modified Eagle medium (DMEM, #SH3028401, GE Healthcare HyClone, UT)
supplemented with 50 U/mL penicillin/50 μg/mL streptomycin (#15140–122, Thermo-
Fisher Scientific, NY), and 10% heat inactivated fetal bovine serum (FBSi, #SH30071, GE
Healthcare HyClone) in 75-cm2 flasks. When the plates reached 50–70% confluency, cells
were collected in PBS, washed 3 times in PBS, resuspended in DMEM supplemented with
2% FBSi. Cells were plated in 96-well plates at 3x103 cells/well and cultured overnight. The
viability of cells was>85% per experiment. The following day, the cell culture medium was
removed, and 180 μL of fresh medium was added to each well. Cells were stimulated with
serially diluted Pam3CSK4 (TLR2 agonist, tlrl-pms, InvivoGen) or LPS derived from the
Escherichia coli (E. coli) K12 strain (TLR4 agonist, tlrl-peklps). A separate set of plates was
prepared with 160 μL of fresh medium, 20 μL of serially diluted GM-0111, and 20 μL of a
fixed concentration of Pam3CSK4 or LPS. After culturing for 24 hrs in the presence of
ligand, the culture medium samples were collected from each plate and assayed for interleu-
kin-6 (IL-6). The concentrations of IL-6 released from RAW 264.7 cells were measured
using Mouse IL-6 ELISA MAX™ Deluxe kits (BioLegend, CA).

2. The inhibitory effects of GM-0111 on TLR2 and TLR4 activation were also tested in HEK--
Blue™ hTLR2 and HEK-Blue™ hTLR4 cells (InvivoGen). These cells are HEK293 cell lines
stably expressing either human TLR2 or TLR4/MD-2/CD14 along with secreted alkaline
phosphatase (SEAP). SEAP is a reporter protein under the transcriptional control by NF-κB
and AP-1. Both HEK-Blue hTLR2 and HEK-Blue hTLR4 were maintained in DMEM sup-
plemented with 50 U/mL penicillin, 50 μg/mL streptomycin, 10% FBSi, and HEK-Blue™
Selection reagent (InvivoGen) in 75-cm2 flasks. Cells grown to 70% confluency were briefly
rinsed with PBS and harvested by scraping in 5 mL of PBS. The viability of cells was>85%
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at the time of harvest. To determine the effects of GM-0111 on TLR2 and TLR4 activation
in cells, 20 μL of varying concentrations of GM-0111 were added into 96-well plates. Then,
160 μL of cells resuspended in DMEM supplemented with 10% FBSi were aliquoted into
each well. HEK-Blue hTLR2 cells were stimulated with 20 μL of Pam3CSK4, and HEK-Blue
hTLR4 cells were stimulated with 20 μL of LPS. The plates were incubated overnight at
37°C. The following day, 5–20 μL of culture medium from each well was tested for TLR acti-
vation by measuring SEAP activity using the Quanti-Blue assay reagent.

Osteoclast culture
The effects of GM-0111 on osteoclast formation were investigated by culturing primary precur-
sor osteoclasts in the presence of varying concentrations of GM-0111. The precursor cells
derived from mouse bone marrow were obtained from a commercial source (PMC-OSC13--
COS, B-Bridge International, CA) and cultured in a 96-well Osteo Assay plate coated with
bone-mimicking, inorganic, crystalline calcium phosphate (Osteo Assay Surface #3989, Corn-
ing, MA). Frozen precursor cells were thawed, rinsed with washing medium, and grown in the
culture medium supplied by the vendor containing 50 ng/mL of macrophage-colony stimulat-
ing factor (M-CSF) and 25 ng/mL of RANKL. Cell culture medium was replaced with fresh
medium on day 3 or 4 after starting the culture. GM-0111 was dissolved in PBS at 100 mg/mL
and further diluted in the osteoclast culture medium before adding to the cells.

