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Abstract: In this work, two isothermal sections of the Co-Ta-Si ternary system at 900 ◦C and 1100 ◦C
are constructed in the whole composition range via phase equilibrium determination with the help
of electron probe microanalysis (EPMA) and X-ray diffraction (XRD) techniques. Firstly, several
reported ternary phases G (Co16Ta6Si7), G′′ (Co4TaSi3), E (CoTaSi), L (Co3Ta2Si) and V (Co4Ta4Si7)
are all re-confirmed again. The G′′ phase is found to be a kind of high-temperature compound,
which is unstable at less than 1100 ◦C. Additionally, the L phase with a large composition range
(Co32–62Ta26–36Si10–30) crystallizes with a hexagonal crystal structure (space group: P63/mmc, C14),
which is the same as that of the binary high-temperature λ1-Co2Ta phase. It can be reasonably
speculated that the ternary L phase results from the stabilization toward low-temperature of the
binary λ1-Co2Ta through adding Si. Secondly, the binary CoTa2 and SiTa2 phases are found to form
a continuous solid solution phase (Co, Si)Ta2 with a body-centered tetragonal structure. Thirdly,
the elemental Si shows a large solid solubility for Co-Ta binary compounds while the Ta and Co are
hardly dissolved in Co-Si and Ta-Si binary phases, respectively.

Keywords: Co-based superalloy; phase equilibria; Co-Ta-Si ternary system

1. Introduction

The γ′-Co3(Al, W) phase was found to be highly coherent orientation with the γ-Co
matrix in the Co-based superalloys similar to the Ni-based superalloys, thus making Co-
based superalloys expected to become the next generation of high-temperature structural
materials such as aero-engine blades and turbine disk [1,2]. However, the novel Co-based
superalloys have severe problems, such as high density and poor stability of γ′ phase at
high temperatures, which limit their further development [3–5]. Previous studies have
shown that the addition of alloying elements such as Ni, Si, Cr, V, Ta, Nb, and Ru can
effectively improve the above-mentioned problems and enhance the overall mechanical
properties [6–12]. The addition of Ta can improve the stability, volume fraction and solu-
tion temperature of the γ′ phase, and increase the stress required for the internal slip of
the γ′ phase to improve the high-temperature mechanical properties of the cobalt-based
superalloys [6,9,12]. The addition of Si can improve the oxidation resistance and reduce
the density of the Co-based superalloys while maintaining the stability of γ′-phase and
high-temperature mechanical properties of the superalloys [10,11]. However, interactions
between alloying elements may also cause negative effects. For instance, the excessive
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addition of Si and Ta in Co-based superalloys promotes the formation of detrimental topo-
logical close-packed (TCP) phases that reduce the strength and ductility [13]. Therefore,
theoretical and experimental research on the sub-systems of Co-based superalloy is needed
to understand the interrelationship between composition and crystal structure, the related
work has achieved considerable achievements [14–21]. Among them, the phase diagram is
the theoretical fundamental to guiding the composition design and microstructure control
of Co-based superalloys [22,23]. In order to better understand the relationship between
the composition and microstructure of the critical Co-based superalloy system Co-Ni-
Al-W-Ta-Ti-Hf-Cr-Si [24,25], the phase equilibria of the related sub-system Co-Ta-Si is of
great importance.

