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Structural insights into the mechanism of
pancreatic KATP channel regulation by nucleotides
Mengmeng Wang 1,2,3,4, Jing-Xiang Wu1,4, Dian Ding1,2,3,4 & Lei Chen 1,2,3,4✉

ATP-sensitive potassium channels (KATP) are metabolic sensors that convert the intracellular

ATP/ADP ratio to the excitability of cells. They are involved in many physiological processes

and implicated in several human diseases. Here we present the cryo-EM structures of the

pancreatic KATP channel in both the closed state and the pre-open state, resolved in the same

sample. We observe the binding of nucleotides at the inhibitory sites of the Kir6.2 channel in

the closed but not in the pre-open state. Structural comparisons reveal the mechanism for

ATP inhibition and Mg-ADP activation, two fundamental properties of KATP channels.

Moreover, the structures also uncover the activation mechanism of diazoxide-type KATP

openers.
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The activity of KATP channels is inhibited by cytosolic ATP
and activated by Mg-ADP1. The opening of KATP channels
leads to the hyperpolarization of the cell, while the inhi-

bition of KATP results in depolarization2. Therefore, KATP chan-
nels translate the cellular metabolic status into the excitability of
the plasma membrane to control the electrical activity of the cell1.
Because of its unique properties, KATP channels play essential
roles in many key physiological processes, such as hormone
secretion2, cardiac preconditioning3, and vasodilation4. The
genetic mutations of genes encoding KATP channels lead to a
spectrum of diseases, ranging from metabolic syndrome to car-
diovascular diseases and CNS disorders, including neonatal dia-
betes or even the Developmental delay, Epilepsy, and Neonatal
Diabetes” (DEND) syndrome5, hyperinsulinaemic hypoglycemia
of infancy5, dilated cardiomyopathy6, familial atrial fibrillation7,
Cantú syndrome8,9 and intellectual disability myopathy
syndrome10. KATP channels are also important drug targets. KATP

inhibitors promote insulin release to treat diabetes. These drugs
include glibenclamide (GBM) and repaglinide (RPG), the so-
called insulin secretagogues11. KATP activators (KATP openers) are
used to pharmacologically activate KATP channels in clinic12.
Diazoxide is an oral KATP opener and has been used in the
treatment of hypoglycemia and hypertension for nearly half a
century12.

Functional KATP channels are hetero-octamers composed of
four Kir6 and four SUR subunits13. Kir6 are inward rectifier
potassium channels that require PI(4,5)P2 for maximum
activity14–18. It harbors the nucleotide-binding pocket which can
bind the inhibitory ATP, and also ADP to a lesser extent14,19.
SUR subunits are ABC transporter-like proteins that undergo
Mg-nucleotide-dependent conformational changes20. The SUR
subunits bind to activating Mg-ADP and drugs, including insulin
secretagogues and KATP openers11,21. Recent advances in cryo-
EM structure determination of KATP channels in the presence of
different ligand combinations by three groups have provided
instrumental information about how KATP channels are assem-
bled from individual subunits, how inhibitory ATP binds the
channel, and how chemically distinct insulin secretagogues bind
at SUR subunits22–28. Moreover, the conformational changes of
the SUR1 subunit upon Mg-nucleotide binding have been
visualized22,26,29. Despite the progress, the fundamental questions
about how KATP channels work, including the mechanism of ATP
inhibition and Mg-ADP activation, remain elusive. In this work,
we obtain the structures of the KATP channel in both the closed
state and the pre-open state, revealing the mechanism of KATP

channel regulation by nucleotides.

Results
Structure determination. PI(4,5)P2 is a signaling lipid important
for KATP channel activity14–18. However, previous attempts of
supplementing soluble PI(4,5)P2 analog PI(4,5)P2diC8 into KATP

cryo-EM sample failed to stabilize the channel in the open state,
and no PI(4,5)P2diC8 density was observed22,26. In contrast, there
are several structures of other Kir family members with PI(4,5)
P2diC8 bound available, including Kir2.230 or Kir3.231. Therefore,
we hypothesized the affinity of PI(4,5)P2diC8 for Kir6.2 might be
lower than those of Kir2.2 or Kir3.2. In agreement with it,
sequence alignments showed several positively charged residues
at the PI(4,5)P2 binding pocket of Kir2.2 or Kir3.2 are replaced by
non-charged polar residues in Kir6 channels (Supplementary
Fig. 1a). Particularly, the positively charged Lys residues were
replaced by Asn at 41 and by His at 175 (Supplementary Fig. 1a).
To enhance the binding affinity of PI(4,5)P2diC8 toward Kir6.2,
we made mutations N41K and H175K on Kir6.2. Neomycin is a
polyvalent cation that can bind and dissociate PI(4,5)P2 from

