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Abstract

The GM2-gangliosidoses are neurological diseases causing premature death, thus developing 

effective treatment protocols is urgent. GM2-gangliosidoses result from deficiency of a lysosomal 

enzyme β-hexosaminidase (Hex) and subsequent accumulation of GM2 gangliosides. Genetic 

changes in HEXA, encoding the Hex α subunit, or HEXB, encoding the Hex β subunit, causes 

Tay-Sachs disease and Sandhoff disease, respectively. Previous studies have showed that a 

modified human Hex μ subunit (HEXM) can treat both Tay-Sachs and Sandhoff diseases by 

forming a homodimer to degrade GM2 gangliosides. To this end, we applied this HEXM subunit 

in our PS813 gene editing system to treat neonatal Sandhoff mice. Through AAV delivery of the 

CRISPR system, a promoterless HEXM cDNA will be integrated into the albumin safe harbor 

locus, and lysosomal enzyme will be expressed and secreted from edited hepatocytes. Four months 

after the i.v. of AAV vectors, plasma MUGS and MUG activities reached up to 144- and 17-fold of 

wildtype levels (n=10, p<0.0001), respectively. More importantly, MUGS and MUG activities in 

the brain also increased significantly compared with untreated Sandhoff mice (p<0.001). Further, 

HPLC-MS/MS analysis showed that GM2 gangliosides in multiple tissues, except the brain, of 

treated mice were reduced to normal levels. Rotarod analysis showed that coordination and motor 

memory of treated mice were improved (p<0.05). Histological analysis of H&E stained tissues 

showed reduced cellular vacuolation in the brain and liver of treated Sandhoff mice. These results 
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demonstrate the potential of developing a treatment of in vivo genome editing for Tay-Sachs and 

Sandhoff patients.
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1. INTRODUCTION

GM2-gangliosidoses, including Sandhoff disease and Tay-Sachs disease, are genetic 

disorders causing severe neurological diseases and premature death. GM2-gangliosidoses 

result from deficiency of a lysosomal enzyme β-hexosaminidase A and subsequent 

accumulation of GM2 gangliosides. Genetic changes in HEXA, encoding the Hex α subunit, 

or HEXB, encoding the Hex β subunit, causes Tay-Sachs and Sandhoff disease, respectively. 

Since the genotype-phenotype correlation is not well established in spite of many efforts 

using in silico tools [1–3], the diagnosis of GM2-gangliosidosis is often a long and 

burdensome odyssey. A recent natural history study of gangliosidoses mapped the timeline 

of clinical changes, which lays a solid foundation for developing therapies [4]. However, 

there is no effective treatment for GM2-gangliosidoses now, with palliative measures being 

the current standard of care. Even in a patient with the attenuated form, B1 variant of GM2-

gangliosidosis [5], stem cell transplantation achieved increased enzyme activities but could 

not prevent the disease progression and demise. Gene therapy, a promising strategy, is being 

investigated in animal models. There have been attempts using AAV vectors to treat GM2-

gangliosidoses in animal models [6–8] and one clinical trial (Axovant). However, major 

obstacles must still be overcome including: (1) continuous, rather than pulsatile, delivery; 

(2) sufficient transgene product to the brain; (3) minimizing the vector-associated risk. 

Therefore, there is a critical need to develop an innovative gene therapy protocol which 

surmounts these problems for treating GM2-gangliosidoses.

Preliminary results demonstrate that zinc finger nuclease (ZFN)-mediated in vivo genome 

editing successfully treats MPS I mice [9]. MPS I mice received i.v. administration of 3 

different AAV vectors encoding ZFN (left and right arms) and promoterless IDUA cDNA. 

These AAV vectors efficiently facilitate insertion of IDUA sequence into the albumin locus. 

The endogenous albumin promoter drives IDUA transgene expression, treating other tissues 

through cross correction. More importantly, Barnes maze test and histological analysis 

showed that this liver-targeting gene therapy achieved significant neurological 

improvements. This study led to a Phase I clinical trial (ClinicalTrials.gov identifier: 

NCT02702115). Progress reports from this clinical trial showed no drug-related adverse 

events, but a low level of transgene expression [10]. As shown in clinical trials for treating 

Hemophilia B, a relatively low efficiency is also an obstacle for traditional AAV gene 

therapies. Increasing the dose will bring about higher risk of toxicity, more challenging 

vector production and increased manufacturing costs.