Measurements of osteoclasts and activities
Osteoclasts secrete a large amount of tartrate-resistant acid phosphatase (TRAP) and the mea-
surement of TRAP shows osteoclast differentiation and activity [49,50]. To determine the
extent of osteoclast formation from precursor osteoclasts, cells in each well were fixed in for-
malin and stained for TRAP using a commercially available kit (PMC-AK04F-COS, B-Bridge
International). Each well was then photographed at four different areas with a frame size of
2.09 mm by 1.57 mm (Fig 2A). Osteoclasts were quantified by counting multinucleated giant
cells (or TRAP-positive osteoclasts) with a diameter of�86 μm (blue circles, Fig 2B) in each

Fig 2. Measurements of multinucleated giant cells (MNGCs) within eachmicroplate well. A, Four different rectangular areas (orange) were
photographed from each well of the plate.B, Cells with diameters of� 0.086 mm (blue circles) were counted as TRAP-positive MNGCs.

doi:10.1371/journal.pone.0157310.g002
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frame. Separate culture wells were treated with a 10% bleach solution to remove cells from the
osteoplate. Culture wells were dried, and the resulting pits formed by bone resorbing osteo-
clasts were photographed for qualitative comparisons. To quantify the effects of GM-0111 on
the osteoclast differentiation and activity, we determined the enzymatic activity of TRAP pres-
ent in cell culture medium. First, 30 μL of cell culture medium from each well was mixed with
170 μL of chromogenic substrate (PMC-AK04F-COS, b-bridge) and incubated for 3 hrs at
37°C. The amount of the resulting enzymatic product was then determined by measuring the
absorbance at 540 nm using a microplate reader (Tecan Infinite1 F200Pro, Austria).

GM-0111 binding to RANKL
To test whether GM-0111 inhibits RANKL binding to its receptor, RANK, we first measured GM-
0111 binding to RANKL. Heparin binding plates (96-well, cat# 354676, BD Biosciences, MA)
were coated with 200 μL of GM-0111 (10 μg/mL) dissolved in phosphate buffered saline (PBS) by
incubating overnight at room temperature. The following day, the plate was washed with PBS-T
(PBS containing 0.05% Tween-20), blocked with 1% bovine serum albumin (BSA) for 1 hr at
37°C, and then washed. Varying concentrations of recombinant human RANKL (cat# 390-TN,
R&D systems, MN) in blocking solution were added to each well and incubated for 2 hrs at 37°C.
The plate was then washed with PBS-T, and 50 μL of anti-RANKL antibody solution (0.5 μg/mL;
AF626, R&D systems) was added to each well to detect RANKL bound to GM-0111. After 1 hr of
incubation at room temperature, the plate was washed with PBS-T and 100 μL of horseradish per-
oxidase (HRP)-conjugated anti-goat IgG (ThermoScientific, cat# 31402) was added. After 1 hr of
incubation at room temperature, the plate was washed with PBS-T, and the bound HRP was
determined by incubating with 100 μL of 3,30,5,50-tetramethylbenzidine solution (50-77-18, KPL
Inc., MD) as a substrate. The enzymatic reaction was stopped with 1 NHCl, and the absorbance
at 450 nm was measured using a microplate reader (SpectraMax, Molecular Devices, CA). Binding
affinity (KD) was calculated from the plot of the absorbance vs. the concentration of RANKL.

GM-0111 effects on RANKL binding to RANK
The effects of GM-0111 on RANKL binding to its receptor RANK were determined by measur-
ing the interaction between RANKL and RANK in the presence of varying concentrations of
GM-0111. Polyvinyl 96-well plates were coated with 500 ng/well of recombinant human
RANK (cat# 683-RK, R&D systems). Separately, 100 μL of RANKL (500 ng/mL in PBS-T sup-
plemented with 0.1% BSA) was incubated with 100 μL of serially diluted GM-0111 for approxi-
mately 16 hrs at 4°C. The RANKL-GM-0111 mixtures were then transferred to the RANK-
coated wells and incubated for 1 hr at 37°C. The plates were then washed with PBS-T, and the
RANK-bound RANKL was measured following the same steps described for the GM-0111/
RANKL binding studies to detect RANKL. The resulting absorbance of RANKL-RANK bind-
ing was plotted against the GM-0111 concentration.