Kir6.232 and high neomycin sensitivity is correlated with low
PI(4,5)P2 affinity32. Therefore, we exploited the neomycin sensi-
tivity assay to evaluate the PI(4,5)P2 affinity of Kir6.2 mutants.
We found that the H175K mutation significantly reduced the
neomycin sensitivity, indicating an enhanced PI(4,5)P2 affinity
(Fig. 1a and Supplementary Fig. 1b). Further analysis showed that
H175K mutant can be inhibited by ATP and activated by Mg-
ADP and NN414 (Fig. 1b), which is a high-affinity diazoxide-type
KATP opener (Supplementary Fig. 1c)33.

Based on these observations, we made H175K mutation on the
SUR1-Kir6.2 fusion constructs, in which the C terminus of SUR1
is covalently linked to the N terminus of Kir6.2 by a long linker to
ensure the correct 4:4 stoichiometry between Kir6.2 and SUR126,
yielding the H175Kcryo-EM construct. The H175Kcryo-EM construct
can be inhibited by ATP and activated by Mg-ADP and NN414
(Supplementary Fig. 1d). These results suggest that H175Kcryo-EM

recapitulates the basic electrophysiological properties of the wild-
type KATP channel and could be used for structural studies. We
purified H175Kcryo-EM protein in detergent and supplemented
Mg-ADP, PI(4,5)P2diC8, and NN414 into the protein for cryo-
EM sample preparation (Supplementary Fig. 1e, f).

Single particle cryo-EM analysis showed the H175Kcryo-EM

protein shows the “propeller” shape (Fig. 1c–e, and Supplemen-
tary Figs. 2, 3), similar to our previous wild-type KATP protein in
a similar condition26. The consensus refinement revealed that the
peripheral ABC transporter modules of the SUR1 subunit
(TMD1-NBD1-TMD2-NBD2) show motions relative to the
central KATP channel core, consisting of Kir6.2 and SUR1-
TMD0 domains. We further exploited symmetry expansion,
signal subtraction, and local refinement to improve the resolution
of the ABC transporter module to 3.1 Å26 (Supplementary Fig. 2).
The focused 3D classification revealed that the KATP channel core
has obvious conformational heterogeneity at the bundle crossings
of the Kir6.2 channel, showing a close to open transition at the
gate. Subsequent refinement resolved two 3D classes: one class
has a closed and the other has a widened inner helix gate. The
resolution of them reached 3.16 Å and 2.87 Å for the Kir6.2
channel after focused refinement, respectively (Supplementary
Fig. 2). The maps obtained from local refinement were aligned to
consensus maps and combined to yield two composite maps for
model building and interpretation (Supplementary Figs. 2, 3, and
Supplementary Table 1).

Conformational changes of Kir6.2 TMD during channel
opening. The structure of Kir6.2 in the closed state of H175Kcryo-

EM is similar to our previous ATP+ RPG state structure (PDB ID:
6JB1)27, with a root-mean-square deviation (RMSD) of 0.7198 Å
(Fig. 2 and Supplementary Fig. 4). Residues on the M2 helix
tightly seal the pore at the bundle crossing (Fig. 2a, b). The side
chains of L164 and F168 form the gate, where the radius of the
narrowest restriction is below 1 Å (Fig. 2a, b, e). In contrast, in the
structure with widened gate, the inner part of the M2 helix moves
outward (Fig. 2c, d). Particularly, the side chains of L164 and F168
move away from the center, resulting in the dilation of the pore
(Fig. 2c, d, f, g). The radius of the ion permeation pathway at the
bundle crossing of TMD now increases to 3 Å (Fig. 2e). However,
the constriction at the cytosolic G-loop gate still shows a radius of
2.6 Å (Fig. 2e). Although the Kir6.2 channel in this structure is not
fully open compared to the CNG channel (PDB ID: 6WEK)34 and
does not allow the passage of fully hydrated potassium ions with
estimated radii of 3.3 Å35, the channel is clearly in transition to the
open state. Therefore, we tentatively assign the current structure
with the widened gate as the “pre-open” state.