Thus, the present study aims to further improve the efficacy of gene editing by using the 

CRISPR system. Recently, a modified human Hex μ subunit (HEXM), incorporating 
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sequence of both α and β subunits by forming a homodimer to degrade GM2 gangliosides 

[6], has been shown to able to treat both Sandhoff and Tay-Sachs diseases [7,8]. Therefore, 

neonatal Sandhoff mice were injected with a dual AAV system (AAV8-SaCas9 and AAV8-

HEXM-sgRNA), designated as PS813 (proprietary system 813). A series of analyses were 

performed to assess the treatment efficacy. This is the first attempt to apply in vivo gene 

editing to treat GM2-gangliosidoses.

2. MATERIALS AND METHODS

2.1 Animals and injections

Sandhoff mice (Hexb−/−), purchased from the Jackson Laboratory, were generated by 

inserting a neomycin resistance cassette into exon 13 of the Hexb gene on the 129S4/SvJae 

background [12]. Sandhoff mice (Hexb−/−) and control mice were genotyped by PCR. 

Neonatal mice were injected with AAV vectors (<30 μL) through temporal facial vein on 

postnatal Day 1 or 2. Hydrodynamic injections of plasmids were performed in adult 

Sandhoff mice as previously described [13]. All mouse care and handling procedures were 

in compliance with the rules of the Institutional Animal Care and Use Committee (IACUC) 

of the University of Minnesota.

2.2 Construct design and in vitro confirmation

Four guide RNAs (gRNAs) were designed based on the locations to the insertion site 

(albumin locus) and their off-target profiles. Then, these gRNAs were cloned into the 

pX602-AAV-TBG saCas9 plasmid. Each plasmid was transfected into mouse embryonic 

fibroblast (MEF) cells, and cells were subsequently harvested for PCR amplification. In 

order to determine the gRNA cleavage activity of the gRNA constructs, an in vitro Surveyor 

assay was performed on the PCR product (Surveyor mutation detection kit, Transgenomic, 

NE, USA, #706020).

2.3 Vector production

AAV-HEXM-gRNA and AAV-SaCas9 were packaged into AAV8 vectors at the Children’s 

Hospital of Philadelphia Research Vector Core. The titer was verified by SDS PAGE and 

silver staining. The core follows Good Laboratory Practice (GLP) guidelines.

2.4 Depletion of brain capillaries

To rule out the possibility that enzyme activities in the brain come from capillary cells and 

blood, all mice were transcardially perfused with 35 mL PBS, and depletion of brain 

capillaries was performed as previously described [14].

2.5 Hex enzyme assay

Tissues were homogenized and protein concentrations were measured as previously 

described [15]. MUG and MUGS enzyme activities in plasma and tissues were measured 

using a previously described enzyme assay protocol [15]. 4-Methylumbelliferyl N-acetyl-b-

D-glucosaminide (4MUG, Sigma, MO, USA, # M2133) and 4-Methylumbelliferyl-6-

Ou et al. Page 3

Gene Ther. Author manuscript; available in PMC 2020 July 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sulfa-2-Acetoamido-2-Deoxy-beta-D-Glucopyranoside Potassium salt (4MUGS, TRC, 

Canada, # M335000) were used for measuring MUG and MUGS activities, respectively.

2.6 Ganglioside quantification

GM2 gangliosides were quantified using HPLC-MS/MS as previously described [16]. The 

mouse brain (1g wet tissue/6 mL CHAPS solution), heart (1g wet tissue/6 mL CHAPS 

solution), liver (1g wet tissue/6 mL CHAPS solution), and spleen (1g wet tissue/6 mL 

CHAPS solution) samples were homogenized in 2% CHAPS solution. Protein precipitation 

with 200 μL of methanol was conducted to extract GM2 gangliosides from 50 μL of tissue 

homogenates. d3-GM2(18:0) was used as internal standards. The quality control samples 

(10% study sample extracts from each tissue type) were used to monitor the instrument 

performances. Sample analysis was conducted with the Shimadzu 20AD HPLC system, 

coupled with the 6500QTRAP mass spectrometer operated in the positive MRM mode. Data 

processing was conducted with Analyst 1.5.2 (Applied Biosystems, CA, USA). The relative 

quantification of lipids was provided, and the data were reported as the peak area ratios of 

the analytes to the corresponding internal standards.