GM-0111 effects on RANKL-mediated cellular response
To determine the effects of GM-0111 on RANKL-mediated cellular responses, we measured
NF-κB activation in RAW-Blue™ cells (InvivoGen, CA). RAW-Blue cells are RAW 264.7
mouse cells engineered to stably express SEAP reporter protein under transcriptional activa-
tion by NF-κB and AP-1. Cells were maintained in 75-cm2 flasks (#658170, greiner bio-one,
NC) according to the supplier's instructions using DMEM supplemented with 10% FBSi, 50 U/
mL penicillin-50 μg/mL streptomycin, and 200 μg/mL Zeocin™ (#ant-zn, InvivoGen) as the
selection reagent. When the flask reached 50–70% confluency, cells were rinsed once with ster-
ile PBS (#10010–031, Life Technologies, NY), collected in PBS (5 mL/flask) using cell scrapers,
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and washed with PBS 4 times. The viability of the cells was>90% per experiment. To stimulate
cells, 20 μL of serially diluted RANKL solutions were added into 96-well plates, and 180 μL of
cell suspension was then added into each well. In separate sets of experiments, 20 μL of serially
diluted 10x RANKL solutions and 20 μL of a GM-0111 solution were added into 96-well plates,
and 160 μL of cell suspension (5x105 cells/well) was added into each well. Cell suspensions and
compound dilutions were made with DMEM supplemented with 5% FBSi. Cells were stimu-
lated with variable concentrations of RANKL for 48 hrs. Aliquots (5–20 μL) of culture medium
from each well were tested for SEAP activity using the QUANTI-Blue™ (rep-qb, InvivoGen)
alkaline phosphatase detection reagent.

Data Analysis
Biochemical measurements and the number of multinucleated giant cell counts were expressed
as the mean and standard of error of the mean (SEM). All measurement data were tested for
homogeneity with either Bartlett's test or Fligner Killeen test for equal variances as well as visual
inspection of histograms to check the distribution of data [51]. All data sets showed homoge-
neous distribution supporting the use of parametric tests. The mean differences among treated
groups were tested for statistical significance by one-way analysis of variance test followed by
Dunnet's t-test or Tukey's multiple comparison test as post hoc. Ligand binding data—RANKL,
RANK, and GM-0111—were plotted and fitted by the equation Y = a × [Ligand] + b + (Bmax ×
[Ligand])/(KD + [Ligand]) to estimate KD (equilibrium binding constant). Statistical analyses
and curve-fits were performed with GraphPad Prism 5.0.4 (GraphPad Software, Inc.) or R (ver-
sion 3.0.2, The R Foundation for Statistical Computing).

Results

Antibacterial effects of GM-0111 on P. gingivalis and A.
actinomycetemcomitans
To test whether GM-0111 suppresses bacterial growth, we measured the effects of GM-0111 on
P. gingivalis and A. actinomycetemcomitans growth. At 1–2% (w/v), GM-0111 suppressed P.
gingivalis by 50–60% and A. actinomycetemcomitans growth by 20–80%, and completely inhib-
ited the growth of both organisms at 4% (w/v) in the medium (Fig 3A and 3B). The antibacte-
rial effects of GM-0111 were compared with HA, the starting material for the synthesis of GM-
0111, and xylitol, commonly used in the oral cavity to prevent dental caries [52]. HA or xylitol
had negligible effects on P. gingivalis growth, but did inhibit A. actinomycetemcomitans like
GM-0111 (Fig 3A and 3B). These data suggest that GM-0111 is more effective than HA and
xylitol in suppressing the growths of P. gingivalis and is as effective as HA and xylitol in sup-
pressing A. actinomycetemcomitans growth.

GM-0111 suppresses the biofilm formation of P. gingivalis
To determine whether GM-0111 reduces biofilm formation, P. gingivalis was cultured as a bio-
film on a glass surface in the presence of 0–10% GM-0111 and HA. Biofilm formation was
markedly reduced by 0.1% (w/v) GM-0111 (Fig 3C, middle panel), in contrast to 0% GM-0111
and 0.1% HA (Fig 3C, left and right panels). GM-0111 therefore suppresses P. gingivalis growth
both in liquid culture and as a biofilm.

GM-0111 blocks TLR2- and TLR4-mediated cellular responses
To test whether GM-0111 reduces pro-inflammatory cytokine release by inhibiting TLRs, we
measured IL-6 release in RAW 264.7 mouse macrophages that endogenously express TLRs.
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Upon stimulation with the TLR2- or TLR4-specific agonists (Pam3CSK4 or LPS from the E.
coli K strain, respectively), RAW 264.7 cells produced and secreted IL-6 (Fig 4A and 4B). How-
ever, the amount of IL-6 released from RAW 264.7 cells was dose-dependently decreased when
these cells were treated with GM-0111. These data suggest that GM-0111 inhibits TLR-medi-
ated cytokine release.