Associated with the expansion of the pore at the center, there
are concomitant movements of the inner part of the Interfacial
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Helix (IH) and M1 helices (Fig. 2f, g). In the closed state, the side
chains of F60 on IH pack against T171 on M2 stabilize the closed
pore (Fig. 2f, g). While in the pre-open state, the side chains of
F60 swing away, which allows the expansion of M2 (Fig. 2f, g). In
contrast to the obvious structural rearrangements of the inner
portion of the pore, the structure of the outer region of the pore,
especially at the selectivity filter, has little change (Fig. 2g).

In the structure of Kir3.2 in complex with PI(4,5)P2diC8
31, the

PI(4,5)P2diC8 molecules bind at the subunit interface at the inner
leaflet of the membrane. We found lipid-like densities in both
closed state and pre-open state of H175Kcryo-EM at similar
positions (Supplementary Fig. 3), but the lack of head group
feature hindered confident identification of their identities.
Therefore, whether PI(4,5)P2diC8 molecules were bound in the
H175Kcryo-EM structures awaits further investigation.

Conformational changes of Kir6.2 CTD during channel
opening. In the closed state, there are ADP densities inside each
nucleotide-binding pocket of Kir6.2 CTD (Supplementary Fig. 3).
The binding mode of the adenosine group of ADP is similar to
that observed previously25–27. In contrast, there is no ADP
density in the pre-open state, and we observed an obvious
structural reorganization around the nucleotide-binding pocket of
Kir6.2 (Fig. 3). The conformation of R50-R54 on the βA-IH loop
has large changes (Fig. 3a, b, and Supplementary Movie 1). The
side chains of Q52 flip from a solvent-exposed conformation to a
buried conformation, while the side chains of E51 move in the
opposite direction, occupying the nucleotide-binding pocket
(Fig. 3b, Supplementary Fig. 4g–h, and Supplementary Movie 1).

During channel opening, there is a 6° anti-clockwise rotation of
CTD viewing from the intracellular side, resulting in the clash
between E51 and the nucleotide-binding pocket in the pre-open
state (Fig. 3c and Supplementary Fig. 4i). Therefore, the structure
of Kir6.2 in the pre-open state is not compatible with the binding
of nucleotides anymore, in agreement with the fact that no ADP
was observed in the nucleotide-binding pocket of the pre-open
state.

Conformational changes of SUR1 TMD0 domain during
channel opening. TMD0 domain of SUR1 has a five-helix-bundle
structure23,25. The N terminal region and TM1 of SUR1 TMD0
interact with the M1 helix of Kir6.2. The extracellular side of
TMD0 harbors the docking groove for ECL3 of SUR1 ABC
transporter module (335–347)27. We observed the outward
movements of the TMD0 domain in the inner leaflet and cyto-
solic region (ICL1, ICL2, and ICL3) during channel opening,
while the structure of TMD0 in the outer leaflet largely stays the
same (Fig. 4a). These observations suggest the outer half of
TMD0 is a structural scaffold that is responsible for tethering
Kir6.2 with the ABC transporter module, while the inner half of
TMD0 has conformational plasticity for regulatory function. In
detail, part of the ICL1 (51-60) of TMD0 is disordered in the
closed state, but it is ordered in the pre-open state and forms
main-chain hydrogen bonding with βA of Kir6.2 CTD
(Fig. 4a, b). In the RPG+ATP bound state structure (PDB ID:
6JB1), K205 on the ATP-binding loop of SUR1 (ABLOS) motif of
ICL3 from TMD0 interacts with β and γ phosphates of ATP27.
But in both the closed state and the pre-open state structures of
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H175Kcryo-EM, we found K205 is away from ADP and does not
form interactions with β phosphate of ADP (Fig. 4a, c, d and
Supplementary Fig. 4 and Supplementary Movie 1). Moreover,
the side-chain densities of residues on the ABLOS motif are not
well resolved, indicating their high mobility. By measuring the
distances between marker atoms of adjacent subunits, we found
coordinated outward movements of Kir6.2 M1 helices (using Cα
of Kir6.2 K67 as marker atoms), the ABLOS motif (using Cα of
SUR1 K205 as marker atoms), and SUR1 ABC transporter
module (using Cα of SUR1 K394 as marker atoms) (Fig. 4c, d).