2.7 Behavior tests

The pole test was performed as previously described [17]. Rotarod analysis was performed 

using an adapted protocol previously described [18]. Fear conditioning was performed 

according to an established protocol [19]. All three behavior tests were performed at the 

Mouse Behavior Core, University of Minnesota.

2.8 Histology

After perfusion and fixation in 10% neutral buffered formalin, tissues from 9 mice (3/group) 

were processed into paraffin using standard histology techniques, sectioned at a thickness of 

4 μm, stained with hematoxylin and eosin (H&E), and evaluated by ACVP-board certified 

pathologists (A-FT, MGO’S) using light microscopy. All work was done at the University of 

Minnesota Masonic Cancer Center Comparative Pathology Shared Resource Laboratory.

2.9 QPCR

Total DNA from brain, heart, liver, and spleen of treated and control mice was extracted with 

the QIAamp DNA Mini kit (QIAGEN, Germany). QPCR was performed with PowerUp 

SYBR Green Master Mix (Thermo Fisher, MA, USA) in MicroAmp 96-well plate (Applied 

Biosystems, CA, USA). Primers targeting the AAV ITR was as followed: Fwd primer, 5’-

GGAACCCCTAGTGATGGAGTT-3’; Rev primer, 5’-CGGCCTCAGTGAGCGA-3’. 

Plasmids encoding the AAV ITR was used to make a standard curve. gDNA was quantified 

in parallel samples using GAPDH primers as internal controls. Fwd primer, 5’-

CATCACTGCCACCCAGAAGACTG-3’; Rev primer, 5’- 

ATGCCAGTGAGCTTCCCGTTCAG-3’. AAV copy number was expressed as 100 vg/ng 

DNA.
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2.10 Statistical analysis

Statistical analysis was performed with Graphpad Prism 7. One-way ANOVA for multiple 

comparisons, and two-sided t test for comparisons between two groups (adjusted for 

multiple comparisons). The results met the normal distribution assumptions. The variance 

between groups that are being compared was similar. Data were represented as Mean ± 

SEM. *p<0.05 when comparing treated to untreated Sandhoff mice, **p<0.01, ***p<0.001, 

****p<0.0001. The sample size was determined through power analysis with pilot study 

results. The n number indicated biological replicates, while experiments were replicated in 

triplicate. No outliers were excluded. No randomization was performed. Group assignment 

was blinded to staff performing the behavior tests.

3. RESULTS

3.1 Construct design and verification

The design for CRISPR-mediated genome editing is illustrated in Fig. 1A. SaCas9 and guide 

RNA mediate the insertion of promoterless cDNA donor into albumin locus and achieve 

expression of Hex enzyme. AAV8 vectors are liver-tropic, and SaCas9 is under control of a 

liver-specific promoter. By virtue of this, genome editing and transgene expression can be 

limited to hepatocytes. Systemic therapeutic benefits are expected to be achieved through a 

phenomenon called ‘cross correction’ [20]. A total of four guide RNAs (gRNAs) were 

transfected into mouse embryonic fibroblast cells together with SaCas9. The ability of these 

gRNAs to guide SaCas9-mediated cleavage at the albumin locus and to promote DNA 

double strand break was evaluated via the Surveyor assay. The results showed that one of the 

gRNAs mediated targeted DNA cleavage with the highest efficiency (11% indels) (Fig. 1B), 

and was selected for the following studies.

In addition, the plasmids encoding SaCas9 and HEXB cDNA donor were tested in adult 

Sandhoff mice through hydrodynamic injection. Only the mice receiving both plasmids had 

significant higher MUG activities in the liver (45% of wildtype levels, p<0.05, Fig. 1C). 

