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A bioinspired and biocompatible ortho-sulfiliminyl
phenol synthesis
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Wei-Yin Sun1, Jie Jack Li3 & Jing Zhao1,2

Synthetic methods inspired by Nature often offer unique advantages including mild conditions

and biocompatibility with aqueous media. Inspired by an ergothioneine biosynthesis

protein EgtB, a mononuclear non-haem iron enzyme capable of catalysing the C–S

bond formation and sulfoxidation, herein, we discovered a mild and metal-free C–H

sulfenylation/intramolecular rearrangement cascade reaction employing an internally

oxidizing O–N bond as a directing group. Our strategy accommodates a variety of oxyamines

with good site selectivity and intrinsic oxidative properties. Combining an O–N bond with an

X–S bond generates a C–S bond and an S¼N bond rapidly. The newly discovered cascade

reaction showed excellent chemoselectivity and a wide substrate scope for both oxyamines

and sulfenylation reagents. We demonstrated the biocompatibility of the C–S bond coupling

reaction by applying a coumarin-based fluorogenic probe in bacterial lysates. Finally, the C–S

bond coupling reaction enabled the first fluorogenic formation of phospholipids, which

self-assembled to fluorescent vesicles in situ.
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E
nzymatic C–S bond formation is a common process in
biological system1–5. For example, ergothioneine is
considered as a protectant against oxidative stress6,7. The

key step in its biosynthesis pathway is the mononuclear
non-haem iron enzyme EgtB-catalysed sulfenylation formation
between g-glutamyl cysteine and N-a-trimethyl histidine,
involving a sulfur transfer step and an oxygen transfer step
(Fig. 1a)8,9.

A variety of synthetic methods have been developed to construct
the ortho-functionalized phenols which are highly useful in chemical
industry10, functional materials11 and medicines12–14. These
methods mainly include three kinds of strategies: (a)
rearrangement of aromatic O–X bonds15–20; (b) directing group-
assisted ortho C–H hydroxylation of arenes21–27; and (c) ortho C–H
functionalization of phenols28–32. Although these results have
promoted the development of the phenol chemistry, the more
efficient, economical and biocompatible methods are still in demand.

Inspired by the sulfur transferases and our previous successes in
O–N bond-directed synthesis of ortho-functionalized phenol33–35,
we envisioned that ortho-sulfiliminyl phenols could be obtained by
combining a directing group containing an internally oxidizing
O–N bond with a sulfenylation reagent36,37. The desired
sulfenylation reagent and oxidizing X–N bond needs to
accomplish the following two tasks (Fig. 1b): (i) sulfur
transfer38,39. A well-chosen electrophilic sulfenylation reagent
would facilitate the N-sulfenylation of the X–N moiety and lead
to the formation of an N–S bond to produce intermediate B;
(ii) rearrangement. Pivotal progress was made by Maulide40,41,
Procter32,42, Yorimitsu31 and Peng43 who pioneered the directed,
metal-free, redox-neutral and ortho-functionalization. These
inspiring work suggested that when the substrate captured a
suitable partner, the resulting intermediate may undergo a
sigmatropic rearrangement and rearomatization to product D,
leading to the formation of a C–X bond with concurrent O–X bond
cleavage. Herein, we report a rationally designed and metal-free
coupling method to synthesize sulfilimines via an internal oxidant-
directing strategy for the cascade formation of C–S and S¼N
bonds at room temperature.

Results
Optimization of the reaction conditions. For direct coupling
reactions, especially those catalysed by transition metals, a
directing group typically escorts the metal catalyst towards the
neighbouring ortho-position and dictates the site selectivity.
Directing groups containing N–N bond, S–N bond or O–N bond
are redox versatile and could facilitate inter- or intramolecular
cyclization44–47. At the outset of this study, compounds 1 with
those bonds were firstly screened to couple with a thionating
reagent N-ethylthiophthalimide 2a under previously reported
metal catalysed conditions48–50 for similar reactions (Fig. 2a).
Attempts on substrate 1 with X of N or S yielded no reaction.
Gratifyingly, when X was replaced by O, the resulting
N-phenoxyacetamide 1a concurrently constructed a C–S bond
and an S¼N bond, giving the desired phenolic sulfilimine
product 3aa in 83% yield.