KCO binds inside the SUR1 subunit in the NBD-dimerized
conformation. The ABC transporter module of SUR1 shows an
asymmetric NBD-dimerized structure as observed previously22,26

(Fig. 5a). We observed that Mg-ADP is bound in the partially
closed consensus site, while Mg-ATP is bound in the fully closed
degenerate site (Fig. 5b, c). Since we did not supplement addi-
tional ATP into the cryo-EM sample, the ATP molecules might
be carried through purification. The excellent local map quality

allowed us to unambiguously identify the NN414 molecule and to
determine its binding pose (Fig. 5d).

NN414 binds inside the transmembrane domain of the
SUR1 subunit. The dioxide group and its adjacent nitrogen atom
of NN414 form polar interactions with H584 on TM11
(Fig. 5e–g). One NH group on the benzothiadiazine ring and
the other NH group between benzothiadiazine ring and
methylcyclopropyl group of NN414 form hydrogen bonds with
D1031 on TM12 (Fig. 5e–g). Several hydrophobic interactions
further stabilize the binding of NN414. The methylcyclopropyl
group of NN414 forms hydrophobic interactions with M1290,
Y1287, and T1286 on TM17 (Fig. 5e–g). The central benzothia-
diazine ring of NN414 is sandwiched by C1072 of TM13, L1030
of TM12, and I552 of TM10 on one side and V555 of TM10 and
L580 of TM11 on the other side (Fig. 5e–g). Rb+ efflux assay
showed that H584A or D1031A mutation does not impair KATP

channel activation induced by metabolic inhibitors, indicating the
correct folding and trafficking of these mutants to the plasma
membrane, but these two mutations abolished the activation by
NN414 in Rb+ efflux assay (Fig. 5h, i). We further found the
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activation of KATP channel by NN414 in the presence of Mg-ATP
is also abolished by H584A or D1031A as measured in the inside-
out patch clamp mode, suggesting their essential role in
the activation process of NN414 (Fig. 5j and Supplementary
Fig. 6a–c).

Discussion
During the preparation of this manuscript, another group
reported the KATP structure composed of SUR1-Kir6.2 double
mutant (C166S, G334D)29, abbreviate as C166S+G334Dcryo-EM.
The C166S+G334Dcryo-EM resembles the pre-open state
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structure presented here, with RMSD of 0.34 Å in the Kir6.2
channel (Supplementary Fig. 7a, b). Moreover, both the
C166S+G334Dcryo-EM and H175Kcryo-EM structures show a
“propeller” architecture, which is similar to our previous struc-
tures of pancreatic KATP in the presence of ATP+ RPG27,
ATP+GBM, or Mg-ADP+NN41426. The “propeller” archi-
tecture is dramatically different from the “quatrefoil” structure of
pancreatic KATP observed in amphipol22 or the vascular KATP

observed in detergent36. The “propeller” architecture allows the
communications between the ABC transporter module of SUR
and Kir6 through the ICL3 (L0), which might be crucial for the
nucleotide regulation of the KATP channel. In great contrast, the
ICL3 is completely disordered in the “quatrefoil” structures. The
physiological relevance of the “quatrefoil” structure awaits further
investigation. In many KATP structures26,27, we observed two
conformations of Kir6.2 CTD, designated as “R” state and “T”
state. There is a 12–13° anti-clockwise rotation from the “R” state
to the “T” state viewed from the cytosolic side. These structures
are similar to the Kir3.2 structure which shows “undocked state”
(similar to “R” state) in the absence of PI(4,5)P2 or docked state
(similar to “T” state) in the presence of PI(4,5)P231. In the current
work, we present the structures of H175Kcryo-EM at both closed
state and pre-open state. The CTD of H175Kcryo-EM in the closed
state is in a similar position to the “T” state of ATP+ RPG
structure (PDB ID: 6JB1) (Supplementary Fig. 4c). While the
CTD of the pre-open structure has an additional 6° anti-clockwise
rotation compared to the “T” state (Fig. 3c). These structural
observations support the idea that KATP opening is associated
with the rotation of Kir6.2 CTD, similar to that proposed for
Kir2.230 or Kir3.2 channel31, indicating a conserved “rotate to
open” mechanism for Kir channel gating.