Notably, there is no significant increase in β-hexosaminidase S (αα) activities, indicating 

that the increase of MUG activities mainly comes from β-hexosaminidase B (ββ) through 

transgene expression of HEXB cDNA. Mice receiving the plasmid encoding promoterless 

cDNA donor showed no increase in MUG or MUGS activities. These results strongly 

support the feasibility of this CRISPR-mediated ‘safe harbor’ genome editing strategy in 

treating Sandhoff mice.

3.2 Proof-of-concept study with hydrodynamic injections

Since GM2-gangliosidoses are primarily neurological diseases, previous gene therapy 

studies focused on direct injection into the brain. One challenge for PS813 to treat a 

neurological disease is to deliver the enzyme to the brain. However, previous studies 

(summarized in Table 1) using high dose enzyme replacement therapy have achieved 

significant neurological benefits in MPS I mice [21], MPS II mice [22], MPS IIIA mice [23], 

MPS VII mice [24], Krabbe mice [25], metachromatic leukodystrophy mice [26], α-

mannosidosis mice [27] and aspartylglycosaminuria mice [28]. These results indicated that 

when there is a constant high enzyme level in the bloodstream, a small amount may be able 

Ou et al. Page 5

Gene Ther. Author manuscript; available in PMC 2020 July 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to cross the BBB. In addition, our previous ZFN-mediated liver-targeting gene editing 

approach also achieved amelioration of neurological diseases in MPS I [9] and II mice [29].

To further support this, hydrodynamic injection of a plasmid encoding HEXM sequence into 

adult Sandhoff mice was performed. To eliminate any transgene expression in the CNS, the 

HEXM expression was restricted in the liver by using a liver-specific promoter/enhancer (the 

human α−1-antitrypsin [hAAT] promoter and human apolipoprotein [ApoE] enhancer). Two 

days after the injection, the mice were transcardially perfused, and depletion of brain 

capillaries was performed. Interestingly, a significant increase in MUGS and MUG activities 

were observed in the brain of injected mice (p<0.05, Fig. 2). These results indicated that Hex 

proteins were expressed in the liver, resulting in high blood Hex enzyme levels and a small, 

but sufficient, amount of Hex enzyme in the CNS. In addition, the fact that both MUGS and 

MUG activities increased support the therapeutic potential of the HEXM sequence in 

treating both Tay-Sachs and Sandhoff diseases.

3.3 AAV delivery of the gene editing system to treat Sandhoff mice

3.3.1 Hex enzyme activities—Neonatal Sandhoff mice (n=10) received co-delivery of 

AAV8-SaCas9 (5×109 vg/g body weight) and AAV8-HEXM-gRNA (3×1010 vg/g body 

weight) through temporal facial vein. A group of Sandhoff mice receiving the donor only 

(AAV8-HEXM-gRNA, n=4) was also included as controls. Plasma MUGS and MUG 

activities in Cas9+donor treated Sandhoff mice increased significantly up to 144 and 17 fold 

of wildtype levels, respectively (p<0.0001, Fig. 3A and B). In mice treated with the donor 

alone, the MUGS and MUG activities did not significantly increase (data not shown), 

indicating that there was no episomal transgene expression from the promoterless donor. 

After 4 months, all mice were euthanized and tissues were harvested for further analyses. 

MUGS activities in the liver, heart and spleen increased to 25, 3 and 2 fold of wildtype 

levels, respectively (p<0.0001, Fig. 3C). MUG activities in the liver, heart and spleen 

increased 7 fold, 120% and 79% of wildtype levels, respectively (Fig. 3D). More 

interestingly, MUGS and MUG activities in the brain of Cas9+donor treated mice also 

increased significantly (Fig. 3C and 3D, compared with untreated Sandhoff mice, p<0.001).