To delineate the specificity of GM-0111 on TLR2 and TLR4, we measured TLR2- and
TLR4-mediated cellular activation of SEAP reporter protein by NF-κB and AP-1 in HEK-Blue
hTLR2 and HEK-Blue hTLR4 cells. Treatment with GM-0111 demonstrated dose-dependent
inhibition of TLR2- and TLR4-mediated cellular signaling (Fig 4C and 4D) in HEK-Blue cells.
These data are consistent with our RAW 264.7 cell results showing that GM-0111 blocks both
TLR2 and TLR4 signaling. In addition, our data indicate that GM-0111 blocks TLR2-mediated
signaling at sub-μg/mL concentrations compared to the hundreds of μg/mL inhibitory concen-
tration for TLR4-mediated signaling, illustrating that GM-0111 is a TLR inhibitor with high
selectivity to TLR2. Overall, our data demonstrate that GM-0111 inhibits TLR-mediated pro-
inflammatory cellular signaling, which is part of the pathogenesis in periodontitis.

Fig 3. GM-0111 suppresses the growth of P. gingivalis and A. actinomycetemcomitans and inhibits the biofilm formation of P. gingivalis. Flow
cytometry-assisted P. gingivalis (A) and A. actinomycetemcomitans (B) counts, grown in the presence of GM-0111, HA, or xylitol show increased growth
suppression by GM-0111. C, Scanning electron microscopy images of P. gingivalis cultures grown with GM-0111 (0.1% w/v, middle panel) show reduced
biofilm formation compared to control and HA (left and right panels). In A andB, bars and error bars represent mean ± SEM (n = 4). *p < 0.05,
**p < 0.001, NS: not significant (p > 0.05).

doi:10.1371/journal.pone.0157310.g003
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GM-0111 inhibits RANKL-induced osteoclast formation
Pre-osteoclasts derived from mouse bone marrow differentiate into TRAP-positive, multi-
nucleated giant cells (MNGCs or osteoclasts) within four days when cultured in the presence of
M-CSF and recombinant RANKL (rRANKL). When treated with GM-0111, the differentiation
of pre-osteoclasts into MNGCs was markedly suppressed (Fig 5A). The anti-osteoclastic effect
of GM-0111 was apparent even at 300 ng/mL (Fig 5B). These observations are consistent with
our biochemical analysis of TRAP activity in culture medium (Fig 5C), which showed signifi-
cantly reduced osteoclastic activity in GM-0111-treated cells. In addition, the extent of the
bone resorption pits formed by osteoclasts was reduced considerably with GM-0111 treatment
(Fig 5D). These results suggest that GM-0111 blocks RANKL-induced osteoclast formation
and also reduces consequential bone resorption.

Fig 4. GM-0111 blocks TLR2- and TLR4-mediated NF-κB signaling.Mouse macrophage RAW 264.7 cells secrete IL-6 when stimulated with the TLR2
agonist Pam3CSK4 (1 ng/mL) (A) or the TLR4 agonist LPS (1 ng/mL) derived from E. coli (B) (n = 4). GM-0111 blocks these cellular responses by
inhibiting TLR2/TLR4-induced NF-κB activation. HEK-Blue hTLR2 (C) and HEK-Blue hTLR4 (D) cells release reporter protein SEAP (activity measured in
Relative Absorbance Unit, RAU) in response to agonist-induced NF-κB activation (n = 5). Symbols and error bars are mean ± SEM. Dotted horizontal
lines represent the baseline values of SEAP activities in the culture medium.

doi:10.1371/journal.pone.0157310.g004
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Fig 5. GM-0111 prevents multinucleated giant osteoclast formation.Mouse bone marrow derived pre-osteoclast cells cultured with M-CSF (50 ng/
mL) and RANKL (25 ng/mL) transformed into TRAP-positive MNGCs in 4 days (A). The number of MNGCs was significantly decreased when pre-
osteoclast cells were cultured in the presence of GM-0111 (A andB). GM-0111 also reduced TRAP secretion fromMNGCs (C) and the resorption of
bone mimetic matrix with the resulting pit formation (empty gray areas, p inD). Red lines inB represent mean values. In C, bars and error bars are
mean ± SEM (n = 5) and the dotted horizontal line represent the baseline value of TRAP activity (measured in Absorbance Unit, AU) in culture medium.
*p < 0.05 and ***p < 0.001 (compared to the no GM-0111 treated control).