The Co-Ta-Si ternary system is constituted by three sub-binary systems: Co-Si [26],
Co-Ta [27] and Ta-Si [28], as shown in Figure 1. The crystal structure information of each
equilibrium phases in the Co-Ta-Si ternary system and three sub-binary systems are shown
in Table 1. Firstly, there are five intermediate phases in the Co-Si binary system, namely
Co3Si, αCo2Si, βCo2Si, CoSi and CoSi2 and six intermediate phases in the Co-Ta binary
system: Co7Ta2, Co6Ta7, CoTa2, λ1-Co2Ta, λ2-Co2Ta and λ3-Co2Ta. Among them, the λ1-
Co2Ta is a high-temperature MnZn2-type Laves phase, which decomposes into the CoTa
and λ2-Co2Ta phases by an eutectic reaction at 1294 ◦C. Additionally, the λ2-Co2Ta and λ3-
Co2Ta phases are the MnCu2- and MgNi2-type Laves phases, respectively. The CoTa2 Laves
phase is a kind of Al2Cu-type, which is the same as that of the Ta2Si. Besides, there are six
intermediate compounds in the Ta-Si binary system, namely Ta3Si, Ta2Si, αTa5Si3, βTa5Si3,
γTa5Si3, and TaSi2. The conversion among αTa5Si3, βTa5Si3 and γTa5Si3 are completed
through crystal transformation.
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Previous studies have reported five ternary compounds in the Co-Ta-Si ternary system:
G (Co16Ta6Si7) [29], G′′ (Co4TaSi3) [30,31], L (Co3Ta2Si) [32,33], E (CoTaSi) [29,34] and V
(Co4Ta4Si7) [34–36]. The G phase was first reported in 1956 by Beattie [37] in A-286 alloy. It
is a kind of ternary silicide with a cubic crystal system (space group: Fm3m) [38], which
was named because it is easy to precipitate at the grain boundaries. Later studies found
that there is a special cube-on-cube orientation relationship between the G phase and
ferrite, which results in low interfacial energy, and thus makes it a potential strengthening
phase of ferritic steel [39]. Additionally, the L phase was detected as a ternary MnZn2-
type Laves phase [32]. Mittal et al. [33] design an alloy with a composition of Co3Ta2Si,
which detected L and an unknown phase. In addition, the E, G′′ and V phases can be
treated as stoichiometric compounds and these phases are also detected in Co-Ti-Si [40]
and Co-Nb-Si [41] systems.

However, as far as we know, the phase equilibrium of the Co-Ta-Si ternary system has
not been reported as far. To better understand the interaction between composition and
crystal structure in Co-based superalloys, also to construct the thermodynamic database
of the Co-V-Al-Ta-Ti-Ni-Cr-Si multisystem, we devote ourselves to systematically ex-
ploring the phase equilibrium relationships in ternary Co-Ta-Si alloys, a sub-system of
Co-based superalloys.

Table 1. The stable solid phases in the Co-Ta-Si ternary systems.

System Phase Pearson
Symbol Prototype Space

Group
Struktur-
bericht Refs.

Co-Si (αCo) cF4 Cu Fm-3m A1 [26]
(εCo) hP2 Mg P63/mmc A3 [26]
Co3Si hP8 Mg3Cd P63/mmc - [26]
αCo2Si oP12 Co2Si Pnma C23 [26]
βCo2Si - - - - [26]

CoSi cP8 FeSi P213 B20 [26]
CoSi2 cF12 CaF2 Fm-3m C1 [26]

(Si) cF8 C(diamond) Fd-3m A4 [26]
Co-Ta Co7Ta2 hR36 BaPb3 R-3m - [27]

λ1-Co2Ta hP12 Zn2Mg P63/mmc C14 [27]
λ2-Co2Ta cF24 Cu2Mg Fd-3m C15 [27]
λ3-Co2Ta hP24 MgNi2 P63/mmc C36 [27]
Co6Ta7 hR13 Fe7W6 R-3m D85 [27]
CoTa2 tI12 Al2Cu I4/mcm C16 [27]

(Ta) cI2 W Im-3m A2 [27]
Ta-Si Ta3Si tP32 Ti3P P63/mcm - [28]

Ta2Si tI12 Al2Cu I4/mcm C16 [28]
αTa5Si3 tI32 Cr5B3 I4/mcm D81 [28]
βTa5Si3 hP16 Mn5Si3 P63/mcm D88 [28]
γTa5Si3 tI32 W5Si3 I4/mcm D8m [28]

TaSi2 hP9 CrSi2 P6222 C40 [28]
(Si) cF8 C(diamond) Fd-3m A4 [28]

Co-Ta-Si CoTaSi (E) oP12 TiNiSi Pnma C23 [34]
Co16Ta6Si7 (G) cF116 Mg6Cu16Si7 Fm3m A1 [29]
Co4TaSi3 (G′′) hP168 Y13Pd40Sn31 P6/mmm - [30]
Co3Ta2Si (L) hP12 MgZn2 P63/mmc C14 [32]

Co4Ta4Si7 (V) tI60 Zr4Co4Ge7 - - [34]