The cryo-EM density maps showed that in the same sample,
inhibitory nucleotides exclusively bind Kir6.2 in the closed state
but not in the open state. Further structural analysis revealed that
the conformational changes of Kir6.2 during channel opening,
including rotation of CTD and structural rearrangement of the
βA-IH loop, disrupt the inhibitory nucleotide-binding pocket of
Kir6.2 (Fig. 3a, b). Conversely, the wedging of nucleotide inside
the nucleotide-binding pocket of the Kir6.2 channel would block
conformational changes that are required for channel opening,
providing a plausible mechanism for Kir6.2 channel inhibition by
nucleotides. The signals of nucleotide-binding in Kir6.2 CTD are
further transmitted to the central ion channel pore via several
structural elements, including CTD, βA-IH loop, IH, and M2
gating helix (Fig. 3a). Corroborating with our observations, these
structural elements are hotspots for genetic mutation of neonatal
diabetes outside the ATP-binding pocket, such as E51, Q52, and
G53 on βA-IH linker; V59, F60, and V64 on IH helix; A161,
L164, C166, I167 and K170 on M2 (Supplementary Fig. 5)5,
suggesting that mutations in these structural elements might
allosterically affect ATP inhibition and channel gating.

The binding of Mg-ADP to SUR1 induces the asymmetric
dimerization of NBD1 and NBD2, which further drives the clo-
sure between TMD1 and TMD2 of the SUR1 ABC transporter
module. Our structure shows that diazoxide-type KATP openers,
exemplified by NN414, interact with both TMD1 and TMD2
(Fig. 5) to promote the closure of TMD (Fig. 6). The converged
structural changes induced by Mg-ADP and KATP openers sug-
gest their synergistic effect on KATP activation. Moreover, by
aligning the structures of SUR1 in the presence and absence of
NN41429, we found NN414 binding induced the enlargement of
its binding site surrounded by TM10, TM11, TM12, TM14, and
TM17 (Supplementary Fig. 7c), suggesting an induced-fit
mechanism for NN414 binding on SUR1.

Comparing the structure of KATP in the presence of ATP+
RPG (PDB ID: 6JB1)27 with the structure of H175Kcryo-EM in the

closed state (Supplementary Fig. 4a, b and Supplementary
Movie 2), we found that their Kir6.2 channels are all in the same
nucleotide-bound inhibited conformation (Supplementary Fig. 4c
and Supplementary Movie 2). In contrast, there is a large struc-
tural rearrangement of SUR1 due to Mg-ADP and NN414
binding (Supplementary Fig. 4d–f and Supplementary Movie 2).
The conformational changes of the ABC transporter module are
transmitted to the lasso motif and finally arrive at TMD0,
resulting in outward tilting of the inner half of TMD0 (Supple-
mentary Fig. 4d–f, Supplementary Movie 1, and Supplementary
Movie 2). Notably, the important ATP-coordinating residue K205
on the ABLOS motif of SUR127 moves outward and is away from
the inhibitory nucleotide bound on the Kir6.2 (Supplementary
Fig. 4d–f, and Supplementary Movie 1). This would certainly
weaken the binding of inhibitory nucleotides and in turn, pro-
mote channel activation (Fig. 6a, b and Supplementary Movie 1).
During the opening of Kir6.2, there is a further outward tilting of
TMD0 and its associated intracellular loops, leaving more space
for the expansion of Kir6.2 TMD (Figs. 4 and 6b, c and Sup-
plementary Movie 1). Together with the outward movement of
the ABLOS motif on SUR1 ICL3 where E203 locates (Fig. 4),
there is a dramatic flipping movement of Q52 on βA-IH of Kir6.2
(Fig. 3). It is reported that Q52E mutation of Kir6.2 paired with
E203K of SUR1 mutation greatly enhances the ATP sensitivity of
KATP, and oxidative crosslinking of Q52C (Kir6.2) and E203C
(SUR1) mutant could lock the channel in a closed state37. Our
structural observation suggests that double mutations of Q52C
and E203C, on one hand, block the opening conformational
change of Kir6.2 directly and, on the other hand, fix the relative
distance between the SUR1 ABLOS motif and Kir6.2 to inhibit
channel opening.