doi:10.1371/journal.pone.0157310.g005
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GM-0111 does not block RANKL-RANK-mediated signaling
To test the possibility that GM-0111 reduces, RANK activation, we measured the concentration
of RANKL bound to a given amount of GM-0111 coated onto 96-well microplates. We found
that the interaction between GM-0111 and rRANKL was strong, with a dissociation constant
(KD) of 3.29 nM (Fig 6A). This binding affinity is similar to monomeric OPG-RANKL binding
(~ 4.24 nM), but is approximately 500-fold stronger than RANKL to RANK binding [53].

The high affinity binding of GM-0111 to RANKL may be a major contributing mechanism,
interfering with the interaction between RANKL and RANK. To further identify whether GM-
0111/RANKL binding can reduce the RANKL-RANK interaction, we first mixed varying

Fig 6. GM-0111 inhibits osteoclast formation independent of RANKL-RANK interaction.GM-0111 binds to RANKL with high affinity (KD = 3.29 nM)
(A), but does not inhibit the interaction between RANKL and its receptor RANK (B) (n = 3). RANKL induces NF-κB-mediated cell signaling in a dose-
dependent manner (C), but GM-0111 does not reduce RANKL-induced NF-κB signaling (C andD) (n = 4). Symbols and bars are mean values. Error bars
represent SEM. *p < 0.05 and ***p < 0.001 (compared to the controls).

doi:10.1371/journal.pone.0157310.g006
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concentrations of GM-0111 with rRANKL and added these mixtures to a 96-well microplate
coated with rRANK. We then measured GM-0111/rRANKL-bound rRANK. As illustrated in
Fig 6B, GM-0111 premixed with rRANKL did not alter the binding properties of rRANKL to
rRANK. These results indicate that GM-0111 does not interfere with RANKL-RANK interac-
tion. The absence of blocking effects of GM-0111 on the RANKL-RANK interaction could be a
consequence of the recombinant RANK protein lacking transmembrane and intracellular sig-
naling domains present in the native protein. We therefore cannot rule out the possibility that
GM-0111 inhibits the RANKL-RANK interaction. We therefore used RAW-Blue cells to moni-
tor the level of downstream SEAP expression to monitor whether GM-0111 inhibits the
RANKL-RANK-NF-κB signaling cascade [33]. When stimulated with RANKL, RAW-Blue cells
produced and secreted SEAP in a dose-dependent manner as demonstrated in Fig 6C. However,
the effects of GM-0111 on RANKL-induced RANK activation were weak, with reduced activa-
tion only observable at very high concentrations (3000 μg/mL, Fig 6C and 6D). These data dem-
onstrate that although GM-0111 does bind to RANKL with high affinity, it does not interfere
with RANKL-RANK binding or RANKL-induced RANK signaling. Thus, at present, the spe-
cific mechanism by which GM-0111 suppresses osteoclast formation remains unclear.

Discussion
Disrupting the balance between a host and its oral microbiota is a critical element contributing
to periodontitis. Therefore, therapeutic strategies to restore host-commensal homeostasis is a
logical approach. Current therapy for periodontitis focuses on removing inflammatory sources
in the peritoneum by scaling and root planing (SRP), which is often followed by supplemental
topical antibiotic treatments to reduce recurring pathogenic bacterial growth in the periodon-
tium. Despite problems of antibiotic resistant microorganisms [54–56], the development of
antibiotics such as tetracyclines, quinolones and nitronidazoles continues as an adjunct treat-
ment to SRP [57–60]. Prolonged use of antibiotics can alter the oral microbiome, leading to the
establishment of an abnormal microbial ecosystem [61,62]. Strategies to reduce the inflamma-
tory mediators will therefore likely reduce such unintended consequences [25].