2. Experimental Procedures

High-purity cobalt (>99.9 wt.%, bulk, Beijing Trillion Metals Co., Ltd., Beijing, China),
tantalum (>99.9 wt.%, flake, Beijing Trillion Metals Co., Ltd., Beijing, China) and silicon
(>99.9 wt.%, block, Beijing Trillion Metals Co., Ltd., Beijing, China) were adopted as starting
materials. The samples were prepared by arc-melting using a water-cooled copper crucible
with a non-consumable tungsten electrode under the high purity Ar atmosphere (DHL-1250,
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Sky Technology Development Co, Ltd., Shenyang, China). The weight of each sample
was about 20 g and they were arc-melted at least five times to achieve the compositional
uniformity. The overall weight loss after arc-melting was no more than 0.5 wt.%. Then,
these samples were sealed in capsules via backfilling with Ar and annealed at 900 ◦C and
1100 ◦C, respectively. Considering the high melting point for the elemental Ta, the time of
annealing was set as 90 days for 900 ◦C and 60 days for 1100 ◦C, respectively. To prevent
contamination of samples, the capsules were inserted with Ti scrap and the samples were
wrapped with a Ta sheet. After reaching the preset annealing time, the samples were
quenched into ice water and prepared by standard metallographic methods.

The equilibrium composition of each phase was investigated by EPMA (electron probe
microanalyzer) (JAX-8100R, JEOL, Tokyo, Japan) with WDS (wavelength dispersive X-ray
spectroscopy) and BSE (backscattered electrons). Crystal structure analysis was carried out
through XRD (X-ray diffractometer) (D8 Advance, Bruker, Karlsruhe, Germany) using Cu
Kα radiation at 40.0 kV and 40 mA, and the data were collected in the range of 2θ from 10◦

to 90◦ at a step size of 0.0167◦.

3. Results and Discussion
3.1. Microstructure and Phase Equilibrium

In Figure 1, the Co-Ta-Si ternary system is divided into four regions (zone 1–4), phase
equilibrium from each region is carefully discussed below. The following composition of
each phase and alloy is described by the atomic ratio (at.%). The representative micrograph
images and corresponding XRD indexing results are given below to indicate the phase equi-
libria relationship of the alloy. The nominal composition, annealing time and equilibrium
composition of each phase measured by WDS are all listed in Tables 2 and 3.

3.1.1. Equilibria at Zone 1

Zone 1 mainly contains the phase equilibria at the Si-rich corner (Si > 50 at.%). For
the Co34Ta26Si40 alloy that was annealed at 1100 ◦C, a distinct three-phase equilibrium of
E + V + CoSi was observed in Figure 2a and their crystal structures could be confirmed
by the corresponding XRD pattern in Figure 3a. As shown in Figure 2b, the Co26Ta7Si67
alloy is located in a three-phase equilibria region after being annealed at 1100 ◦C. The
white and light gray phases correspond to the TaSi2 and CoSi2 phases, respectively, while
the dark gray phase is presumed to be the solid solution phase of Si (signed as (Si)). The
corresponding XRD pattern indexing result in Figure 3b further confirmed this speculation.
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Table 2. Equilibrium compositions of the Co-Ta-Si ternary system at 900 ◦C determined in the
present work.

Alloy
(at.%)

Annealed Time

Phase Equilibria Composition (at.%)