3.3.2 Behavior tests—Three months post dosing, a battery of behavior tests was 

performed to assess the treatment efficacy. In the pole test (assessing bradykinesia) and the 

fear conditioning (assessing learning and memory), no significant differences were observed 

between untreated Sandhoff mice and normal mice. A previous study showed that Sandhoff 

mice had indistinguishable performance from wildtype mice at the age of 6 weeks old and 3 

months old in the fear conditioning [30]. These results indicate that at least at this age, these 

two tests could not distinguish Sandhoff mice from normal mice. However, in the rotarod 

test, which assesses coordination, motor function and motor memory, a significant difference 

between untreated Sandhoff and normal mice were observed. Moreover, the Cas9+donor 

treated mice had significantly improved performance compared with untreated Sandhoff 

mice (Fig.4, p<0.05). These results indicate that this liver-targeting gene therapy achieved 

neurological benefits.

Ou et al. Page 6

Gene Ther. Author manuscript; available in PMC 2020 July 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.3.3 Histopathology—Cellular vacuolation is the characteristic microscopic finding of 

lysosomes engorged with storage materials in the murine model of lysosomal diseases. To 

assess whether the treatment can reduce cellular vacuolation, histological analysis of the 

brain and liver was performed. Untreated Sandhoff mice showed the typical hepatic and 

cerebral lesions associated with lysosomal accumulation: Kupffer cell and neuronal cell 

hypertrophy and vacuolation (with small, well defined vesicles of variable sizes and with 

clear to pale-eosinophilic content, pointed by arrows and illustrated in the enlarged photo in 

the center panel) (Fig. 5). Moreover, within the brain, the lysosomal accumulation 

(manifested as cellular vacuolation) is present in variable degrees in all the main anatomic 

areas (brain cortex, hippocampus, thalamus, hypothalamus, pons and cerebellum). In 

contrast, there is an absence of Kupffer cell vacuolation in treated Sandhoff mice (n=3), with 

the morphology of the liver being comparable from this perspective to normal mice. 

Neuronal lysosomal accumulation was reduced in 1 of 3 treated Sandhoff mice. In addition, 

no evidence of vector-associated toxicity was observed through the H&E staining analysis, 

which supports the safety profile of PS813.

3.3.4 GM2 gangliosides—Further, HPLC-MS/MS was applied to quantify the GM2 

gangliosides in tissues. As shown in Fig. 6, the amount of GM2 gangliosides in the brain is 

generally magnitude higher than that in other tissues. GM2 gangliosides were significantly 

reduced in the liver, heart and spleen of treated mice (p<0.0001). However, GM2 

gangliosides in the brain of treated mice were not significantly reduced (Fig. 6D). 

Considering the fact that there is substantial amount of gangliosides in the membrane of 

neurons, one possible explanation is that a very small reduction (even not statistically 

significant) in the total amount of GM2 gangliosides may lead to reduced cellular 

vacuolation (Fig. 5) and therapeutic benefits.

3.3.5 Biodistribution of AAV vector—To determine the biostribution of AAV vectors, 

total DNA extracted from treated Sandhoff mice (n=6), untreated Sandhoff mice (n=4), and 

normal mice (n=4) was assayed by QPCR to quantify AAV copy number (data summarized 

in Table 2). No AAV vector was detected from tissues of control mice. The liver of treated 

Sandhoff mice has the highest copy number, followed by heart. Notably, the copy number in 

the spleen of treated mice was non-detectable. Previous studies have shown that AAV8 

vector can cross the BBB [31]. Similarly, a small amount of AAV vector was observed in the 

brain. However, it is unlikely that gene editing occurred in the brain because Cas9 is under 

the control of a liver-specific promoter.

4. DISCUSSION

4.1 HEXM has the potential to treat both Tay-Sachs and Sandhoff disease

Although expressing only β subunit is expected to efficiently treat Sandhoff mice, the 

sialidase bypass does not exist in humans, making translation of this strategy into clinical 

practice difficult. Further, optimal production of Hex A enzyme is suggested to be 

expressing both subunits because the overexpression of one subunit may rapidly deplete the 

pool of its endogenous subunit partner [32]. As shown in Fig.1C, expression of the HEXB 

construct achieved increase in MUG activities, but not MUGS activity. In contrast, 
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expression of the HEXM construct achieved increase in both MUGS and MUG activities 