Emerging evidence supports the idea that periodontitis could be treated by inhibiting pro-
inflammatory molecular signaling pathways such as NF-κB or poly (ADP-ribose) polymerase
(PARP) activation, as demonstrated in an animal model of periodontitis [63,64]. GAGs such as
HA and synthetic GAGs are anti-inflammatory by inhibiting multiple molecular targets of
inflammation. One of these molecular targets include the family of TLRs [65,66]. Bacterial
products such as LPS and lipopetides activate TLRs, which induce pro-inflammatory cytokine
productions through NF-κB activation [25,67–69]. Our data demonstrate that GM-0111 can
inhibit pro-inflammatory cytokine release by blocking TLR2 and TLR4 (Fig 4 and S1 Fig and
S1 File). The enhanced expression of TLRs in the periodontium with periodontitis [7,70], as
well as significant contribution of TLR2 to alveolar bone loss [71–73] suggest that the inhibi-
tory effects of GM-0111 on TLRs may provide a therapeutic benefit in periodontitis.

Alveolar bone is constantly remodeled by the balanced activities of bone-promoting osteo-
blasts and bone-resorbing osteoclasts. However, sustained inflammation in the periodontium
enhances osteoclastic activity breaking this balance and causing net alveolar bone loss [4,74].
Osteoclasts increase in number and activity, due in part, to the increased production of
RANKL by host cells upon prolonged interaction with pathogenic bacteria such as P. gingivalis.
RANKL signals monocytes to differentiate into osteoclasts through RANK-mediated signaling
[11,74]. The anti-osteoclastic effects of GM-0111 demonstrated in our studies suggest that
GM-0111 has the potential to reduce the alveolar bone loss frequently observed in people with
periodontitis.
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Our study did not clarify how GM-0111 inhibits the differentiation of pre-osteoclast to bone-
resorbing osteoclasts. One possibility is that GM-0111, as well as other types of GAGs, directly
binds to RANKL and reduces the activation of RANK. This hypothesis is based on the mecha-
nism of OPG-RANKL interactions, in which free RANKL is directly sequestered by OPG [75,76].
In this scenario, GAGsmay function as a scavenger to reduce the amount of free RANKL. Such a
possibility has been proposed as a mechanism of heparin to reduce RANKL-induced osteoclast
formation [77]. An alternative possibility is that GAG-bound RANKLmay block the interaction
between RANKL and RANK. Crystal structure studies of OPG bound RANKL suggest that the
RANK interacting regions of RANKL become inaccessible upon binding OPG [53,78]. Our data
demonstrates that GM-0111 does not inhibit RANKL to RANK binding, which contradicts this
scenario. RANKL-induced oligomerization of RANK is a critical step for osteoclastogenesis [74].
It is possible that the GM-0111 may prevent oligomerization of RANKL or inhibit RANKL-
induced oligomerization of RANK [74]. It remains difficult to explain the lack of inhibitory effects
of GM-0111 on RANKL-induced NF-κB activation in RAW cells.

Recent advances in our understanding of various diseases affecting bone homeostasis pro-
vided insights into solving these discrepancies. Although RANKL-RANK signaling is critical
for osteoclast formation, cytokines also contribute to osteoclast formation. For example, IL-1β,
IL-6, and TNF-α stimulate RANKL production in osteoblasts [79]. GAGs such as heparin
reduce the effects of these cytokines [80–82]. GM-0111 shares various biochemical properties
of heparin due to its structural similarities and may interact with cytokines affecting osteoclast
formation. Furthermore, recent studies indicate that TLRs play important roles in pathogen-
mediated osteoclast formation. Activation of both TLR2 and TLR4 receptors are linked to
increased expression of RANKL in fibroblast-like synoviocytes in rheumatoid arthritis [83].
Additionally, TLR2 is a necessary component for P. gingivalis-mediated inflammation and
bone loss in mice [84]. Thus, GM-0111 inhibition of TLR2 signaling may provide a clue to the
inhibitory effect of this modified GAG on osteoclastogenesis.

Our data suggest that GM-0111 can reduce RANKL-induced osteoclast formation. But what
is the source of RANKL and which cells express RANK? More specifically, which cells express
high levels of RANKL-RANK that are highly activated by RANKL-RANK interaction? The
Crotti and Giannopoulou groups found that the inflammatory cells within the periodontium
from periodontitis patients express abnormally higher amounts of RANKL and RANK [85,86].
More specifically, both activated B cells and Th1 lymphocytes were suggested as the major
source of RANKL to increase osteoclastogenesis [87]. These cells play important roles in
chronic inflammatory lesions. Therefore, prolonged periodontal inflammation consequent to
bacterial infection likely contributes to the lymphocytic infiltration and the resulting increased
RANKL-RANK promotes osteoclastogenesis.