Phase 1/Phase 2/Phase 3
Phase 1 Phase 2 Phase 3

Ta Si Ta Si Ta Si

Co10Ta10Si80 90 days TaSi2 / CoSi2 / (Si) 30.3 68.6 0.1 70.3 0.1 99.7
Co33Ta14Si53 90 days V / CoSi 24.8 48.4 0.1 51.6
Co30Ta43Si27 90 days (Co, Si)Ta2 / λ1-Co2Ta 62.6 30.8 32.2 29.5
Co54Ta28Si18 90 days λ1-Co2Ta / G 28.2 18.9 19.2 25.1
Co16Ta18Si66 90 days TaSi2 / CoSi / CoSi2 30.4 67.8 0.2 51.8 0.2 67.2
Co22Ta27Si51 90 days TaSi2 / V / CoSi 30.6 67.8 25.3 48.2 0.5 51.6
Co27Ta60Si13 90 days (Co, Si)Ta2 / Co6Ta7 63.7 22.8 49.6 6.7
Co34Ta26Si40 90 days E / V / CoSi 31.6 34.8 22.7 46.5 0.2 50.5
Co25Ta38Si37 90 days αTa5Si3 / E / V 58.4 39.0 32.1 35.2 25.2 48.1
Co64.5Ta22.5Si13 90 days λ3-Co2Ta / G 23.5 11.5 19.9 25.4
Co36Ta54Si10 90 days (Co, Si)Ta2 / Co6Ta7 64.0 20.6 49.7 9.2
Co2Ta75Si23 90 days (Ta) / (Co, Si)Ta2 / Ta3Si 92.3 5.4 63.8 28.6 71.0 28.6
Co26Ta7Si67 90 days CoSi2 / TaSi2 0.1 67.5 29.5 67.1
Co46Ta13Si41 90 days G / CoSi 18.2 25.8 0.1 51.2
Co58Ta10Si32 90 days Co2Si / CoSi / G 0.1 34.6 0.1 50.6 18.0 26.2
Co48Ta22Si30 90 days E / G / CoSi 30.2 35.1 18.3 26.1 0.1 51.1
Co36Ta33Si31 90 days E / λ1-Co2Ta 30.9 35.2 31.1 30.9
Co59.5Ta22.5Si18 90 days λ3-Co2Ta / G 22.1 11.0 18.6 24.6
Co59Ta31Si10 90 days λ1-Co2Ta / λ2-Co2Ta 29.7 13.0 28.8 8.5
Co11Ta75Si14 90 days (Ta) / (Co, Si)Ta2 91.2 3.0 63.7 28.1
Co38Ta58Si4 90 days Co6Ta7 / (Co, Si)Ta2 63.3 12.4 52.1 5.9
Co25Ta33Si42 90 days αTa5Si3 / E / V 57.2 39.6 32.4 35.6 24.4 48.9
Co24Ta44Si31 90 days αTa5Si3 / E 58.1 39.4 31.6 34.8
Co65Ta27Si8 90 days G / λ3-Co2Ta 19.1 24.1 25.3 9.2
Co56Ta9Si35 90 days G / αCo2Si / CoSi 19.0 25.0 0.4 33.6 0.3 49.2
Co44Ta25Si31 90 days E / G / CoSi 30.7 33.6 19.3 24.6 0.7 47.4
Co10Ta59Si31 90 days αTa5Si3 / E / (Co, Si)Ta2 58.8 39.4 32.0 29.7 63.4 33.2
Co61Ta11Si28 90 days G / αCo2Si 17.7 24.8 0.1 32.6
Co70Ta9Si21 90 days G / (εCo) / αCo2Si 57.7 24.3 0.1 14.4 0.2 29.7
Co37Ta42Si21 90 days (Co, Si)Ta2 / λ1-Co2Ta 62.0 24.7 44.3 22.2
Co71Ta13Si16 90 days G / (αCo) 18.8 24.4 0.5 6.7
Co78Ta10Si12 90 days λ3-Co2Ta / G / (αCo) 20.6 8.5 18.7 23.7 0.7 4.0
Co51Ta37Si12 90 days Co6Ta7 / λ1-Co2Ta 46.5 6.2 32.4 16.2

Co41Ta47Si12 90 days (Co, Si)Ta2 / Co6Ta7 /
λ1-Co2Ta 62.9 22.3 47.6 8.9 36.8 13.5

Co78Ta17Si5 90 days λ3-Co2Ta / (αCo) 21.0 6.4 0.9 1.9
Co57Ta38Si5 90 days Co6Ta7 / λ2-Co2Ta 43.2 4.1 35.5 6.1
Co27Ta68Si5 90 days (Ta) / (Co, Si)Ta2 91.7 2.9 63.5 6.2
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Table 3. Equilibrium compositions of the Co-Ta-Si ternary system at 1100 ◦C determined in the
present work.

Alloy
(at.%)

Annealed Time

Phase Equilibria Composition (at.%)