(Fig.2 & Fig.3). Previous study [33] also showed that co-expression of both subunits 

achieved higher Hex A activities in Sandhoff mice or cats. However, it is difficult to package 

both HEXA and HEXB cDNA into one AAV vector, while the use of two vectors brings 

about higher manufacturing cost and vector-associated risk. To this end, a modified α 
subunit incorporating partial sequence of β-subunit was designed [6]. This modified subunit 

(μ) can form a stable dimeric enzyme to efficiently degrades GM2 gangliosides. These 

results indicate that this homodimer can properly interact with the activator protein, which is 

required for the catalytic degradation of GM2 gangliosides [34]. Expression of HEXM is 

expected to achieve greater therapeutic benefits than that is achieved through expression of 

one subunit alone, which would result predominantly in the formation of either Hex S (αα) 

or Hex B (ββ). Another benefit for using this HEXM construct is the ability to treat both 

Tay-Sachs and Sandhoff diseases as shown in two studies [6,7]. In this study, application of 

the HEXM construct successfully achieved significant MUGS and MUG activities, 

demonstrating its remarkable therapeutic potential.

In addition, it will be interesting to assess the potential immune response against HexM 

proteins. However, this study was performed in neonatal mice that might be immune naïve 

and immunotolerized. Plasma enzyme activities were stable from day 30, to 60 and 90, 

indicating that immune response, if any, did not significantly affect the enzyme activities.

4.2 CRISPR-mediated gene editing to treat lysosomal diseases

There are no effective therapies for the GM2-gangliosidoses, with palliative measures being 

the current standard of care. Enzyme replacement therapy [35], substrate reduction therapy 

[36], chemical chaperone therapy [37] and bone marrow transplantation [38], only achieve 

limited therapeutic benefit in animal models. Gene therapy holds promise for treating 

lysosomal diseases as it has potential for permanent, single-dose treatment. GM2 animal 

model studies include gene modification using lentiviral [39] and AAV vectors [40], but 

these methods have integration and persistence drawbacks. Integrating vectors, such as 

lentiviral vectors, randomly integrate into the genome, raising potential concerns of 

insertional mutagenesis [41]. Clinical trials treating X-linked severe combined 

immunodeficiency with retroviral gene therapy resulted in leukemia for 2 patients through 

oncogene activation by vector integration. Meanwhile, AAV, mainly an episomal vector, is 

not expected to provide permanent transgene expression. It was shown that transgene 

expression from episomal AAV vectors was rapidly lost after one round of cell division [42], 

leading to a gradual decline of therapeutic effects. Unfortunately, secondary administration 

of AAV vectors often fails to rescue expression, due to the immune response to primary 

vector delivery [43]. Therefore, the major advantage of PS813 over traditional AAV gene 

therapy is its ability to create life-long enzyme replacement therapy, overcoming the issue of 

vector dilution, and will provide ongoing efficacy after the first few years following 

treatment.

In our previous study with ZFNs, the genome modification rate was relatively low. The low 

probability of all 3 AAV vectors transfecting the same cell explains this low efficiency 

modification rate. Progress reports from this clinical trial showed no drug-related adverse 
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events, but a low level of transgene expression [10]. As shown in clinical trials for treating 

Hemophilia B, a relatively low efficiency is also an obstacle for traditional AAV gene 

therapies. Increasing the dose will bring about higher risk of toxicity, more challenging 

vector production and increased manufacturing costs. Therefore, a PS813 gene editing 

system was designed utilizing Cas9. As opposed to 3 AAV vectors used in the study with 

ZFNs, this CRISPR system only requires 2 vectors: one AAV vector encoding SaCas9, the 

other encoding the promoterless donor sequence and guide RNA. Assuming similar doses, 

AAV transduction and nuclease targeting efficiency, the efficiency of successful genome 

editing by CRISPR is expected to be higher than that mediated by ZFNs. In the parallel 

study in MPS I mice, PS813 achieved a magnitude higher efficiency than that achieved by 

the ZFN system (unpublished data). As shown in this study, PS813 achieves increased 

enzyme level in the brain of Sandhoff mice at the dose of 3.5×1013 vg/kg (Fig. 3C&D). 