The N–H bond in the O–NHAc moiety was found to be
essential for the reaction as no reaction occurred when N–H was
methylated (Fig. 2a). The need for an electron-donating phenoxy
group as well as an N–H led us to suspect the existence of an
ammonium ion as an essential intermediate in promoting the
cascade reaction. Therefore, we removed the Rh catalyst and N2

protection from the reaction system and the reaction could
occur smoothly under metal-free conditions. Next, different
sulfenylation reagents were screened to explore the cascade
strategy (Fig. 2b). Tolyl sulfides with different leaving groups on

the S-atom such as chloride, tosyl and phthalimidoyl coupled
with N-phenoxyacetamide 1a to afford 3af in 18, 33 and 85%
yield, respectively. With benzenesulfenyl as the leaving group,
however, no reaction took place, suggesting that disulfide remains
intact during the course of the coupling reaction. As the coupling
reaction was most likely mediated by a base, we tested various
bases such as Et3N, DIPEA, DBU, K2CO3, Na2CO3, NaOAc and
CsOAc, where CsOAc gave the highest yield. Switching the
reaction solvent to methanol and using an air atmosphere, the
yield of the phenol product 3aa was further improved to 92%
(Supplementary Information, Supplementary Table 6).

Substrate scope of the reaction. To probe the scope of the
transition metal-free cascade C–S and S¼N bond formation,
we examined a series of oxyamide substrates (Table 1). Replacing
the acetyl group with a bulkier pivaloyl or a benzoyl group only
slightly decreased the yield to 80% (3ba) and 83% (3ca),
respectively. It is worth noting that the sulfilimine substitution
occurred exclusively at the ortho-position of the phenoxyamide
moiety instead of the benzamide moiety (3ca), which indicated
the stronger directing ability of the oxyamide group for
sulfenylation. Substitutions on the phenoxy side of 1 had little
impact on the yield. Electron-donating groups (3da, 3ea, 3ia,
3la), electron-withdrawing groups (3ha), as well as halogen
groups (3fa, 3ga) were well tolerated, which afforded substituted
sulfilimines in 85% to 92% yield. The C–S bond formation
proceeded exclusively at the site ortho to the acetylaminoxy
group. Therefore, for substrate 1 with two different ortho-sites,
two regioisomers with ratio almost 1:1 were produced (3ja:3ja0,
3ka:3ka0, 3ma:3ma0, 3na:3na0). Fusion of a benzene ring as in the
substrate of naphthalene did not affect the reaction yield but
resulted in high regioselectivity, which only functionalized the
ortho C–H at C-1 position, resulting in a 2-naphthol derivative
(3oa).

Under optimal conditions, we explored the substrate scope for
N-substituted phthalimides (Table 2). The reaction proceeded
smoothly for both aliphatic and aromatic thiophthalimides.
Aliphatic groups including trifluoromethyl, linear alkyl and cyclic
alkyl gave high yields (3ab–3ad, 76–92%). For aromatic
thiophthalimides, substitutions on the phenyl ring increased the
reaction yield (3af–3aj43ae). The reaction proceeded well with
either electron-donating groups or halogen-containing substrates.

Synthetic application. To further explore the applicability of our
method as a useful tool in chemical biology, we conducted the
reaction in PBS buffer in air. Gratifyingly, the reaction proceeded
well. When the ratio of DMSO to pH 7.4 1� PBS buffer was
1:19, 81% yield was obtained (Fig. 3a, entry 1). Because of the
excellent chemoselectivity under the mild aqueous conditions, we
tested the compatibility of the C–S bond coupling reaction with
various biomolecules, such as amino acids and proteins. The
addition of a stoichiometric amount of amino acids or proteins in
standard aqueous conditions did not significantly affect the
reaction (Fig. 3a, entry 2B5). Bacterial cell lysates that contained
various endogenous biomolecules were also tested and gave
product 3aa in 73% yield (Fig. 3a, entry 6). When we started from
a non-fluorescent coumarin substrate (1p) to react with 2a under
such biomimetic conditions, a fluorescent turn-on process was
observed. The fluorescent product 3pa (lex/em¼ 360/450 nm) was
obtained in 80% yield (Fig. 3b).

Finally, we further applied the C–S bond coupling reaction
to the first fluorogenic formation of phospholipids. We designed
a non-fluorescent coumarin-functionalized analogue of the lysolipid
1-palmitoyl-sn-glycero-3-phosphocholine 1q and a linear alkyl
sulfenylation reagent 2k. Phospholipids, which are the major
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component of cell membranes, have many important applications
such as drug delivery51,52, construction of micro-reactors53 and
study of protein–membrane interactions54. Pioneered by
Devaraj et al., it has been of increasing significance to develop
methods for the de novo synthesis and assembly of phospholipid
membranes55–58. To apply our mild C–S bond coupling reaction to
the formation of the lipid vesicle under optimal conditions, we
simply mixed compounds 1q and 2k in 0.1 M PBS buffer at pH 7.4
and sonicated the mixture at room temperature for 1 h.
Blue fluorescent lipid vesicles were observed by the fluorescence
microscopy after 3 h at 37 �C (Fig. 4c). We confirmed these vesicles
were lipid membrane structures by staining with the membrane-

staining dye 1,10-dioctadecyl-3,3,30,30-tetramethylindocarbocyanine
perchlorate (DiI), and the orange red fluorescent vesicles were
observed, suggesting that fluorescent phospholipid 3qk vesicles are
lipid membranes (Fig. 4c).