Phase 1/Phase 2/Phase 3
Phase 1 Phase 2 Phase 3

Ta Si Ta Si Ta Si

Co10Ta10Si80 60 days TaSi2 / CoSi2 / (Si) 31.0 67.3 0.7 68.0 0.1 99.0
Co33Ta14Si53 60 days V / CoSi 25.4 48.2 0.1 50.9
Co10Ta38Si52 60 days TaSi2 / αTa5Si3 / V 31.4 68.1 58.5 39.3 25.6 48.8
Co46Ta28Si26 60 days E / G 30.8 34.8 19.7 25.5
Co30Ta43Si27 60 days (Co, Si)Ta2 / λ1-Co2Ta 63.6 30.3 32.9 26.4
Co54Ta28Si18 60 days λ1-Co2Ta / G 28.2 19.5 20.1 25.4
Co16Ta18Si66 60 days CoSi / TaSi2 / V 30.8 67.6 0.1 51.8 24.5 48.4
Co22Ta27Si51 60 days TaSi2 / V 31.4 68.4 25.3 48.9
Co27Ta60Si13 60 days (Co, Si)Ta2 / Co6Ta7 63.8 21.1 50.7 7.5
Co35Ta5Si60 60 days V / CoSi 23.8 48.6 0.1 51.2
Co34Ta26Si40 60 days E / V / CoSi 31.8 35.4 25.2 46.8 0.1 51.9
Co25Ta38Si37 60 days E / αTa5Si3 / V 57.7 39.6 32.0 35.6 25.7 48.3
Co64.5Ta22.5Si13 60 days λ3-Co2Ta / G 22.1 12.6 19.5 23.8
Co2Ta75Si23 60 days Ta / (Co, Si)Ta2 / Ta3Si 94.8 4.0 64.0 30.0 27.9 71.6
Co26Ta7Si67 60 days TaSi2 / CoSi2 / (Si) 30.4 68.1 0.1 67.8 0.1 99.5
Co46Ta13Si41 60 days E / G′′ / CoSi 30.2 35.0 13.0 37.4 0.1 50.5
Co58Ta10Si32 60 days αCo2Si / G / G′′ 0.1 34.7 18.6 25.8 13.6 37.1
Co48Ta22Si30 60 days G / G′′ / E 18.7 25.9 13.4 37.3 30.7 34.8
Co36Ta33Si31 60 days E / λ1-Co2Ta 30.7 35.4 30.5 26.8
Co59.5Ta22.5Si18 60 days G / λ3-Co2Ta 18.8 25.1 24.2 15.3
Co59Ta31Si10 60 days λ1-Co2Ta 28.7 11.3
Co11Ta75Si14 60 days (Ta) / (Co, Si)Ta2 95.0 3.1 63.3 27.9
Co38Ta58Si4 60 days Co6Ta7 / (Co, Si)Ta2 63.5 12.0 52.1 3.4
Co25Ta33Si42 60 days E / V 31.4 35.9 24.6 48.8
Co24Ta44Si31 60 days αTa5Si3 / E 58.6 39.4 30.8 35.5
Co65Ta27Si8 60 days λ3-Co2Ta 25.1 9.1
Co42Ta15Si43 60 days CoSi / E 0.3 50.8 30.0 35.0
Co26Ta33Si41 60 days V / E 24.9 48.5 31.3 35.1
Co56Ta9Si35 60 days G" / αCo2Si / CoSi 13.6 36.5 0.1 33.9 0.1 49.3
Co44Ta25Si31 60 days G / G" 18.9 25.6 13.9 36.4
Co10Ta59Si31 60 days αTa5Si3 / Ta2Si / E 58.7 39.1 63.4 34.1 32.9 34.4
Co61Ta11Si28 60 days G / αCo2Si 18.1 24.9 0.2 32.7
Co70Ta9Si21 60 days G / (εCo) / αCo2Si 17.9 24.6 0.2 17.4 0.1 32.0
Co54Ta25Si21 60 days λ1-Co2Ta / G 26.8 18.5 19.2 25.6
Co54Ta25Si21 60 days λ1-Co2Ta 31.2 24.1
Co37Ta42Si21 60 days (Co, Si)Ta2 / λ1-Co2Ta 62.4 26.6 32.5 23.5
Co26Ta53Si21 60 days (Co, Si)Ta2 / λ1-Co2Ta 62.7 26.9 33.9 19.9
Co60Ta24Si16 60 days λ3-Co2Ta / G 21.3 13.9 18.9 24.5
Co78Ta10Si12 60 days λ3-Co2Ta / G / (αCo) 20.6 13.8 18.8 24.2 1.3 8.9
Co51Ta37Si12 60 days Co6Ta7 / λ1-Co2Ta 45.8 5.5 32.6 10.9

Co41Ta47Si12 60 days (Co, Si)Ta2 / Co6Ta7 /
λ1-Co2Ta 62.6 21.5 45.9 10.1 33.6 16.5