Meanwhile, previous studies in Sandhoff mice could not achieve increased enzyme level in 

the brain at the same dose (3.5×1013 vg/kg AAV9) [44], or even a higher dose (5×1013 vg/kg 

scAAV) [6]. In light of its remarkable efficiency, PS813 will bring a novel therapy with 

higher efficiency and reduced risk to patients with Tay-Sachs or Sandhoff disease.

In 2018, the FDA has approved an IND application based on Cas9 for treating Leber 

congenital amaurosis type 10 [45]. More recently, a study used a GOTI method (genome-

wide off-target analysis by two-cell embryo injection) to determine off-target effects by 

editing a blastomere of two-cell mouse embryos using Cas9 [46]. This method separates off-

target signals from background noise by using cells with the identical genetic background as 

controls. Comparison between the whole genome of progeny cells of edited vs non-edited 

blastomeres identified very rare off-target events (similar to spontaneous mutations). These 

facts support the safety and potential clinical application of CRISPR/Cas9.

4.3 Intravenous administration to treat neurological diseases

Although the pathophysiology is not fully understood [47], the GM2-gangliosidoses are 

primarily neurological disorders. Therefore, many previous gene therapy studies focused on 

direct injections into the brain. These approaches are of limited use due to several 

drawbacks: (1) highly invasive nature; (2) difficulty in achieving uniform and global 

distribution throughout the brain [48]; (3) the inability to treat systemic diseases that become 

prominent when animals live longer because neurological diseases are treated [41]; (4) 

genotoxicity due to overexpression of Hex A in neurons [49]. In addition, there have been 

attempts using intravenous administration of AAV-BR1 [50] and AAV9 vectors [44] to treat 

gangliosidosis. As discussed earlier, the drawback of traditional AAV gene therapy is vector 

dilution and gradual loss of therapeutic benefits. Alternatively, fusing lysosomal enzyme 

with other proteins to target the CNS has also been tested [51], while the application into 

gangliosidoses has not yet accomplished. The feasibility of this liver-targeting gene editing 

approach to treat a neurological disease is supported by multiple preclinical studies with 

high doses of ERT that are relatively high compared to usual doses of ERT used to treat 

patients with (Table 1). These studies showed that a high level of enzyme in circulation 

could facilitate entry of enzyme into the brain. This phenomenon was also observed in our 

previous ZFN studies in MPS I [9] and II [29]. Possible mechanisms may include: 1) 

impaired integrity of BBB due to disease; 2) fluid-phase pinocytosis; 3) extracellular 
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pathway; 4) residual mannose 6-phosphate receptor (M6PR) or other uncharacterized 

receptors. Admittedly, the fact that GM2 gangliosides levels were not significantly reduced 

in the brain seems confusing, However, rotarod analysis showed improvements in motor 

function of treated Sandhoff mice, and histological analysis showed reduced neuronal 

vacuolation. Although the treatment efficacy in the brain needs to be optimized, these results 

support that this liver-targeting gene therapy can achieve significant neurological benefits. 

Moreover, considering the dose used in this study is relatively low (3.5×1010 vg/g body 

weight), the treatment efficacy in the brain can be significantly improved by increasing the 

dose. It was possible that due to saturation of M6P-mediated lysosome-targeting pathway by 

overexpression of one lysosomal enzyme, other lysosomal enzymes might not be efficiently 

delivered to the lysosome. In our previous study, we found that IDS enzyme activity in cells 

expressing over 200-fold of wildtype IDUA levels were not significantly reduced [15]. Thus, 

overexpression of one lysosomal enzyme does not necessarily significantly affect expression 

of other lysosomal enzymes. IDUA enzyme activity in the liver of untreated Sandhoff, 

treated Sandhoff, and heterozygous normal mice were also measured. There was no 

significant difference between groups (data not shown). Moreover, in a parallel study in 

MPS I mice (unpublished data), when a 10 fold-dose of this gene editing system used, no 

vector-associated toxicity or microscopic findings were observed in the 11-month follow-up. 