Kir6 N-terminal peptide (KNtp) plays important role in reg-
ulating KATP function38. KNtp not only enhances the ATP sen-
sitivity of Kir6.2 but also mediates the inhibition of insulin
secretagogue in the absence of nucleotides, possibly by binding to
the central vestibule of SUR and restraining the mobility of Kir6
CTD (Fig. 6a)36,38. In the H175Kcryo-EM construct, the KNtp is
covalently fused to the C-terminus of SUR1 and therefore could
not bind inside the SUR1 central vestibule anymore26,27. How-
ever, the H175Kcryo-EM construct could be inhibited by ATP and
activated by Mg-ADP, as wild-type KATP channel (Supplementary
Fig. 1d). Therefore, our current work uncovers the KNtp-
independent nucleotide regulation mechanism of KATP channels
(Fig. 6). Notably, the protein of C166S+G334Dcryo-EM has free
KNtp, but no density of KNtp is observed in the cryo-EM maps29,
supporting the hypothesis that KNtp is released from its binding
site inside the central cavity of SUR1 and is flexible when the
NBDs of SUR1 are dimerized (Fig. 6). Although the ion per-
meation pathway of the pre-open state does not allow the per-
meation of fully hydrated potassium ions (Fig. 2e), the hallmarks
of KATP channel activation, such as the enlargement of inner helix
gate of Kir6.2, the dissociation of inhibitory nucleotide from
Kir6.2, the rotation of Kir6.2 CTD, and the binding of activator
NN414 and activatory Mg-nucleotides on NBD-dimerized SUR1,
all suggest the current pre-open structure represents the “acti-
vated” state of KATP. It is reported that the open probability of
KATP is less than 100% in the activated condition39, suggesting
that KATP can sample the non-conductive activated state, which
might be represented by the current pre-open structure.

Methods
Cell lines. FreeStyle 293 F (Thermo Fisher Scientific) suspension cells were cul-
tured in SMM 293-TI (Sino Biological Inc.) supplemented with 1% FBS at 37 °C,
with 6% CO2 and 70% humidity. Sf9 insect (Thermo Fisher Scientific) cells were
cultured in Sf-900 III SFM medium (Thermo Fisher Scientific) at 27 °C. AD293
cells (Agilent) were cultured in DMEM basic (Thermo Fisher Scientific)
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supplemented with 10% fetal bovine serum (FBS) at 37 °C, with 6% CO2 and 70%
humidity.

Construct of H175Kcyro-EM. We used cDNA of SUR1 from Mesocricetus auratus
(maSUR1) and cDNA of Kir6.2 from Mus musculus (mmKir6.2) for our studies.
We made a maSUR1-mmKir6.2 H175K fusion construct (H175Kcryo-EM) which is
similar to our previous KATP fusion construct26. There were a 41-residue linker
(VDGSGSGSGSAAGSGSGSGSGSGAAGSGSGSGSGSGAAALE) and an 8-residue
Prescission Protease cleavage site (LEVLFQGP) between SUR1 and Kir6.2 H175K
mutant. The first Met of Kir6.2 was removed to minimize internal translation
initiation. This construct contains C-terminal GFP tag and strep tag which were
used for protein purification. For electrophysiological experiments, Kir6.2 was
cloned into a modified C-terminal GFP-tagged BacMam expression vector and
SUR1 into non-tag BacMam expression vector as described previously26.

Electrophysiology. KATP constructs were transfected into FreeStyle 293 F cells
using polyethylenimine at the cell density of 0.8–1.1 × 106 cells/ml. Cells were
cultured in 293TI medium supplemented with FBS for 24–36 h before recording.
Macroscopic currents were recorded in inside-out mode at +60 mV via Axon-
patch 200B amplifier (Axon Instruments, USA). Patch electrodes were pulled by a
horizontal microelectrode puller (P-1000, Sutter Instrument Co, USA) to 2.0–5.0
MΩ resistance. In inside-out mode, both pipette and bath solution were KINT
buffer, containing (mM): 140 KCl, 1 EGTA and 10 HEPES (pH 7.4, KOH). For
neomycin inhibition, the 50 mM stock neomycin (Sigma) was made in DMSO,
stored at −20 °C and diluted into KINT buffer to the desired concentration. For
NN414 activation, the 50 mM NN414 stock (Sigma) was dissolved in DMSO,
stored at −20 °C and diluted into KINT buffer to final working concentration. ATP
and ADP stocks were prepared on ice, aliquoted and stored at −20 °C. ATP and
ADP were dissolved in water and adjusted to pH 7 by KOH. The nucleotide
concentration was determined by its extinction coefficient and the UV absorption
at 259 nm. Recordings were acquired at 5 kHz and low-pass filtered at 1 kHz. Data
were further analyzed by pClampfit 10.0 software. The fraction of NN414 activa-
tion was calculated as the ratio of the NN414-activated currents over the total
currents of KATP channel.