Biofilm formation by pathogenic bacteria enhances their survival and infection, which con-
tributes to chronic periodontitis. The contributions of different bacterial species in oral micro-
bial ecosystem have been extensively discussed by Socransky and Haffajee [61]. These authors
discuss how successive additions of different types of microbial species contribute to periodon-
titis. For example, an initial colonization of bacteria such as yellow/green/purple microbial
complexes create a microenvironment favorable for orange and red microbial complexes that
are more pathogenic [61,88]. This sequential colonization model has been regarded as impor-
tant for designing therapeutic strategies that should focus on creating a microenvironment
favorable for less harmful symbiotic microorganisms such as removing dental plaques supple-
mented with broad spectrum antibiotics.

In contrast to the sequential colonization model, recent advances in oral microbiology sug-
gest that certain pathogenic microorganisms function as a keystone pathogen [89]. The
Hajishengalis group demonstrated that periodontitis could be induced by an extremely low
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degree of colonization of P. gingivalis without the successive colonization of other bacterial spe-
cies in rodents [90]. The keystone pathogen hypothesis provides a new insight into designing
therapeutic strategies. In a ligature-induced periodontitis model, vaccination of non-human
primates against a specific cysteine protease from P. gingivalis was effective in reducing peri-
odontitis [91]. These findings suggest that dysbiosis caused by P. gingivalis could be a mecha-
nism of periodontitis and targeting a set of specific pathogens may provide therapeutic benefit
without the risks of using antibiotics. Our data demonstrate that GM-0111 can suppress the
growth of P. gingivalis commonly associated with periodontitis. We also showed that GM-0111
suppresses the growth of A. actinomycetemcomitans associated mostly with localized aggressive
periodontitis [19,92]. When used as a prophylactic, GM-0111 may suppress pathogenic bacte-
rial growth and consequently reduce periodontal inflammation (Fig 7).

Fig 7. Proposedmechanism of GM-0111 to treat or to prevent periodontitis.GM-0111 (1) reduces the source of inflammatory mediators by
suppressing P. gingivalis growth and biofilm formation; (2) directly blocks pro-inflammatory signaling mediated by TLRs; and (3) also inhibits alveolar
bone destruction by preventing osteoclast formation.

doi:10.1371/journal.pone.0157310.g007
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Conclusion
In the present study, we investigated the effects of GM-0111 on molecular events associated
with periodontitis, ranging from the anti-inflammatory effects mediated by TLR2 and TLR4,
RANKL-induced osteoclast formation, and pathogenic bacterial growth. We propose that the
combined effects of GM-0111 on these multiple mediators of periodontitis will be beneficial as
a prophylactic or therapeutic for periodontitis. Further studies in animal models of periodonti-
tis will delineate the efficacy as well as the significance of these molecular targets.

Supporting Information
S1 Fig. Flow cytometry analysis showing that GM-0111 does not directly interact with
Pam3CSK4 to inhibit TLR2-mediated cell signaling. (A) GM-0111 functionalizes into pLL-
coated microbeads. GM-0111CF633 functionalized microbeads were highly fluorescent com-
pared to pLL-coated beads (solid line vs. red histogram). (B) GM-0111-functionalized
microbeads were incubated with Pam3CSK4Rhodamine. Histograms show slight increase in
fluorescence of GM-0111-functionalized microbeads mixed with 1000 ng/mL of Pam3CSK4R-
hodamine. (solid line vs. cyan vs. red histogram). (C) Pam3CSK4Rhodamine. nonspecifically
binds to pLL-coated beads. pLL-coated microbeads were mixed with 0 or 1000 ng/mL of
Pam3CSK4Rhodamine (solid line vs. red histogram). (D) GM-0111 does not quench
Pam3CSK4Rhodamine fluorescence. GM-0111 (without the beads) was mixed with
Pam3CSK4Rhodamine and the resulting fluorescence measured. Pam3CSK4Rhodamine fluo-
rescence intensity did not change with GM-0111 (red vs. black bars). Bars are mean and error
bars are S.D. values (n = 4).
(TIF)

S1 File. Does GM-0111 bind to Pam3CSK4?
(DOCX)
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