These results further support the feasibility of increasing the dose to improve the efficacy.
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Fig. 1. Construct design and gRNA validation by Surveyor assay.
(A) Sequence of AAV vectors represented in cartoon. TBG: thyroxine-binding globulin; 

ITR: inverted terminal repeats; SA: splicing acceptor; PA: polyA; ITR: inverted terminal 

repeat; HA: homology arm; HEXM: cDNA of the μ subunit; RE: restriction enzyme site; 

U6: U6 promoter. (B) Surveyor assay for gRNA activity in MEF cells. Each gRNA construct 

was transfected into MEF cells, and subsequently harvested for PCR amplification. In order 

to determine the gRNA cleavage activity of the gRNA constructs, an in vitro Surveyor assay 

was performed on the PCR products. (C) MUG activities in the liver increased significantly 

2 days after hydrodynamic injection of AAV-SaCas9 and AAV-HEXB-gRNA plasmids into 

Sandhoff mice (n=3). * p<0.05 when comparing treated Sandhoff mice to untreated 

Sandhoff mice.
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Fig. 2. Hydrodynamic injection of plasmids encoding HEXM sequence into adult Sandhoff mice.
MUGS and MUG activities in the liver and brain of treated mice increased significantly 2 

days post-dosing. * p<0.05 when comparing treated Sandhoff mice to untreated Sandhoff 

mice.
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Fig. 3. Plasma and tissue Hex enzyme activities increased significantly after AAV injection.
Plasma MUGS (A) and MUG (B) activities significantly increased on Day 30, 60 and 90 

post dosing. Four months post dosing, all mice were euthanized after transcardial perfusion. 

The brain, liver, heart and spleen were harvested for enzyme assays. Tissue MUGS (C) and 

MUG (D) activities increased significantly. *** p<0.001 when comparing treated Sandhoff 

mice to untreated Sandhoff mice, **** p<0.0001.
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Fig. 4. Rotarod analysis showed that treated Sandhoff mice had significant improved 
performance.
* p<0.05 when comparing treated Sandhoff mice to untreated Sandhoff mice.
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Fig. 5. Histological analysis showed that cellular vacuolation was reduced in the brain and liver 
of treated Sandhoff mice.
The brain (upper panel) and liver (lower panel) were processed for H&E staining. Treated 

Sandhoff mice, untreated Sandhoff and normal mice are shown in the left, middle and right 

columns, respectively. Kupffer cell vacuolation (small, well defined, vesicles with clear to 

pale-eosinophilic content) in the liver of untreated Sandhoff mice was reduced in treated 

Sandhoff mice. In the cerebellum, pons, thalamus, hypothalamus and brain cortex of 

untreated Sandhoff mice, there was neuronal vacuolation, which was significantly reduced in 

1 of 3 treated Sandhoff and was not observed in normal mice. Objective x40.
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Fig. 6. Tissue GM2 gangliosides reduced 4 months post dosing.
GM2 gangliosides in the liver (A), heart (B), spleen (C) and brain (D) were quantified by 

HPLC-MS/MS. **** p<0.0001 when comparing treated Sandhoff mice to untreated 

Sandhoff mice.
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Table 1:

Previous preclinical studies show that high doses of ERT can treat neurological complications.

Mouse model Dose (mg/kg) Clinical dose 
(mg/kg)

Brain enzyme 
activity (% 
Normal)

Brain storage reduced 
(%Affected)

References

α-mannosidosis 36.6 1 15% 50% [27]

Metachromatic leukodystrophy 20 N/A N/A 30% [26]

Aspartylglycosaminuria 10 N/A 10% 20% [28]

Krabbe disease 6 N/A 7% 18% [25]

MPS II 10 0.5 5% N/A [22]

MPS IIIA 20 N/A 22% 0 [23]

MPS VII 20 2 2.50% N/A [24]

MPS I 20 0.58 97% 63% [21]
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Table 2.

AAV copy number in tissues.

Group assignment AAV copy number (100vg/ng DNA)

Brain Liver Heart Spleen

Normal (n=4) ND ND ND ND

Sandhoff, untreated (n=4) ND ND ND ND

Sandhoff, treated (n=6) 11.1±4.1 2,155±661 1,461±385 ND

ND, non-detectable.
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