Rb+ efflux assay. AD293 cells were cultured in six-well plate till 90–95% con-
fluence. Wild type mmKir6.2 with C terminal GFP tag was co-transfected with wild
type maSUR1 or maSUR1 with H584A mutation into AD293 cells. Cells were
continually cultured for 24 h for protein expression and assembly, and GFP signal
was detected by microscope in vivo. Then cells were digested by 0.25% trypsin
supplemented with EDTA and were equally separated into 96-well plate, finally
incubated with 100 μl medium per well. For Rb+ efflux determination, 6 mM Rb+

was supplemented into the medium for Rb+ pre-incubation into the cells. The 96-
well plate was pre-treated by polylysine for about 24 h in 37 °C, and washed out by
DMEM medium without FBS before incubation cells. After incubation in 96-well
plate for 12–14 h, cells were washed by Ringer’s solution (mM): 118 NaCl, 10
HEPES (pH 7.4), 25 NaHCO3, 4.7 KCl, 1.2 KH2PO4, 2.5 CaCl2, and 1.2 MgSO4 and
incubated with Ringer’s solution supplemented with NN414 in different con-
centration for 10 min. As a baseline control, plasmids expressing GFP were
transfected into cells at the same time. To detect whether KATP channels were
functionally expressed, metabolic inhibitors including 3 mM de-O-glucose and
1 μM oligomycin were used to activate KATP channels. After drug treatment, the
supernatants were transferred for Rb+ efflux determination. The cells plated in the
well were dissolved by 1% Triton X-100 for 30 min and also transferred for total Rb
+ quantification. The quantification of Rb+ was carried out on Ion Channel Reader
8000 (Aurora Group Company).

Protein expression and purification. KATP channels were expressed as described
previously and the purification process was carried out with minor modification26.
For protein purification, membrane pellets were homogenized in TBS (20 mM
Tris-HCl pH 7.5, 150 mM NaCl) and solubilized in TBS with 1% digitonin (bio-
synth), supplemented with protease inhibitors (1 mg/ml Leupeptin, 1 mg/ml Pep-
statin, 1 mg/ml Aprotinin, and 1 mM PMSF), 1 mM EDTA and 1mM EGTA for
30 min at 4 °C. Unsolubilized materials were removed after centrifugation at
100,000 g for 30 min and the supernatant was loaded onto two 5 mL columns
packed with Streptactin 4FF resin (Smart Lifesciences). Strep column was first
washed by TBS buffer supplemented with 0.1% digitonin, protease inhibitors
(1 mg/ml Leupeptin, 1 mg/ml Pepstatin, 1 mg/ml Aprotinin), 1 mM EDTA and
1 mM EGTA. Then the columns were washed with TBS supplemented with 0.1%
digitonin, 3 mM MgCl2 and 1 mM ATP. The last washing step buffer was TBS
supplemented with 0.1% digitonin. The KATP octamers were eluted by TBS sup-
plemented with 0.1% digitonin and 8 mM desthiobiotin. The eluate was con-
centrated and loaded onto Superose 6 increase column (GE Healthcare) running
with TBS supplemented with 0.1% digitonin. Peak fractions were collected and
concentrated to A280= 15 (estimated as 15 µM KATP octamers). The protein
purification was completed within 15 h and the purified protein was instantly used
for cryo-EM sample preparation.

Cryo-EM sample preparation. KATP octamers were supplemented with 5 mM
MgCl2, 0.5 mM ADP, 0.5 mM NN414 and 10 μM PI(4,5)P2diC8. Acidic PI(4,5)
P2diC8 (Echelon Biosciences) was dissolved in water and buffered by Tris-HCl (pH
7.5) before usage. The final protein concentration was estimated to be 13.5 µM
octamer. Cryo-EM grids were prepared with Vitrobot Mark IV (FEI) and GIG R1/1
holey carbon grids, which were glow-discharged for 120 s using air before making
Cryo-EM sample grids. 2.5 µl KATP octamers sample was applied to the glow-
discharged grid and then the grid was blotted at blotting force in level 2 for 2 s at
100% humidity and 20 °C, before plunge-frozen into the liquid ethane.

Cryo-EM data acquisition. Cryo-grids were screened on a Talos Arctica micro-
scope (Thermo Fisher Scientific) operated at 200 kV for small-scale data collection.
For grids of high quality, a large data set for KATP channel structure determination
was collected in Titan Krios microscope (Thermo Fisher Scientific) operated at
300 kV.