Co21Ta67Si12 60 days (Co, Si)Ta2 / (Ta) 94.1 3.0 63.6 24.5
Co78Ta17Si5 60 days λ3-Co2Ta / (αCo) 22.4 7.1 2.6 3.5
Co57Ta38Si5 60 days Co6Ta7 / λ2-Co2Ta 45.3 3.6 32.5 6.8

3.1.2. Equilibria at Zone 2

Zone 2 corresponds to the phase equilibria at the Ta-rich corner (Ta > 50 at.%). In
Figure 4a, a two-phase equilibrium of (Co, Si)Ta2 (white) + λ1-Co2Ta (black) was confirmed
in the Co30Ta43Si27 alloy quenching from 1100 ◦C based on the support of the corresponding
X-ray diffraction pattern in Figure 5. As shown in Figure 4b, the Co11Ta75Si14 alloy formed
a two-phase equilibrium microstructure of (Ta) + (Co, Si)Ta2 after being annealed at 900 ◦C.
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Figure 4c depicts the three-phase equilibrium of (Co, Si)Ta2 (white) + Co6Ta7 (grey) +
λ1-Co2Ta (black) in Co41Ta47Si12 alloy after being annealed at 900 ◦C.
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Compositional analysis of the Co30Ta43Si27, Co27Ta60Si13, Co36Ta54Si10, Co2Ta75Si23,
Co11Ta75Si14, Co38Ta58Si4, Co10Ta59Si31, Co37Ta42Si21, Co41Ta47Si12, Co27Ta68Si5 and Co26Ta53Si21
alloys indicate that these alloys contain a phase with about 63 at.% Ta after being annealed
at 900 ◦C and 1100 ◦C. The X-ray diffraction analysis results of these alloys strongly suggest
that the binary Al2Cu-type CoTa2 and Ta2Si phases form a continuous solid solution phase
(Co, Si)Ta2. As far as we know, it is the first time to discover the infinite mutual solubility
between CoTa2 and Ta2Si phases. Similarly, the phenomenon of Ni and Si can be entirely
substituted by each other in Al2Cu-type compounds was also found in the Ni-Ta-Si ternary
system [42].
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3.1.3. Equilibria at Zone 3

Zone 3 mainly discusses the phase equilibria around G′′ phase. The alloy Co46Ta13Si41,
Co58Ta10Si32 and Co48Ta22Si30 were designed to explore the existence of the G′′ phase.
For Co46Ta13Si41 and Co58Ta10Si32 alloys that being annealed at 1100 ◦C, two three-phase
equilibrium CoSi + E + G′′ and αCo2Si + G + G′′ were detected as shown in Figure 6a,b. The
corresponding XRD patterns in Figure 7a,b indicate that the diffraction peaks belonging
to the phases (CoSi, E, αCo2Si and G) are in good agreement with the standard patterns.
However, the diffraction peak of the G′′ phase was not interpreted due to the lack of
crystallographic information. For the Co48Ta22Si30 alloy annealed at 1100 ◦C, a clearly
three-phase equilibria E (white) + G (light gray) + G′′ (dark gray) was detected, as shown
in Figure 6c. However, the EMPA micrographs and WDS analysis of the same alloy (see
Figure 6d) quenching from 900 ◦C show that it is a three-phase of E + G + CoSi. This result
implies that the G′′ phase is a high-temperature compound, which is not stable at 900 ◦C.
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3.1.4. Equilibria at Zone 4

Zone 4 describes the phase equilibria of other ternary phases including G and L. As
shown in Figure 8a, the dark grey G phase was observed at the grain boundaries of the
light grey λ1-Co2Ta phase for the Co54Ta28Si18 alloy after being annealed at 1100 ◦C. This
morphology is extremely similar to that of the G phase precipitation on the C14 Laves
phase [42].
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The alloy with a nominal composition of Co59Ta31Si10 was designed to detect the L phase
as shown in Figure 8b. The interpretation of the corresponding XRD pattern in Figure 9a in-
dicates that this ternary L phase crystalizes the same as the Zn2Mg-type compounds
(P63/mmc, C14) like the binary λ1-Co2Ta phase. Additionally, the λ1-Co2Ta phase is
a high-temperature phase that only exists above 1294 ◦C [27]. However, the detected
ternary L phase is stable at 900 ◦C and 1100 ◦C, suggesting that the addition of Si stabi-
lizes the λ1-Co2Ta phase toward low temperature. Besides, this Co-Ta-Si ternary L phase
shows an extremely similar compositional range compared with the Ni-Nb-Si system [43].
The alloy Co65Ta27Si8 was designed to determine the phase equilibria of the G and three
Laves phases (λ1-Co2Ta, λ2-Co2Ta and λ3-Co2Ta). A single λ3-Co2Ta phase was detected in
Co65Ta27Si8 alloy annealed at 1100 ◦C (Figure 8c), while the λ3-Co2Ta + G was observed for
the same alloy being annealed at 900 ◦C (Figure 8d). The corresponding XRD patterns in
Figure 9b,c confirm the above equilibrium relationship.
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3.2. Isothermal Sections