Mechanistic investigation. A combined experimental/computa-
tional study was conducted to investigate the reaction
mechanism. The cross-over experiment was carried out using a
1:1 mixture of N-phenoxyacetamide 1a and its analogue 1a-d8

under the standard conditions, only the intramolecular rearran-
gement products 3aa and 3aa-d7 were obtained (Supplementary
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Table 1 | Substrate scope of aryloxyamides*.
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Table 2 | Substrate scope of N-substituted thiophthalimides*.
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Fig. 36a), suggesting an intramolecular process. The cross-over
experiment between 1c, 1d and 2a confirmed this conclusion
(Supplementary Fig. 36b). To further probe the reaction
mechanism, the potential energy surface of the proposed pathway
was calculated with density functional theory. The computational
results suggested that the reaction proceeds through N-sulfeny-
lation, [2, 3] sigmatropic rearrangement and aromatization
(Supplementary Fig. 37a).

In summary, we have developed a bioinspired strategy for
the synthesis of ortho-sulfiliminyl phenols by internal
oxidation-induced sulfur transfer under mild conditions. This
efficient method enabled the simultaneous construction of C–S
and S¼N bonds. Thanks to the mild nature and good
functionality tolerance of the reaction conditions, a wide range
of oxyacetamides was converted into the corresponding phenols.
For the sulfur donors, not only trifluoromethylthio group (CF3S–)
but also a variety of sulfur-containing groups were able to
participate in C–H sulfenylation. The sulfur donors included
N-substituted thiophthalimides with S-substituted aromatic and
aliphatic groups. Moreover, the method utilized the leaving
acetamide moiety of the internal oxidant/directing oxyacetamide
group to construct a sulfilimine functional group. Our method
was successfully applied to the in situ formation of fluorogenic
phospholipid membranes. To the best of our knowledge, this is

the first fluorogenic phospholipid membranes formation. Further
applications of the fluorogenic phospholipid membranes are
under investigation and will be reported in due course.

Methods
Materials. For NMR spectra of compounds in this manuscript, see Supplementary
Figs 1–32. For the crystallographic data of compound 3aa and 3ab, see
Supplementary Figs 33 and 34 and Supplementary Tables 1–5. For the
representative experimental procedures and analytic data of compounds
synthesized, see Supplementary Methods.

General procedure of C–S bond coupling reaction. Aryloxyamide (1)
(0.2 mmol), N-substituted thiophthalimides (2) (0.24 mmol) and CsOAc
(0.06 mmol or 0.10 mol) were weighed into a 10 ml pressure tube, to which was
added MeOH (1 ml). The reaction vessel was stirred at room temperature for 3 h in
air. Then the mixture was concentrated under vacuum and the residue was purified
by column chromatography on silica gel with a gradient eluent of petroleum ether
and ethyl acetate to afford the corresponding product.

In situ self-assembly of fluorescent vesicles. An aliquot of 10.0 ml of a 4 mM
coumarin-functionalized analogue of the lysolipid 1-palmitoyl-sn-glycero-3-phos-
phocholine 1q solution in 100 mM PBS buffer pH 7.4 was added to 2.0 ml of a
20 mM solution of sulfenylation reagent 2k in CHCl3. Then, 28 ml of a 100 mM
PBS buffer pH 7.4 solution was added, and the mixture was sonicated at
room temperature (RT) for 1 h. after 3 h standing at 37 �C, stained with
membrane-staining dye DiI, 10 min later, the corresponding mixture was observed
by fluorescence microscopy.
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Data availability. The X-ray crystallographic coordinates for structures reported
in this study have been deposited at the Cambridge Crystallographic Data Centre
(CCDC), under deposition numbers CCDC1041436 and CCDC983618. These data
can be obtained free of charge from The Cambridge Crystallographic Data Centre
via www.ccdc.cam.ac.uk/data_request/cif. The authors declare that all other data
supporting the findings of this study are available within the article and
Supplementary Information files, and also are available from the corresponding
author upon reasonable request.
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