Images were collected using K2 camera (Gatan) which was mounted post a
Quantum energy filter with 20 eV slit, operated under super-resolution mode with
a pixel size of 1.324 Å at the object plane, and controlled by Serial EM. Defocus
values were set to range from −1.3 μm to −1.8 μm for data collection. The dose
rate on detector was 8 e−s−1A−2. And the total exposure was 50 e−/A2. Each 12 s
movie was dose-fractioned into 50 frames.

Image processing. Movies collected were exposure-filtered, gain-corrected,
motion-corrected, mag-distortion-corrected and binned with MotionCor2-1.3.240,
producing dose-weighted and summed micrographs with pixel size 1.324 Å. CTF
models of dose-weighted micrographs were determined using Gctf-1.1841.
Gautomatch-0.56 (developed by Kai Zhang, MRC-LMB) was used for particles
auto-picking and Gautomatch-0.56 templates were produced by projecting KATP

density map generated from small-scale data collected from 200 kV microscope.
Data processing was initially executed in Relion_3.142. Particles were extracted
from dose-weighted micrographs. After 2 rounds of 2D classification and 3D
classification with C4 symmetry, particles of good quality were re-extracted and re-
centered. The remaining particles were used for 3D refinement and CTF refine-
ment. Upon convergence, the particles were expanded using C4 symmetry and
signals for the SUR1 ABC transporter module were subtracted. The subtracted
particles were refined using local search within 5° range. The refined SUR1 ABC
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transporter particles were subjected to no alignment 3D classification, with K= 4
and T= 20. The 3D classes with good map quality were selected and refined in
cryoSPARC-3.1.0 by non-uniform refinement43, CTF refinement and local non-
uniform refinement to reach a resolution of 3.11 Å (map-A). Focused 3D classi-
fication on Kir6.2 CTD was carried out with K= 4 and T= 20 without alignment.
Two 3D classes with good features but with relative rotations were selected and
refined using non-uniform refinement, CTF refinement and local non-uniform
refinement in cryoSPARC-3.1.0 to generate consensus maps. Examination of their
pore domain revealed they represent the pre-open state and the closed state
respectively. With the mask of Kir6.2 for local refinement, the resolution of the pre-
open state reached 2.87 Å (map-B) and the closed state reached 3.16 Å (map-C).
With the mask for Kir6.2 TMD and SUR1 TMD0, the resolution of the pre-open
state reached 2.94 Å (map-D) and the resolution of the closed state reached 3.19 Å
(map-E). The sharpened local refined maps were aligned to the consensus map and
summed by vop maximum command in UCSF chimera-1.14 to generate composite
maps. Specifically, we summed map-A, map-B and map-D to generate pre-open
state map and map-A, map-C and map-E to generate closed state map. The
composite cryo-EM maps were reboxed to 180 × 180 × 180 and used for inter-
pretation, model building, refinement and illustration.

Model building. The structure of KATP in complex with ATP and RPG (PDB ID:
6JB1)27 or Mg-ADP and NN414 (PDB ID: 5YWC)26 was divided into individual
domains and fitted into the cryo-EM maps using UCSF chimera-1.1444. The model
was further manually rebuilt in Coot-0.8.6 and refined against the maps using
Phenix version 1.18-377745. Permeation pathways were calculated using HOLE246.

Quantification and statistical analysis. Global resolution estimations of cryo-EM
density maps are based on the 0.143 Fourier Shell Correlation criterion47. The local
resolution map was calculated using cryoSPARC48. Rb+ efflux assay curves were
fitted to the Hill equation using GraphPad Prism 5. Electrophysiological data
reported were analyzed with pclampfit 10.0 software. The number of biological
replicates (N) and the relevant statistical parameters for each experiment (such as
mean or standard error) are described in figure legends. No statistical methods
were used to pre-determine sample sizes.

Figure preparation. Figures were prepared using the programs UCSF Chimera
X-0.91 (http://www.rbvi.ucsf.edu/chimerax/54)49, UCSF Chimera-1.14 (http://
www.cgl.ucsf.edu/chimera/48), and PyMOL-1.7.0.5 (http://www.pymol.org/).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Atomic coordinates and cryo-EM maps are deposited in EMDB and PDB as follows: pre-
open state: EMD-32310 and PDB 7W4O; closed state: EMD-32311 and PDB 7W4P.
Previously published structures: 5YWC, 6JB1, and 6WEK are available from PDB. Source
data are provided with this paper. Reagents generated in this study will be made available
on request, but we may require payment and/or a completed Materials Transfer Agreement
if there is potential for commercial application. Source data are provided with this paper.
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