Based on the phase equilibrium information discussed in Section 3.1, the isothermal
sections of the Co-Ta-Si ternary system at 900 ◦C and 1100 ◦C are constructed in the whole
composition range (see Figure 10). Nineteen and twenty-one three-phase regions were
observed at 900 ◦C and 1100 ◦C, respectively. Few undetected three-phase regions are
indicated by the dashed line.

The solid solubilities of Ta in the Co-Si binary phases (CoSi2, CoSi and αCo2Si) are
negligible. The maximum solubility of Co in the TaSi2 phase is 1.7 at.% at 1100 ◦C, and it
increases to 3.4 at.% at 900 ◦C. When the temperature decreases from 1100 ◦C to 900 ◦C, the
solid solubility of Co in the αTa5Si3 phase increases from 3.5 at.% to 5.3 at.%. In addition,
the maximum solubility of Si in the λ3-Co2Ta phase was measured to be 15.3 at.% at 1100 ◦C
and decreased to 11.5 at.% at 900 ◦C. At least 8.5 at.% of Si can be dissolved in the λ2-
Co2Ta phase at 900 ◦C. However, the solid solubility of Si in Co6Ta7 hardly varies with
temperature, maintaining 12 at.% at both 900 ◦C and 1100 ◦C.

In the Co-Ta-Si ternary system, there are four ternary compound phases G, G′′, E
and V and a binary high-temperature phase λ1-Co2Ta (L) stabilized by Si. The G, E, V
and G′′ phases are stoichiometric compounds exhibiting only small homogeneity ranges.
Meanwhile, the G, E, V and L phases exist at 900 ◦C and 1100 ◦C. The G′′ phase has also
been reported in similar ternary systems like the Co-Nb-Si [41] and Co-Ti-Si [40]. The G′′

phase was detected in the Co46Ta13Si41, Co58Ta10Si32 and Co48Ta22Si30 alloys after being
annealed at 1100 ◦C, but it disappears at 900 ◦C.
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4. Conclusions

The phase equilibrium of the Co-Ta-Si ternary system at 900 ◦C and 1100 ◦C is system-
atically studied by equilibrated alloy and the following conclusions can be drawn:

1. The four known ternary phases, G (Co16Ta6Si7), E (CoTaSi), G′′ (Co4TaSi3) and V
(Co4Ta4Si7) have almost no ternary solid solubilities, which could be treated as stoi-
chiometric compounds.

2. The high-temperature phase G′′ (Co4TaSi3) is only stable at 1100 ◦C and it disappears
when the temperature decreases to 900 ◦C.

3. The addition of Si increases the thermal stability of the binary λ1-Co2Ta (C14 Laves)
phase, resulting in the formation of the ternary L phase with the composition of
Co32.3–58.8Ta28.2–36.8Si13.0–30.9 at 900 ◦C and Co39.3–62.3Ta26.8–33.9Si10.9–26.8 at 1100 ◦C.

4. Both the binary CoTa2 and SiTa2 phases crystallize with the same body-centered
tetragonal structure (space group: I4/mcm, C16) and they form a continuous solid
solution phase (Co, Si)Ta2.

5. The maximum solid solubility of Si for the λ3-Co2Ta phase is ~15.3 at.% at 1100 ◦C
and it slightly decreases to be ~11.5 at.% at 900 ◦C. The solid solubility of Si for the
Co6Ta7 phase is always ~12 at.% and does not change with temperature.

6. The elemental Ta is hardly dissolved in the CoSi2, CoSi and α-Co2Si phases. Similarly,
the elemental Co has negligible solubilities in the TaSi2 and α-Ta5Si3 phases.

The results obtained from the present work make up the phase diagram information of
the Co-Ta-Si ternary system, also provide the key experimental data for the establishment
of Co-based superalloys thermodynamic database.
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